Detalle Publicación


Aging studies on food packaging films containing beta-cyclodextrin-grafted TiO2 nanoparticles

ISSN: 1422-0067
Volumen: 22
Número: 5
Páginas: 2257
Fecha de publicación: 2021
Polymeric materials, such as polyvinyl alcohol (PVA) and ethylene-PVA copolymers (EVOH) are widely used in the food sector as packaging materials because of their excellent properties. TiO2 nanoparticles (NPs) show photocatalytic activity; when added to the aforementioned polymers, on the one hand, they are expected to provide bactericidal capacity, whereas on the other hand, they could favor nanocomposite degradation. These types of nanoparticles can be derivatized with cyclodextrin macromolecules (CDs), which can act as food preservative carriers, increasing the packaging food protective properties. In this work, films containing beta-Cyclodextrin (beta CD)-grafted TiO2 nanoparticles and PVA or EVOH were prepared. Regarding the photocatalytic activity of the nanoparticles and the possible environmental protection, accelerated aging tests for PVA, EVOH, and their composites with cyclodextrin-grafted TiO2 nanoparticle (NP) films were performed by two methods, namely, stability chamber experiments at different conditions of temperature and relative humidity and UV light irradiation at different intensities. After analyzing the systems color changes (CIELAB) and Fourier transform infrared spectroscopy (FTIR) spectra, it was observed that the film degradation became more evident when increasing the temperature (25-80 degrees C) and relative humidity percentage (28-80%). There was no significant influence of the presence of CDs during the degradation process. When irradiating the films with UV light, the largest color variation was observed in the nanocomposite films, as expected. Moreover, the color change was more relevant with increasing NP percentages (1-5%) due to the high photocatalytic activity of TiO2. In addition, films were characterized by FTIR spectroscopy and variation in the signal intensities was observed, suggesting the increase of the material degradation in the presence of TiO2 NPs.