Detalle Publicación

HIF-1-mediated up-regulation of cardiotrophin-1 is involved in the survival response of cardiomyocytes to hypoxia

Título de la revista: CARDIOVASCULAR RESEARCH
ISSN: 0008-6363
Volumen: 92
Número: 2
Páginas: 247 - 255
Fecha de publicación: 2011
Resumen:
Aims Cardiotrophin-1 (CT-1) is a cytokine of the interleukin-6 superfamily which is up-regulated in cardiac diseases, in part via hypoxia-dependent mechanisms. However, no evidence for a direct regulation of CT-1 gene (CTF1) promoter by hypoxia inducible factor-1 (HIF-1) has been provided. Methods and results Hypoxia increased CT-1 mRNA levels in the murine adult cardiomyocyte cell line HL-1 in a time-dependent manner. Interestingly, in a murine model (C57BL/6), we show that systemic hypoxia also significantly up-regulated CT-1 in myocardial tissue. The effect of hypoxia on CT-1 expression was mediated through a transcriptional mechanism, since hypoxia increased luciferase activity of constructs containing CTF1 promoter sequences. The increase in CT-1 levels was significantly reduced by drugs that prevent calcium mobilization, such as lercanidipine, or that inhibit the activation of the PI3K/Akt pathway (wortmannin) or mammalian target of rapamycin (rapamycin). The CT-1 elevation was similarly induced by HIF-1 alpha over-expression in co-transfection experiments and prevented by HIF-1 alpha silencing. The direct interaction of HIF-1 alpha with the CTF1 promoter was confirmed through site-directed mutagenesis of hypoxia response elements, electrophoreric mobility shift, and ChIP assays. Hypoxia induced HL-1 apoptosis (measured as annexin-V binding or caspase 3/7 activity) which was increased when CT-1 was silenced in knocked-down cells by lentiviral vectors. Conclusion Hypoxia increased CT-1 levels in cardiac cells (in vitro and in vivo) through a direct regulation of CTF1 promoter by HIF-1 alpha. This CT-1 activation by hypoxia may protect cells from apoptosis, thus supporting a protective role for CT-1 as a survival factor for cardiomyocytes.
Impacto: