Resumen:
In this work, we study when an aggregation operator preserves the structure of T-subgroup of groups whose subgroup lattice is a chain. There are two widely used ways of defining the aggregation of structures in fuzzy logic, previously named on sets and on products. We will focus our attention on the one called aggregation on products. When the lattice of subgroups is not a chain, it is known that the dominance relation between the aggregation operator and the t-norm is crucial. We show that this property is again important for some of the groups in this study. However, for the rest of them, we must define a new property weaker than domination, that will allow us to characterize those operators which preserve T-subgroups.