Detalle Publicación


Extrusion decreases the negative effects of kidney bean on enzyme and transport activities of the rat small intestine

Autores: Marzo, Florencio; Milagro Yoldi, Fermín Ignacio; Urdaneta, Elena; Barrenetxe, Jaione; Ibañez, Francisco C.
ISSN: 0931-2439
Volumen: 95
Número: 5
Páginas: 591 - 598
Fecha de publicación: 2011
The objective of the present study was to evaluate the influence of raw and extruded kidney bean (Phaseolus vulgaris L. var. Pinto) consumption on the gut physiology of young growing rats. The intestinal enzyme activity (sucrase, maltase, Na(+) /K(+) ATPase, aminopeptidase N, dipeptidylpeptidase IV, alkaline phosphatase) and the uptake of sugar (d-galactose) and amino acids (l-leucine) were measured in brush border membrane vesicles. Five groups of growing male Wistar rats were fed ad libitum for 15 days on five different 10% protein diets: one containing casein as the main source of protein (Control, C), and four containing raw (RKB1, RKB6) or extruded kidney bean (EKB1, EKB6) at 1% and 6% of total protein content respectively. Extrusion treatment significantly reduced the content of bioactive factors (phytates, tannins) and abolished lectins, trypsin, chymotrypsin, and ¿-amylase inhibitory activities. Rats fed raw beans (especially RKB6) showed lower growth rate and food intake as compared to those fed extruded legumes, probably due to the high levels of lectins and other anti-nutritive factors in the raw beans. Gut enzymatic activities and uptake of d-galactose and l-leucine were lower in RKB6 and RKB1-fed animals, although they significantly improved in the groups fed extruded beans. Enzymatic activity and uptake in EKB1 were similar to those of casein-fed rats, whereas the uptake and growth rate of EKB6 were different to the control. This is attributable to the higher non-thermolabile biofactor content in the EKB6 diet, especially phytates and tannins, than in EKB1. This article shows the dose-dependent toxicological effects of bioactive factors contained in kidney beans on gut function. The extrusion process reduced their adverse impact on gut physiology and growth rate.