Detalle Publicación

Antibacterial and degradable properties of beta-cyclodextrin-TiO2 cellulose acetate and polylactic acid bionanocomposites for food packaging

ISSN: 0141-8130
Volumen: 216
Páginas: 347 - 360
Fecha de publicación: 2022
Polylactic acid (PLA) and cellulose acetate (CA) as biodegradable polymers are being highly exploited in the development of innovative materials across several industrial sectors. PLA and CA composite films with TiO2 nanoparticles (NPs) and beta-cyclodextrin grafted TiO2 NPs were prepared. Thermo- and photo-degradation studies were performed on PLA and CA films and noticed that higher amount of TiO2 induce greater color variations, structure modifications and weight losses. It has been observed 9.3 % and 5.1 % maximum weight loss for 5 % TiO2 CA and PLA matrices, respectively. beta CD-modified TiO2 NPs increased the photo-degradation of the plain polymers to a lesser extent than TiO2 NPs. Benzoic acid (BA) and sorbic acid (SA) were incorporated to beta CD-TiO2 NPs and the antibacterial activity of PLA and CA composite films was studied by inactivation of Escherichia coli and Staphylococcus aureus. CA film filled with 5 % TiO2 NPs presented the highest antibacterial activity and achieved 71 % inhibition of E. coli and 88 % inhibition of S. aureus. CA composite films showed potential to be used as antimicrobial food packaging.