Detalle Publicación

Influence of geometrical parameters in the downstream flow of a screen under fan-induced swirl conditions

Título de la revista: ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS
ISSN: 1994-2060
Volumen: 8
Número: 4
Páginas: 623 - 638
Fecha de publicación: 2014
Resumen:
A perforated plate placed downstream of an axial fan in order to avoid electromagnetic interferences (push cooling) is a common assembly in electronic systems. Because of the swirling component that the flow approaching the screen has, there is no accuracy in knowing how the screen affects the flow pattern downstream of the screen and the pressure drop through the screen. Since cooling capacity is related to velocity, the placement of the components downstream of the screen will be related to the velocity magnitude. Thus, properly predicting the flow pattern is highly important, and the results of this work may serve a good guideline for thermal designers to surmount this challenge. In order to establish how the screen affects the flow pattern, a parametric study is carried out. This study is performed by a central composite face-centered (CCF) Design of Experiment (DoE), which demanded 81 Computational Fluid Dynamics (CFD) simulations and for which the Reynolds Stress Transport Model was used as a turbulence model. Thanks to the numerical results, the influence that different operational and geometrical parameters have on the flow pattern downstream of a screen and on the total pressure drop is analyzed. The swirl that the flow has at the inlet is found to be related to the screen's capacity to homogenize the flow downstream of the screen, as its thickness plays an important role in the flow's tangential component destruction. The main effects of the parameters and the interactions between them are shown. At the same time, through DoE techniques, different reduced models that predict how the flow pattern changes because of the screen are presented as useful tools for thermal designers.
Impacto: