Detalle Publicación

ARTÍCULO
Brittle-to-ductile transition in a fiber bundle with strong heterogeneity
Autores: Kovács, K.; Cruz Hidalgo, Raúl; Pagonabarraga, I.; Kun, F.
Título de la revista: PHYSICAL REVIEW E
ISSN: 1539-3755
Volumen: 87
Número: 4
Páginas: 042816
Fecha de publicación: 2013
Resumen:
We analyze the failure process of a two-component system with widely different fracture strength in the framework of a fiber bundle model with localized load sharing. A fraction 0 <= alpha <= 1 of the bundle is strong and it is represented by unbreakable fibers, while fibers of the weak component have randomly distributed failure strength. Computer simulations revealed that there exists a critical composition alpha(c) which separates two qualitatively different behaviors: Below the critical point, the failure of the bundle is brittle, characterized by an abrupt damage growth within the breakable part of the system. Above alpha(c), however, the macroscopic response becomes ductile, providing stability during the entire breaking process. The transition occurs at an astonishingly low fraction of strong fibers which can have importance for applications. We show that in the ductile phase, the size distribution of breaking bursts has a power law functional form with an exponent mu = 2 followed by an exponential cutoff. In the brittle phase, the power law also prevails but with a higher exponent mu = 9/2. The transition between the two phases shows analogies to continuous phase transitions. Analyzing the microstructure of the damage, it was found that at the beginning of the fracture process cracks nucleate randomly, while later on growth and coalescence of cracks dominate, which give rise to power law distributed crack sizes.