Nuestros investigadores

María Garnica Ochoa

Departamento

Publicaciones científicas más recientes (desde 2010)

Autores: Garnica Ochoa, María; Houdusse, F.; Zamarreño, A.M.; et al.
Revista: JOURNAL OF PLANT PHYSIOLOGY
ISSN 0176-1617  Vol. 167  Nº 15  2010  págs. 1264 - 1272
Ammonium can result in toxicity symptoms in many plants when supplied as a sole nitrogen source. Nitrate reduces the negative effects caused by ammonium and promotes plant growth. In order to explore the mechanism responsible of this beneficial effect, we investigated whether nitrate application causes significant changes in the indoleacetic acid (IAA)- and cytokinin-plant distribution and abscisic acid (ABA) accumulation in wheat (Triticum aestivum L.) plants grown with ammonium. Two differentdoses of nitrate were supplied to ammonium-fed plants (100 mu M and 5 mM), to determine whether the effects of nitrate require significant doses (nutritional character), or can be promoted by very low doses (signal effect). The results showed that the presence of NO(3)(-) was associated with clear increases in the active forms of cytokinins (zeatine (Z), trans-zeatine riboside (tZR), isopentenyl adenosine (IPR)) and reduction of the levels of the lower active forms (cis-zeatine riboside (cZR)), independently of the dose applied. Likewise. the presence of nitrate also enhanced IAA shoot content, which correlated with higher cytokinin levels and a tendency toward lower ABA concentration. This study presents further evidence that the possible signal effect of NO(3)(-) involved in its beneficial effect on the growth of wheat plants fed with NH(4)(+) could be mediated by a coordinated action of the levels of cytokinins, IAA and ABA in the shoot.
Autores: Mora, V.; Bacaicoa, E.; Zamarreño, A.M.; et al.
Revista: JOURNAL OF PLANT PHYSIOLOGY
ISSN 0176-1617  Vol. 167  Nº 8  2010  págs. 633 - 642
Numerous studies have reported the ability of humic substances to increase shoot growth in different plant species cultivated under diverse growth conditions. However, the mechanism responsible for this effect of humic substances is poorly understood. It is possible that the shoot promoting effect of humic substances involves a primary effect on root H(+)-ATPase activity and nitrate root-shoot distribution that, in turn, causes changes in the root-shoot distribution of certain cytokinins, polyamines and abscisic acid, thus affecting shoot growth. We investigated this hypothesis in the present study. The results showed that the root application of a purified humic acid causes a significant increase in shoot growth that is associated with an enhancement in root H(+)-ATPase activity, an increase in nitrate shoot concentration, and a decrease in roots. These effects were associated with significant increases in the shoot concentration of several cytokinins and polyamines (principally putrescine), concomitant with decreases in roots. Likewise, these changes in the root-shoot distribution of diverse active cytokinins correlated well to significant changes in the root-shoot distribution of several mineral nutrients. These results, taken together, indicate that the beneficial effects of humic substances on shoot development in cucumber could be directly associated with nitrate-related effects on the shoot concentration of several active cytokinins and polyamines (principally putrescine).