Detalle Publicación

Machine learning automatically detects COVID-19 using chest CTs in a large multicenter cohort

Autores: Mortani Barbosa, E. J. (Jr.) (Autor de correspondencia); Georgescu, B.; Chaganti, S.; Bastarrika Alemañ, Gorka; Broncano Cabrero, J.; Chabin, G.; Flohr, T.; Grenier, P.; Grbic, S.; Gupta, N.; Mellot, F.; Nicolaou, S.; Re, T.; Sanelli, P.; Sauter, A. W.; Yoo, Y.; Ziebandt, V.; Comaniciu, D.
Título de la revista: EUROPEAN RADIOLOGY
ISSN: 0938-7994
Volumen: 31
Número: 11
Páginas: 8775 - 8785
Fecha de publicación: 2021
Objectives To investigate machine learning classifiers and interpretable models using chest CT for detection of COVID-19 and differentiation from other pneumonias, interstitial lung disease (ILD) and normal CTs. Methods Our retrospective multi-institutional study obtained 2446 chest CTs from 16 institutions (including 1161 COVID-19 patients). Training/validation/testing cohorts included 1011/50/100 COVID-19, 388/16/33 ILD, 189/16/33 other pneumonias, and 559/17/34 normal (no pathologies) CTs. A metric-based approach for the classification of COVID-19 used interpretable features, relying on logistic regression and random forests. A deep learning-based classifier differentiated COVID-19 via 3D features extracted directly from CT attenuation and probability distribution of airspace opacities. Results Most discriminative features of COVID-19 are the percentage of airspace opacity and peripheral and basal predominant opacities, concordant with the typical characterization of COVID-19 in the literature. Unsupervised hierarchical clustering compares feature distribution across COVID-19 and control cohorts. The metrics-based classifier achieved AUC = 0.83, sensitivity = 0.74, and specificity = 0.79 versus respectively 0.93, 0.90, and 0.83 for the DL-based classifier. Most of ambiguity comes from non-COVID-19 pneumonia with manifestations that overlap with COVID-19, as well as mild COVID-19 cases. Non-COVID-19 classification performance is 91% for ILD, 64% for other pneumonias, and 94% for no pathologies, which demonstrates the robustness of our method against different compositions of control groups. Conclusions Our new method accurately discriminates COVID-19 from other types of pneumonia, ILD, and CTs with no pathologies, using quantitative imaging features derived from chest CT, while balancing interpretability of results and classification performance and, therefore, may be useful to facilitate diagnosis of COVID-19.