Resumen: The field of regenerative medicine has made great progress with the development of cell reprogramming and gene editing techniques. The option to derive pluripotent cells from somatic cells by overexpression of pluripotent factors or specific molecules, and even more the possibility to reprogram one somatic cell type to another somatic cell type in vitro and in vivo, has offered many new options for future therapies.
In this chapter, we provide an overview of the studies performed to understand the mechanisms and to develop the techniques for cell reprogramming, focusing specially in their application in cardiac regeneration and rare disease modeling. First, we discuss the plasticity of cells and methods for their reprogramming. Also, a description of the different studies for differentiation of pluripotent cells toward cardiovascular cells and direct cell reprogramming is provided. Finally, the use of reprogrammed cells as a model for human pathologies, mainly rare diseases, the different aspects that should be bear in mind for optimal model development, the use of gene editing for creating novel and improved disease models, and the therapeutic applications of iPSC-based models have been thoroughly described in this chapter.