Detalle Publicación

ARTÍCULO
Association of cardiotrophin-1 with myocardial fibrosis in hypertensive patients with heart failure
Título de la revista: HYPERTENSION
ISSN: 0194-911X
Volumen: 63
Número: 3
Páginas: 483 - 489
Fecha de publicación: 2014
Resumen:
Cardiotrophin-1 has been shown to be profibrogenic in experimental models. The aim of this study was to analyze whether cardiotrophin-1 is associated with left ventricular end-diastolic stress and myocardial fibrosis in hypertensive patients with heart failure. Endomyocardial biopsies from patients (n=31) and necropsies from 7 control subjects were studied. Myocardial cardiotrophin-1 protein and mRNA and the fraction of myocardial volume occupied by collagen were increased in patients compared with controls (P<0.001). Cardiotrophin-1 overexpression in patients was localized in cardiomyocytes. Cardiotrophin-1 protein was correlated with collagen type I and III mRNAs (r=0.653, P<0.001; r=0.541, P<0.01) and proteins (r=0.588, P<0.001; r=0.556, P<0.005) in all subjects and with left ventricular end-diastolic wall stress (r=0.450; P<0.05) in patients. Plasma cardiotrophin-1 and N-terminal pro-brain natriuretic peptide and serum biomarkers of myocardial fibrosis (carboxy-terminal propeptide of procollagen type I and amino-terminal propeptide of procollagen type III) were increased (P<0.001) in patients compared with controls. Plasma cardiotrophin-1 was correlated with N-terminal pro-brain natriuretic peptide (r=0.386; P<0.005), carboxy-terminal propeptide of procollagen type I (r=0.550; P<0.001), and amino-terminal propeptide of procollagen type III (r=0.267; P<0.05) in all subjects. In vitro, cardiotrophin-1 stimulated the differentiation of human cardiac fibroblast to myofibroblasts (P<0.05) and the expression of procollagen type I (P<0.05) and III (P<0.01) mRNAs. These findings show that an excess of cardiotrophin-1 is associated with increased collagen in the myocardium of hypertensive patients with heart failure. It is proposed that exaggerated cardiomyocyte production of cardiotrophin-1 in response to increased left ventricular end-diastolic stress may contribute to fibrosis through stimulation of fibroblasts in heart failure of hypertensive origin.