Resumen: Industry 4.0 has become the main source of applications of the Internet of Things (IoT), which is generating new business opportunities. The use of cloud computing and artificial intelligence is also showing remarkable improvements in industrial operation, saving millions of dollars to manufacturers. The need for time-critical decision-making is evidencing a trade-off between latency and computation, urging Industrial IoT (IIoT)
deployments to integrate fog nodes to perform early analytics. In this chapter, we review next-generation IIoT architectures, which aim to meet the requirements of industrial applications, such as low-latency and highly reliable communications. These architectures can be divided into IoT node, fog, and multicloud layers. We describe these three layers and compare their characteristics, providing also different use-cases of IIoT architectures. We introduce network coding (NC) as a solution to meet some of the requirements of next-generation communications. We review a variety of its approaches as well as different scenarios that improve their performance and reliability thanks to this technique. Then, we describe the communication process across the different levels of the architecture based on NC-based state-of-the-art works. Finally, we summarize the benefits and open challenges of combining IIoT architectures together with NC techniques.