Detalle Publicación

MetProc: separating measurement artifacts from true metabolites in an untargeted metabolomics experiment

Autores: Chaffin, M. D.; Cao, L.; Deik, A. A.; Clish, C. B.; Hu, F. B. ; Martínez González, Miguel Ángel; Razquin Burillo, Cristina; Bullo, M.; Corella, D. ; Gomez-Gracia, E. ; Fiol, M.; Estruch, R.; Lapetra, J.; Fito, M.; Aros, F. ; Serra-Majem, L.; Ros, E.; Liang, L. M. (Autor de correspondencia)
ISSN: 1535-3893
Volumen: 18
Número: 3
Páginas: 1446 - 1450
Fecha de publicación: 2019
High-throughput metabolomics using liquid chromatography and mass spectrometry (LC/MS) provides a useful method to identify biomarkers of disease and explore biological systems. However, the majority of metabolic features detected from untargeted metabolomics experiments have unknown ion signatures, making it critical that data should be thoroughly quality controlled to avoid analyzing false signals. Here, we present a postalignment method relying on intermittent pooled study samples to separate genuine metabolic features from potential measurement artifacts. We apply the method to lipid metabolite data from the PREDIMED (PREvencion con Dleta MEDi-terranea) study to demonstrate clear removal of measurement artifacts. The method is publicly available as the R package MetProc, available on CRAN under the GPL-v2 license.