Contenido principal
Ir al contenido principal
Header Schemes
Universidad de Navarra
Menú de navegación
No hay
Navegación secundaria
disponible para el sitio actual.
Selector de idioma
Es
En
Español
English
Cerrar
Nuestros investigadores
Menú de navegación
No hay
Navegación secundaria
disponible para el sitio actual.
Menú de navegación
No hay
Navegación secundaria
disponible para el sitio actual.
Nuestros investigadores
Cerrar
Ruta de navegación
Estás en:
Investigacion
Nuestros investigadores
Publicaciones de nuestros investigadores
Publicaciones de nuestros investigadores - Investigacion
Detalle Publicación
Machine learning-based approach highlights the use of genomic variant profile for precision medicine in ovarian failure
Autores:
Henarejos-Castillo, I.; Aleman, A.; Martínez-Montoro, B.; García-Aznarez, F. J. ; Sebastián-León, P.; Romeu, M.; Remohi, J.;
Patiño García, Ana
; Royo, P. ;
Alkorta Aranburu, Gorka
; Díaz-Gimeno, P. (Autor de correspondencia)
Título de la revista:
JOURNAL OF PERSONALIZED MEDICINE
ISSN:
2075-4426
Volumen:
11
Número:
7
Páginas:
609
Fecha de publicación:
2021
Resumen:
Ovarian failure (OF) is a common cause of infertility usually diagnosed as idiopathic, with genetic causes accounting for 10-25% of cases. Whole-exome sequencing (WES) may enable identifying contributing genes and variant profiles to stratify the population into subtypes of OF. This study sought to identify a blood-based gene variant profile using accumulation of rare variants to promote precision medicine in fertility preservation programs. A case-control (n = 118, n = 32, respectively) WES study was performed in which only non-synonymous rare variants <5% minor allele frequency (MAF; in the IGSR) and coverage >= 100x were considered. A profile of 66 variants of uncertain significance was used for training an unsupervised machine learning model to separate cases from controls (97.2% sensitivity, 99.2% specificity) and stratify the population into two subtypes of OF (A and B) (93.31% sensitivity, 96.67% specificity). Model testing within the IGSR female population predicted 0.5% of women as subtype A and 2.4% as subtype B. This is the first study linking OF to the accumulation of rare variants and generates a new potential taxonomy supporting application of this approach for precision medicine in fertility preservation.
DOI:
https://doi.org/10.3390/jpm11070609
Impacto:
4 citas en
4 citas en
Google Scholar