Detalle Publicación

Population-Pharmacokinetic and Covariate Analysis of Lurbinectedin (PM01183), a New RNA Polymerase II Inhibitor, in Pooled Phase I/II Trials in Patients with Cancer

Autores: Fernandez-Teruel, C. (Autor de correspondencia); Gonzalez, I. ; Fernández de Trocóniz Fernández, José Ignacio; Lubomirov, R.; Soto, A.; Fudio, S.
ISSN: 0312-5963
Volumen: 58
Número: 3
Páginas: 363 - 374
Fecha de publicación: 2019
Background and Objectives Lurbinectedin is an inhibitor of RNA polymerase II currently under clinical development for intravenous administration as a single agent and in combination with other anti-tumor agents for the treatment of several tumor types. The objective of this work was to develop a population-pharmacokinetic model in this patient setting and to elucidate the main predictors to guide the late stages of development. Methods Data from 443 patients with solid and hematologic malignancies treated in six phase I and three phase II trials with lurbinectedin as a single agent or combined with other agents were included in the analysis. The potential influence of demographic, co-treatment, and laboratory characteristics on lurbinectedin pharmacokinetics was evaluated. Results The final population-pharmacokinetic model was an open three-compartment model with linear distribution and linear elimination from the central compartment. Population estimates for total plasma clearance, and apparent volume at steady state were 11.2 L/h and 438 L, respectively. Inter-individual variability was moderate for all parameters, ranging from 20.9 to 51.2%. High alpha-1-acid glycoprotein and C-reactive protein, and low albumin reduced clearance by 28, 20, and 20%, respectively. Co-administration of cytochrome P450 3A inhibitors reduced clearance by 30%. Combinations with other anti-tumor agents did not modify the pharmacokinetics of lurbinectedin significantly. Conclusion The population-pharmacokinetic model indicated neither a dose nor time dependency, and no clinically meaningful pharmacokinetic differences were found when co-administered with other anticancer agents. A chronic inflammation pattern characterized by decreased albumin and increased C-reactive protein and alpha-1-acid glycoprotein levels led to high lurbinectedin exposure. Co-administration of cytochrome P450 3A inhibitors increased lurbinectedin exposure.