Detalle Publicación

ARTÍCULO

Live imaging of the co-translational recruitment of XBP1 mRNA to the ER and its processing by diffuse, non-polarized IRE1a

Autores: Gómez Puerta, Silvia; Ferrero Laborda, Roberto; Hochstoeger, T.; Zubiri, I.; Chao, J.; Aragón Amonarriz, Tomás (Autor de correspondencia); Voigt, F. (Autor de correspondencia)
Título de la revista: ELIFE
ISSN: 2050-084X
Volumen: 11
Páginas: e75580
Fecha de publicación: 2022
Resumen:
Endoplasmic reticulum (ER) to nucleus homeostatic signaling, known as the unfolded protein response (UPR), relies on the non-canonical splicing of XBP1 mRNA. The molecular switch that initiates splicing is the oligomerization of the ER stress sensor and UPR endonuclease IRE1 alpha (inositol-requiring enzyme 1 alpha). While IRE1 alpha can form large clusters that have been proposed to function as XBP1 processing centers on the ER, the actual oligomeric state of active IRE1 alpha complexes as well as the targeting mechanism that recruits XBP1 to IRE1 alpha oligomers remains unknown. Here, we have developed a single-molecule imaging approach to monitor the recruitment of individual XBP1 transcripts to the ER surface. Using this methodology, we confirmed that stable ER association of unspliced XBP1 mRNA is established through HR2 (hydrophobic region 2)-dependent targeting and relies on active translation. In addition, we show that IRE1 alpha-catalyzed splicing mobilizes XBP1 mRNA from the ER membrane in response to ER stress. Surprisingly, we find that XBP1 transcripts are not recruited into large IRE1 alpha clusters, which are only observed upon overexpression of fluorescently tagged IRE1 alpha during ER stress. Our findings support a model where ribosome-engaged, immobilized XBP1 mRNA is processed by small IRE1 alpha assemblies that could be dynamically recruited for processing of mRNA transcripts on the ER.
Impacto: