Revistas
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2022
Vol.:
629
Págs.:
122356
Extracellular vesicles (EVs) are nanosized pArtículos with attractive therapeutic potential for cardiac repair. However, low retention and stability after systemic administration limit their clinical translation. As an alternative, the combination of EVs with biomaterial-based hydrogels (HGs) is being investigated to increase their exposure in the myocardium and achieve an optimal therapeutic effect. In this study, we developed and characterized a novel injectable in-situ forming HG based on alginate and collagen as a cardiac delivery vehicle for EVs. Different concentrations of alginate and collagen crosslinked with calcium gluconate were tested. Based on injectability studies, 1% alginate, 0.5 mg/mL collagen and 0.25% calcium gluconate HG was selected as the idoneous combination for cardiac administration using catheter-based systems. Rheological examination revealed that the HG possessed an internal gel structure, weak mechanical properties and low viscosity, facilitating an easy administration. In addition, EVs were successfully incorporated and homogeneously distributed in the HG. After administration in a rat model of myocardial infarction, the HG showed long-term retention in the heart and allowed for a sustained release of EVs for at least 7 days. Thus, the combination of HGs and EVs represents a promising therapeutic strategy for myocardial repair. Besides EVs delivery, the developed HG could represent a useful platform for cardiac delivery of multiple therapeutic agents.
Revista:
BIOMACROMOLECULES
ISSN:
1525-7797
Año:
2022
Vol.:
23
N°:
11
Págs.:
4629 - 4644
The co-administration of glial cell line-derived neurotrophic factor (GDNF) and mesenchymal stem cells (MSCs) in hydrogels (HGs) has emerged as a powerful strategy to enhance the efficient integration of transplanted cells in Parkinson's disease (PD). This strategy could be improved by controlling the cellular microenvironment and biomolecule release and better mimicking the complex properties of the brain tissue. Here, we develop and characterize a drug delivery system for brain repair where MSCs and GDNF are included in a nanoparticle-modified supramolecular guest-host HA HG. In this system, the nanoparticles act as both carriers for the GDNF and active physical crosslinkers of the HG. The multifunctional HG is mechanically compatible with brain tissue and easily injectable. It also protects GDNF from degradation and achieves its controlled release over time. The cytocompatibility studies show that the developed biomaterial provides a friendly environment for MSCs and presents good compatibility with PC12 cells. Finally, using RNA-sequencing (RNA-seq), we investigated how the three-dimensional (3D) environment, provided by the nanostructured HG, impacted the encapsulated cells. The transcriptome analysis supports the beneficial effect of including MSCs in the nanoreinforced HG. An enhancement in the anti-inflammatory effect of MSCs was observed, as well as a differentiation of the MSCs toward a neuron-like cell type. In summary, the suitable strength, excellent self healing properties, good biocompatibility, and ability to boost MSC regenerative potential make this nanoreinforced HG a good candidate for drug and cell administration to the brain.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2022
Vol.:
170
Págs.:
187 - 196
Since the discovery of the beneficial therapeutical effects of extracellular vesicles (EVs), these agents have been attracting great interest as next-generation therapies. EVs are nanosized membrane bodies secreted by all types of cells that mediate cell-cell communication. Although the classification of different subpopulations of EVs can be complex, they are broadly divided into microvesicles and exosomes based on their biogenesis and in large and small EVs based on their size. As this is an emerging field, current investigations are focused on basic aspects such as the more convenient method for EV isolation. In the present paper, we used cardiac progenitor cells (CPCs) to study and compare different cell culture conditions for EV isolation as well as two of the most commonly employed purification methods: ultracentrifugation (UC) and size-exclusion chromatography (SEC). Large and small EVs were separately analysed. We found that serum starvation of cells during the EV collecting period led to a dramatic decrease in EV secretion and major cell death. Regarding the isolation method, our findings suggest that UC and SEC gave similar EV recovery rates. Separation of large and small EV-enriched subpopulations was efficiently achieved with both purification protocols although certain difference in sample heterogeneity was observed. Noteworthy, while calnexin was abundant in large EVs, ALIX and CD63 were mainly found in small EVs. Finally, when the functionality of EVs was assessed on primary culture of adult murine cardiac fibroblasts, we found that EVs were taken up by these cells, which resulted in a pronounced reduction in the proliferative and migratory capacity of the cells. Specifically, a tendency towards a larger effect of SEC-related EVs was observed. No differences could be found between large and small EVs. Altogether, these results contribute to establish the basis for the use of EVs as therapeutic platforms, in particular in regenerative fields.
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN:
0168-3659
Año:
2022
Vol.:
348
Págs.:
553 - 571
Embryonal tumors of the nervous system are neoplasms predominantly affecting the pediatric population. Among the most common and aggressive ones are neuroblastoma (NB) and medulloblastoma (MB). NB is a sympathetic nervous system tumor, which is the most frequent extracranial solid pediatric cancer, usually detected in children under two. MB originates in the cerebellum and is one of the most lethal brain tumors in early childhood. Their tumorigenesis presents some similarities and both tumors often have treatment resistances and poor prognosis. High-risk (HR) patients require high dose chemotherapy cocktails associated with acute and long-term toxicities. Nanomedicine and cell therapy arise as potential solutions to improve the prognosis and quality of life of children suffering from these tumors. Indeed, nanomedicines have been demonstrated to efficiently reduce drug toxicity and improve drug efficacy. Moreover, these systems have been extensively studied in cancer research over the last few decades and an increasing number of anticancer nanocarriers for adult cancer treatment has reached the clinic. Among cell-based strategies, the clinically most advanced approach is chimeric antigen receptor (CAR) T therapy for both pathologies, which is currently under investigation in phase I/II clinical trials. However, pediatric drug research is especially hampered due not only to ethical issues but also to the lack of efficient pre-clinical models and the inadequate design of clinical trials. This review provides an update on progress in the treatment of the main embryonal tumors of the nervous system using nanotechnology and cell-based therapies and discusses key issues behind the gap between preclinical studies and clinical trials in this specific area. Some directions to improve their translation into clinical practice and foster their development are also provided.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2022
Vol.:
177
Págs.:
89 - 90
Revista:
ACTA BIOMATERIALIA
ISSN:
1742-7061
Año:
2021
Vol.:
126
Págs.:
394 - 407
Despite tremendous progress in cell-based therapies for heart repair, many challenges still exist. To enhance the therapeutic potential of cell therapy one approach is the combination of cells with biomaterial delivery vehicles. Here, we developed a biomimetic and biodegradable micro-platform based on polymeric microparticles (MPs) capable of maximizing the therapeutic potential of cardiac progenitor cells (CPCs) and explored its efficacy in a rat model of chronic myocardial infarction. The transplantation of CPCs adhered to MPs within the infarcted myocardial microenvironment improved the long-term engraftment of transplanted cells for up to one month. Furthermore, the enhancement of cardiac cellular retention correlated with an increase in functional recovery. In consonance, better tissue remodeling and vasculogenesis were observed in the animals treated with cells attached to MPs, which presented smaller infarct size, thicker right ventricular free wall, fewer deposition of periostin and greater density of vessels than animals treated with CPCs alone. Finally, we were able to show that part of this beneficial effect was mediated by CPC derived extracellular vesicles (EVs). Taken together, these findings indicate that the biomimetic microcarriers support stem cell survival and increase cardiac function in chronic myocardial infarction through modulation of cardiac remodeling, vasculogenesis and CPCs-EVs mediated therapeutic effects. The biomimetic microcarriers provide a solution for biomaterial-assisted CPC delivery to the heart.
Statement of significance
In this study, we evaluate the possibility of using a biomimetic and biodegradable micro-platform to improve cardiovascular progenitor therapy. The strategy reported herein serves as an injectable scaffold for adherent cells due to their excellent injectability through cardiac catheters, capacity for biomimetic threedimensional stem cell support and controllable biodegradability. In a rat model of chronic myocardial infarction, the biomimetic microcarriers improved cardiac function, reduced chronic cardiac remodeling and increased vasculogenesis through the paracrine signaling of CPCs. We have also shown that extracellular vesicles derived from CPCs cultured on biomimetic substrates display antifibrotic effects, playing an important role in the therapeutic effects of our tissue-engineered approach. Therefore, biomimetic microcarriers represent a promising and effective strategy for biomaterial-assisted CPC delivery to the heart.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES
ISSN:
0928-0987
Año:
2021
Vol.:
159
Págs.:
105726
Human glial cell line-derived neurotrophic factor (hGDNF) is the most potent dopaminergic factor described so far, and it is therefore considered a promising drug for Parkinson's disease (PD) treatment. However, the production of therapeutic proteins with a high degree of purity and a specific glycosylation pattern is a major challenge that hinders its commercialization. Although a variety of systems can be used for protein production, only a small number of them are suitable to produce clinical-grade proteins. Specifically, the baby hamster kidney cell line (BHK-21) has shown to be an effective system for the expression of high levels of hGDNF, with appropriate post-translational modifications and protein folding. This system, which is based on the electroporation of BHK-21 cells using a Semliki Forest virus (SFV) as expression vector, induces a strong shut-off of host cell protein synthesis that simplify the purification process. However, SFV vector exhibits a temperature-dependent cytopathic effect on host cells, which could limit hGDNF expression. The aim of this study was to improve the expression and purification of hGDNF using a biphasic temperature cultivation protocol that would decrease the cytopathic effect induced by SFV. The protocol described constitutes an efficient and highly scalable method to produce highly pure hGDNF.
Revista:
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS
ISSN:
0022-3565
Año:
2019
Vol.:
370
N°:
3
Págs.:
761 - 771
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) are a promising cell source for cardiac repair after myocardial infarction (MI) because they offer several advantages such as potential to remuscularize infarcted tissue, integration in the host myocardium, and paracrine therapeutic effects. However, cell delivery issues have limited their potential application in clinical practice, showing poor survival and engraftment after transplantation. In this work, we hypothesized that the combination of hiPSC-CMs with microparticles (MPs) could enhance long-term cell survival and retention in the heart and consequently improve cardiac repair. CMs were obtained by differentiation of hiPSCs by small-molecule manipulation of the Wnt pathway and adhered to biomimetic poly(lactic-co-glycolic acid) MPs covered with collagen and poly(D-lysine). The potential of the system to support cell survival was analyzed in vitro, demonstrating a 1.70-fold and 1.99-fold increase in cell survival after 1 and 4 days, respectively. The efficacy of the system was tested in a mouse MI model. Interestingly, 2 months after administration, transplanted hiPSC-CMs could be detected in the peri-infarct area. These cells not only maintained the cardiac phenotype but also showed in vivo maturation and signs of electrical coupling. Importantly, cardiac function was significantly improved, which could be attributed to a paracrine effect of cells. These findings suggest that MPs represent an excellent platform for cell delivery in the field of cardiac repair, which could also be translated into an enhancement of the potential of cell-based therapies in other medical applications.
Revista:
JOURNAL OF DRUG TARGETING
ISSN:
1061-186X
Año:
2019
Vol.:
27
N°:
43987
Págs.:
573 - 581
Neuregulin-1 loaded poly(lactic-co-glycolic acid) (PLGA) microparticles hold great promise for treating acute myocardial infarction, as they have been proved to recover heart function and induce positive heart remodelling in preclinical studies. More recently, the inflammatory response of the heart after acute myocardial infarction (AMI) has been identified as one of the major mechanisms in cardiac tissue remodelling and repair. However, the connection between neuregulin-1 PLGA microparticles and inflammation is still not well characterised. In the present study we assessed this relationship in a mouse AMI model. First, in vitro evidence indicated that neuregulin-1 PLGA microparticles induced a macrophage polarisation toward a regenerative phenotype (CD206+ cells), preventing macrophages from evolving toward the inflammatory phenotype (B7-2+ cells). This correlated with in vivo experiments, where neuregulin-1 PLGA microparticles locally improved the CD206+/B7-2+ ratio. Moreover, neuregulin-1 PLGA microparticles were administered at different time points (15¿min, 24, 72 and 168¿h) after infarction induction without causing secondary inflammatory issues. The time of treatment administration did not alter the inflammatory response. Taken together, these results suggest that neuregulin-1 PLGA microparticles can be administered depending on the therapeutic window of the encapsulated drug and that they enhance the heart's reparative inflammatory response after acute myocardial infarction, helping cardiac tissue repair.
Revista:
MATURITAS
ISSN:
0378-5122
Año:
2018
Vol.:
110
Págs.:
1 - 9
The capacity of the heart to heal after a myocardial infarction is not enough to restore normal cardiac function. Fortunately, delivery of therapeutics such as stem cells, growth factors, exosomes and small interfering ribonucleic acid (siRNA), among other bioactive molecules, has been shown to enhance heart repair and improve cardiac function. Furthermore, new delivery systems for these therapeutic agents have enhanced their regenerative and cardioprotective potential. In particular, nano- and microparticles (NPs and MPs) are promising. These systems may be administered directly in the infarcted myocardium or reach the heart after intravenous injection due to the enhanced permeability and retention effect or active targeting. Thus, NPs and MPs have made it possible to administer a wide range of potential drugs, including therapeutic molecules and/or stem cells, and evidence in favor of their use has been reported in several preclinical studies. Here, we review the studies done over the last 5 years using NPs and MPs loaded with therapeutics for repairing cardiac tissue after a myocardial infarction, and discuss some of the advances, challenges and future prospects in this field. In addition, we address the application of NPs and MPs for cardioprotective purposes.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2017
Vol.:
523
N°:
2
Págs.:
531 - 533
Neuregulin (NRG1) and fibroblast growth factor (FGF1) are well known growth factors implicated in cardiomyocyte proliferation and survival, as well as in angiogenesis, the development of adult heart and the maintenance of cardiac function. NRG1 and FGF1 have become promising therapeutic agents to treat myocardial infarction (MI) disorder. Unfortunately, clinical trials performed so far reported negative efficacy results, because growth factors are rapidly degraded and eliminated from the biological tissues once administered. In order to increase their bioavailability and favour their therapeutic effects, they have been combined with poly(lactic-co-glycolic acid) and polyethylene glycol microparticles (PLGA MPs and PEG-PLGA MPs). Here we compare both types of microparticles loaded with NRG1 or FGF1 in terms of efficacy in a rat MI model. Our results showed that intramyocardial injection of NRG1 or FGF1-loaded PLGA and PEG-PLGA MPs brought about similar improvements in the ejection fraction, angiogenesis and arteriogenesis after administration into the infarcted hearts. PEG coating did not add any effect regarding MP efficacy. Both PLGA and PEG-PLGA MPs were equally phagocyted in the heart. To our knowledge, this is the first study analysing the opsonisation process in heart tissue. The results allow us to conclude that the opsonisation process is different in heart tissue compared to blood. (C) 2016 Elsevier B.V. All rights reserved.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2017
Vol.:
523
N°:
2
Págs.:
454 - 475
Heart failure still represents the leading cause of death worldwide. Novel strategies using stem cells and growth factors have been investigated for effective cardiac tissue regeneration and heart function recovery. However, some major challenges limit their translation to the clinic. Recently, biomaterials have emerged as a promising approach to improve delivery and viability of therapeutic cells and proteins for the regeneration of the damaged heart. In particular, hydrogels are considered one of the most promising vehicles. They can be administered through minimally invasive techniques while maintaining all the desirable characteristics of drug delivery systems. This review discusses recent advances made in the field of hydrogels for cardiac tissue regeneration in detail, focusing on the type of hydrogel (conventional, injectable, smart or nano-and micro-gel), the biomaterials used for its manufacture (natural, synthetic or hybrid) and the therapeutic agent encapsulated (stem cells or proteins). We expect that these novel hydrogel-based approaches will open up new possibilities in drug delivery and cell therapies. (C) 2016 Elsevier B.V. All rights reserved.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2017
Vol.:
523
N°:
2
Págs.:
439 - 440
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN:
0168-3659
Año:
2017
Vol.:
249
Págs.:
23 - 31
Tissue engineering is a promising strategy to promote heart regeneration after a myocardial infarction (MI). In this study, we investigated the reparative potential of a system that combines adipose-derived stem cells (ADSCs) with microparticles (MPs) loaded with neuregulin (NRG), named ADSC-NRG-MPs, on a rat MI model. First, cells were attached to the surface of MPs encapsulating NRG and coated with a 1:1 mixture of collagen and poly-D-lysine. One week after in vivo administration, the system favored the shift of macrophage expression from a pro-inflammatory to a regenerative phenotype. At long-term, the adhesion of ADSCs to MPs resulted in an increased cell engraftment, with cells being detectable in the tissue up to three months. In consonance, better tissue repair was observed in the animals treated with cells attached to MPs, which presented thicker left ventricles than the animals treated with ADSCs alone. Moreover, the presence of NRG in the system promoted a more complete regeneration, reducing the infarct size and stimulating cardiomyocyte proliferation. Regarding vasculogenesis, the presence of ADSCs and NRG-MPs alone stimulated vessel formation when compared to the control group, but the combination of both induced the largest vasculogenic effect, promoting the formation of both arterioles and capillaries. Importantly, only when ADSCs were administered adhered to MPs, they were incorporated into newly formed vessels. Collectively, these findings demonstrate that the combination of ADSCs, MPs and NRG favored a synergy for inducing a greater and more complete improvement in heart regeneration and provided strong evidence to move forward with preclinical studies with this strategy. (C) 2017 Elsevier B.V. All rights reserved.
Revista:
BIOMATERIALS
ISSN:
0142-9612
Año:
2016
Vol.:
110
Págs.:
11-23
Glial cell line-derived neurotrophic factor (GDNF) remains the most potent neurotrophic factor for dopamine neurons. Despite its potential as treatment for Parkinson's disease (PD), its clinical application has been hampered by safety and efficacy concerns associated with GDNF's short in vivo half-life and with significant brain delivery obstacles. Drug formulation systems such as microparticles (MPs) may overcome these issues providing protein protection from degradation and sustained drug release over time. We therefore sought to evaluate the efficacy and safety of GDNF delivered via injectable biodegradable MPs in a clinically relevant model of PD and to investigate the mechanism contributing to their beneficial effects. MPs were injected unilaterally into the putamen of parkinsonian monkeys with severe nigrostriatal degeneration. Notably, a single administration of the microencapsulated neurotrophic factor achieved sustained GDNF levels in the brain, providing motor improvement and dopaminergic function restoration. This was reflected by a bilateral increase in the density of striatal dopaminergic neurons 9 months after treatment. Moreover, GDNF was retrogradely transported to the substantia nigra increasing bilaterally the number of dopaminergic and total neurons, regardless of the severe degeneration. GDNF-MP injection within the putamen elicited no adverse effects such as immunogenicity, cerebellar degeneration or weight loss. MPs are therefore a safe, efficient vehicle for sustained protein delivery to the brain, supporting the therapeutic benefit of GDNF when encapsulated within MPs for brain repair. Overall, these findings constitute important groundwork for GDNF-MP clinical development.
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2016
Vol.:
6
Págs.:
25932
Cardiovascular protein therapeutics such as neuregulin (NRG1) and acidic-fibroblast growth factor (FGF1) requires new formulation strategies that allow for sustained bioavailability of the drug in the infarcted myocardium. However, there is no FDA-approved injectable protein delivery platform due to translational concerns about biomaterial administration through cardiac catheters. We therefore sought to evaluate the efficacy of percutaneous intramyocardial injection of poly(lactic-co-glycolic acid) microparticles (MPs) loaded with NRG1 and FGF1 using the NOGA MYOSTAR injection catheter in a porcine model of ischemia-reperfusion. NRG1- and FGF1-loaded MPs were prepared using a multiple emulsion solvent-evaporation technique. Infarcted pigs were treated one week after ischemia-reperfusion with MPs containing NRG1, FGF1 or non-loaded MPs delivered via clinically-translatable percutaneous transendocardial-injection. Three months post-treatment, echocardiography indicated a significant improvement in systolic and diastolic cardiac function. Moreover, improvement in bipolar voltage and decrease in transmural infarct progression was demonstrated by electromechanical NOGA-mapping. Functional benefit was associated with an increase in myocardial vascularization and remodeling. These findings in a large animal model of ischemia-reperfusion demonstrate the feasibility and efficacy of using MPs as a delivery system for growth factors and provide strong evidence to move forward with clinical studies using therapeutic proteins combined with catheter-compatible biomaterials.
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN:
0168-3659
Año:
2015
Vol.:
220
Págs.:
388 - 396
The growth factor neuregulin (NRG) is one of the most promising candidates in protein therapy as potential treatment for myocardial infarction (MI). In the last few years, biomaterial based delivery systems, such as polymeric microparticles (MPs) made of poly(lactic co glycolic acid) and polyethylene glycol (PLGA and PEG-PLGA MPs), have improved the efficacy of protein therapy in preclinical studies. However, no cardiac treatment based on MPs has yet been commercialized since this is a relatively new field and total characterization of polymeric MPs remains mandatory before they reach the clinical arena. Therefore, the objective of this study was to characterize the in vivo release, bioactivity and biodegradation of PLGA and PEG-PLGA MPs loaded with biotinylated NRG in a rat model of MI. The effect of PEGylation in the clearance of the particles from the cardiac tissue was also evaluated. Interestingly, MPs were detected in the cardiac tissue for up to 12 weeks after administration. In vivo release analysis showed that bNRG was released in a controlled manner throughout the twelve week study. Moreover, the biological cardiomyocyte receptor (ErbB4) for NRG was detected in its activated form only in those animals treated with bNRG loaded MPs. On the other hand, the PEGylation strategy was effective in diminishing phagocytosis of these MPs compared to noncoated MPs in the long term(12 weeks after injection). Taking all this together, we report new evidence in favor of the use of polymeric PLGA and PEG-PLGA MPs as delivery systems for treating MI, which could be soon included in clinical trials. (C) 2015 Elsevier B.V. All rights reserved.
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN:
0168-3659
Año:
2014
Vol.:
173
Págs.:
132 - 139
Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague-Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit ofNRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. (C) 2013 Elsevier B.V. All rights reserved.
Revista:
CURRENT MEDICINAL CHEMISTRY
ISSN:
0929-8673
Año:
2014
Vol.:
21
N°:
36
Págs.:
4100 - 4131
Nanomedicine has recently emerged as an exciting tool able to improve the early diagnosis and treatment of a variety of intractable or age-related brain disorders. The most relevant properties of nanomaterials are that they can be engineered to cross the blood brain barrier, to target specific cells and molecules and to act as vehicles for drugs. Potentially beneficial properties of nanotherapeutics derived from its unique characteristics include improved efficacy, safety, sensitivity and personalization compared to conventional medicines. In this review, recent advances in available nanostructures and nanomaterials for brain applications will be described. Then, the latest applications of nanotechnology for the diagnosis and treatment of neurological disorders, in particular brain tumors and neurodegenerative diseases, will be reviewed. Recent investigations of the neurotoxicity of the nanomaterial both in vitro and in vivo will be summarized. Finally, the ongoing challenges that have to be meet if new nanomedical products are to be put on the market will be discussed and some future directions will be outlined.
Revista:
NEUROSCIENCE
ISSN:
0306-4522
Año:
2014
Vol.:
256
Págs.:
10 - 22
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder afflicting 2% of the population older than 65 years worldwide. Recently, brain organotypic slices have been used to model neurodegenerative disorders, including PD. They conserve brain three-dimensional architecture, synaptic connectivity and its microenvironment. This model has allowed researchers a simple and rapid method to observe cellular interactions and mechanisms. In the present study, we developed an organotypic PD model from rat brains that includes all the areas involved in the nigrostriatal pathway in a single slice preparation, without using neurotoxins to induce the dopaminergic lesion. The mechanical transection of the nigrostriatal pathway obtained during slice preparation induced PD-like histopathology. Progressive nigrostriatal degeneration was monitored combining innovative approaches, such as diffusion tensor magnetic resonance imaging (DT-RMI) to follow fiber degeneration and mass spectrometry to quantify striatal dopamine content, together with bright-field and fluorescence microscopy imaging. A substantia nigra dopaminergic cell number decrease was observed by immunohistochemistry against rat tyrosine hydroxylase (TH) reaching 80% after 2 days in culture associated with a 30% decrease of striatal TH-positive fiber density, a 15% loss of striatal dopamine content quantified by mass spectrometry and a 70% reduction of nigrostriatal fiber fractional anisotropy quantified by DT-RMI. In addition, a significant decline of medium spiny neuron density was observed from days 7 to 16. These sagittal organotypic slices could be used to study the early stage of PD, namely dopaminergic degeneration, and the late stage of the pathology with dopaminergic and GABAergic neuron loss. This novel model might improve the understanding of PD and may represent a promising tool to refine the evaluation of new therapeutic approaches.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2013
Vol.:
440
N°:
1
Págs.:
19-26
Human glial cell line-derived neurotrophic factor (hGDNF) is a very promising protein for the treatment of Parkinson's disease and other neurodegenerative disorders. The present work describes a quick and simple method to obtain a high amount of purified hGDNF using a mammalian cell-derived system. The method is based on the high expression level provided by a Semliki Forest virus vector and its ability to induce a strong shut-off of host-cell protein synthesis in mammalian cells. As a result, hGDNF is the only protein present in the supernatant and can be efficiently purified by a single chromatographic step. Using this system it was possible to eliminate other secreted proteins from the culture medium, like insulin-like growth factor-5, which are hard to remove using other hGDNF production methods. Purified hGDNF presents a complex glycosylation pattern typical of mammalian expression systems and is biologically active. This protocol could be extended to other secreted proteins and could be easily scaled up for industrial purposes. (C) 2012 Elsevier B.V. All rights reserved.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2013
Vol.:
85
N°:
1
Págs.:
143 - 150
Myocardial infarction (MI) is the leading cause of death worldwide, and extensive research has therefore been performed to find a cure. Neuregulin-1 (NRG) is a growth factor involved in cardiac repair after MI. We previously described how biocompatible and biodegradable microparticles, which are able to release NRG in a sustained manner, represent a valuable approach to avoid problems related to the short half-life after systemic administration of proteins. The effectiveness of this strategy could be improved by combining NRG with several cytokines involved in cardiac regeneration. The present study investigates the potential feasibility of using NRG-releasing particle scaffold combined with adipose-derived stem cells (ADSC) as a multiple growth factor delivery-based tissue engineering strategy for implantation in the infarcted myocardium. NRG-releasing particle scaffolds with a suitable size for intramyocardial implantation were prepared by TROMS. Next, ADSC were adhered to particle scaffolds and their potential for heart administration was assessed in a MI rat model. NRG was successfully encapsulated reaching encapsulation efficiencies of 92.58±3.84%. NRG maintained its biological activity after the microencapsulation process. ADSCs adhered efficiently to particle scaffolds within a few hours. The ADSC-cytokine delivery system developed proved to be compatible with intramyocardial administration in terms of injectability through a 23-gauge needle and tissue response. Interestingly, ADSC-scaffolds were present in the peri-infarted tissue 2weeks after implantation. This proof of concept study provides important evidence required for future effectiveness studies and for the translation of this approach.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2013
Vol.:
85
N°:
3
Págs.:
665 - 672
Poly-lactide-co-glycolide (PLGA) microparticles emerged as one of the most promising strategies to achieve site-specific drug delivery. Although these microparticles have been demonstrated to be effective in several wound healing models, their potential in cardiac regeneration has not yet been fully assessed. The present work sought to explore PLGA microparticles as cardiac drug delivery systems. PLGA microparticles were prepared by Total Recirculation One-Machine System (TROMS) after the formation of a multiple emulsion. Microparticles of different size were prepared and characterized to select the most suitable size for intramyocardial administration. Next, the potential of PLGA microparticles for administration in the heart was assessed in a MI rat model. Particle biodegradation over time and myocardial tissue reaction were studied by routine staining and confocal microscopy. Results showed that microparticles with a diameter of 5¿m were the most compatible with intramyocardial administration in terms of injectability through a 29-gauge needle and tissue response. Particles were present in the heart tissue for up to 3months post-implantation and no particle migration toward other solid organs was observed, demonstrating good myocardial retention. CD68 immunolabeling revealed 31%, 47% and below 4% microparticle uptake by macrophages 1week, 1month, and 3months after injection, respectively (P<0.001). Taken together, these findings support the feasibility of the developed PLGA microparticles as vehicles for delivering growth factors in the infarcted myocardium.
Revista:
MOVEMENT DISORDERS
ISSN:
0885-3185
Año:
2011
Vol.:
26
N°:
10
Págs.:
1943 - 1947
Background: Glial cell-derived neurotrophic factor is a survival factor for dopaminergic neurons and a promising candidate for the treatment of Parkinson's disease. However, the delivery issue of the protein to the brain still remains unsolved. Our aim was to investigate the effect of long-term delivery of encapsulated glial cell-derived neurotrophic factor within microspheres.
Methods: A single dose of microspheres containing 2.5 mu g of glial cell-derived neurotrophic factor was implanted intrastriatally in animals 2 weeks after a 6-hydroxydopamine lesion.
Results: The amphetamine test showed a complete behavioral recovery after 16 weeks of treatment, which was maintained until the end of the study (week 30). This effect was accompanied by an increase in dopaminergic striatal terminals and neuroprotection of dopaminergic neurons.
Conclusions: The main achievement was the long-term neurorestoration in parkinsonian animals induced by encapsulated glial cell-derived neurotrophic factor, suggesting that microspheres may be considered as a means to deliver glial cell-derived neurotrophic factor for Parkinson's disease treatment.
Revista:
JOURNAL OF NEUROCHEMISTRY
ISSN:
0022-3042
Año:
2011
Vol.:
119
N°:
5
Págs.:
972 - 988
Cell-based therapies for global cerebral ischemia represent promising approaches for neuronal damage prevention and tissue repair promotion. We examined the potential of marrow-isolated adult multilineage-inducible (MIAMI) cells, a homogeneous subpopulation of immature human mesenchymal stromal cell, injected into the hippocampus to prevent neuronal damage induced by global ischemia using rat organotypic hippocampal slices exposed to oxygen-glucose deprivation and rats subjected to asphyxial cardiac arrest. We next examined the value of combining fibronectin-coated biomimetic microcarriers (FN-BMMs) with epidermal growth factor (EGF)/basic fibroblast growth factor (bFGF) pre-treated MIAMI compared to EGF/bFGF pre-treated MIAMI cells alone, for their in vitro and in vivo neuroprotective capacity. Naive and EGF/bFGF pre-treated MIAMI cells significantly protected the Cornu Ammonis layer 1 (CA1) against ischemic death in hippocampal slices and increased CA1 survival in rats. MIAMI cells therapeutic value was significantly increased when delivering the cells complexed with FN-BMMs, probably by increasing stem cell survival and paracrine secretion of pro-survival and/or anti-inflammatory molecules as concluded from survival, differentiation and gene expression analysis. Four days after oxygen and glucose deprivation and asphyxial cardiac arrest, few transplanted cells administered alone survived in the brain whereas stem cell survival improved when injected complexed with FN-BMMs. Interestingly, a large fraction of the transplanted cells administered alone or in complexes expressed beta III-tubulin suggesting that partial neuronal transdifferentiation may be a contributing factor to the neuroprotective mechanism of MIAMI cells.
Revista:
BIOMATERIALS
ISSN:
0142-9612
Año:
2011
Vol.:
32
N°:
6
Págs.:
1560 - 1573
Multipotent mesenchymal stromal cells (MSCs) raise great interest for brain cell therapy due to their ease of isolation from bone marrow, their immunomodulatory and tissue repair capacities, their ability to differentiate into neuronal-like cells and to secrete a variety of growth factors and chemokines. In this study, we assessed the effects of a subpopulation of human MSCs, the marrow-isolated adult multilineage inducible (MIAMI) cells, combined with pharmacologically active microcarriers (PAMs) in a rat model of Parkinson's disease (PD). PAMs are biodegradable and non-cytotoxic poly(lactic-co-glycolic acid) microspheres, coated by a biomimetic surface and releasing a therapeutic protein, which acts on the cells conveyed on their surface and on their microenvironment. In this study, PAMs were coated with laminin and designed to release neurotrophin 3 (NT3), which stimulate the neuronal-like differentiation of MIAMI cells and promote neuronal survival. After adhesion of dopaminergic-induced (DI)-MIAMI cells to PAMs in vitro, the complexes were grafted in the partially dopaminergic-deafferented striatum of rats which led to a strong reduction of the amphetamine-induced rotational behavior together with the protection/repair of the nigrostriatal pathway. These effects were correlated with the increased survival of DI-MIAMI cells that secreted a wide range of growth factors and chemokines. Moreover, the observed increased expression of tyrosine hydroxylase by cells transplanted with PAMs may contribute to this functional recovery.
Autores:
Curtis, K.; Gómez, L. A.; Ríos, C.; et al.
Revista:
BMC MOLECULAR BIOLOGY
ISSN:
1471-2199
Año:
2010
Vol.:
11
N°:
61
Págs.:
61
Background: RT-qPCR analysis is a widely used method for the analysis of mRNA expression throughout the field of mesenchymal stromal cell (MSC) research. Comparison between MSC studies, both in vitro and in vivo, are challenging due to the varied methods of RT-qPCR data normalization and analysis. Therefore, this study focuses on putative housekeeping genes for the normalization of RT-qPCR data between heterogeneous commercially available human MSC, compared with more homogeneous populations of MSC such as MIAMI and RS-1 cells.
Results: Eight genes including; ACTB, B2M, EF1 alpha, GAPDH, RPL13a, YWHAZ, UBC and HPRT1 were tested as possible housekeeping genes based on their expression level and variability. EF1 alpha and RPL13a were validated for RT-qPCR analysis of MIAMI cells during expansion in varied oxygen tensions, endothelial differentiation, neural precursor enrichment, and during the comparison with RS-1 cells and commercially available MSC. RPL13a and YWHAZ were validated as normalization genes for the cross-species analysis of MIAMI cells in an animal model of focal ischemia. GAPDH, which is one of the most common housekeeping genes used for the normalization of RT-qPCR data in the field of MSC research, was found to have the highest variability and deemed not suitable for normalization of RT-qPCR data.
Conclusions: In order to make comparisons between heterogeneous MSC populations, as well as adult stem cell like MSC which are used in different laboratories throughout the world, it is important to have a standardized, reproducible set of housekeeping genes for RT-qPCR analysis. In this study we demonstrate that EF1 alpha, RPL13a and YWHAZ are suitable genes for the RT-qPCR analysis and comparison of several sources of human MSC during in vitro characterization and differentiation as well as in an ex vivo animal model of global cerebral ischemia. This will allow for the comparative RT-qPCR analysis of multiple MSC populations with the goal of future use in animal models of disease as well as tissue repair.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2010
Vol.:
385
N°:
1-2
Págs.:
6 - 11
The administration of glial cell line-derived neurotrophic factor (GDNF) has emerged as a promising strategy for the treatment of several diseases of the nervous system as Parkinson's disease, amyotrophic lateral sclerosis, spinal cord injury and nerve regeneration as well as ocular diseases and drug addictions. A procedure for the purification of human recombinant glycosylated GDNF using a mammalian expression system as the source of the protein is discussed in the present paper. The neurotrophic factor was purified using cation exchange chromatography and gel filtration. A human cell line was chosen as the source of therapeutic protein, since a recombinant protein with a structure and glycosylation pattern equivalent to the native form is desirable for its prospective therapeutic utilization. The activity of the highly pure protein obtained was confirmed with a cell-based bioassay. The purified protein is suitable for its in vivo evaluation in animals and for possible subsequent clinical application.
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN:
0168-3659
Año:
2010
Vol.:
147
N°:
1
Págs.:
30 - 37
The use of pro-angiogenic growth factors in ischemia models has been associated with limited success in the clinical setting, in part owing to the short lived effect of the injected cytokine. The use of a microparticle system could allow localized and sustained cytokine release and consequently a prolonged biological effect with induction of tissue revascularization. To assess the potential of VEGF(165) administered as continuous release in ischemic disease, we compared the effect of delivery of poly(lactic-co-glycolic acid) (PLGA) microparticles (MP) loaded with VEGF(165) with free-VEGF or control empty microparticles in a rat model of ischemia-reperfusion. VEGF165 loaded microparticles could be detected in the myocardium of the infarcted animals for more than a month after transplant and provided sustained delivery of active protein in vitro and in vivo. One month after treatment, an increase in angiogenesis (small caliber caveolin-1 positive vessels) and arteriogenesis (alpha-SMA-positive vessels) was observed in animals treated with VEGF microparticles (p < 0.05), but not in the empty microparticles or free-VEGF groups. Correlating with this data, a positive remodeling of the heart was also detected in the VEGF-microparticle group with a significantly greater LV wall thickness (p < 0.01). In conclusion, PICA microparticle is a feasible and promising cytokine delivery system for treatment of myocardial ischemia. This strategy could be scaled up and explored in pre-clinical and clinical studies. (C) 2010 Elsevier B.V. All rights reserved.
Nacionales y Regionales
Título:
Regeneración cerebral mediante células madre y factore neurotróficos incluidos en biomaterailes tridimensionales: apliacación en la enfermedad de parkinson.
Código de expediente:
66-2019
Investigador principal:
María José Blanco Prieto
Financiador:
GOBIERNO DE NAVARRA. DEPARTAMENTO DE SALUD
Convocatoria:
2019 GN Proyectos de Investigación en salud
Fecha de inicio:
19/11/2019
Fecha fin:
18/11/2023
Importe concedido:
80.000,00€
Otros fondos:
Fondos FEDER
Título:
Nueva generación de plataformas teragnósticas contra el cáncer asistidas por partículas superparamagnéticas
Código de expediente:
0011-1383-2019-000005 PC072
Investigador principal:
María José Blanco Prieto
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2019 GN Centros
Fecha de inicio:
01/12/2018
Fecha fin:
30/11/2019
Importe concedido:
113.465,43€
Otros fondos:
-
Título:
Combinación de biomateriales 3D y miRNAs para la reparacion cardiaca tras infarto de miocardio
Código de expediente:
PID2021-125124OB-I00
Investigador principal:
Elisa Garbayo Atienza, María José Blanco Prieto
Financiador:
AGENCIA ESTATAL DE INVESTIGACION
Convocatoria:
2021 AEI Proyectos de Generación del Conocimiento
Fecha de inicio:
01/09/2022
Fecha fin:
31/08/2025
Importe concedido:
290.400,00€
Otros fondos:
Fondos FEDER
Título:
Desarrollo de Medicamentos Innovadores basados en CAR-T: Datos, Inteligencia Artificial, secuenciación MAsiva y Nano-Tecnología (DIAMANTE). Proyecto financiado en el marco de la convocatoria 2023 de proyectos Estratégicos de Gobierno de Navarra
Código de expediente:
0011-1411-2023-000105
Investigador principal:
Felipe Luis Prósper Cardoso
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2023 GN PROYECTOS ESTRATEGICOS DE I+D 2023-2026
Fecha de inicio:
01/07/2023
Fecha fin:
31/12/2025
Importe concedido:
362.076,16€
Otros fondos:
-
Título:
INNOLFACT 2.0: Combinación de Inteligencia Artificial y Reposicionamiento de Fármacos en Medicina de Precisión Olfatoria
Código de expediente:
0011-1411-2023-000100
Investigador principal:
María Cruz Rodríguez Oroz
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2023 GN PROYECTOS ESTRATEGICOS DE I+D 2023-2026
Fecha de inicio:
01/07/2023
Fecha fin:
31/12/2025
Importe concedido:
331.400,55€
Otros fondos:
-
Título:
Terapia basada en nanotransportadores de Rna para el tratamiento del cáncer (NanoRC)
Código de expediente:
0011-1411-2022-000068
Investigador principal:
María José Blanco Prieto
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2022 GN PROYECTOS ESTRATEGICOS DE I+D 2022-2025
Fecha de inicio:
01/07/2022
Fecha fin:
31/12/2024
Importe concedido:
501.903,59€
Otros fondos:
-
Título:
Nanopartículas de esqualeno-adenosina para el tratamiento de la isquemia-reperfusión cardiaca
Código de expediente:
PCIN-2016-046
Financiador:
MINISTERIO DE CIENCIA E INNOVACIÓN
Convocatoria:
2016 MINECO ACCIONES DE PROGRAMACIÓN CONJUNTA INTERNACIONAL
Fecha de inicio:
01/05/2016
Fecha fin:
31/12/2020
Importe concedido:
98.000,00€
Otros fondos:
-
Título:
Nanovectores para administración directa, loco-regional e intravenosa controlada de fármacos antitumorales. Estrategias para minimizar los efectos adversos y
maximizar la respuesta terapéutica. ONCOLIBERYX
Código de expediente:
CPP2021-008362
Investigador principal:
María José Blanco Prieto
Financiador:
AGENCIA ESTATAL DE INVESTIGACION
Convocatoria:
2021 AEI Proyectos en Colaboración Público Privada
Fecha de inicio:
01/03/2022
Fecha fin:
28/02/2025
Importe concedido:
423.957,00€
Otros fondos:
Fondos MRR
Título:
Nanovectores para administración directa, loco-regional e intravenosa controlada de fármacos antitumorales. Estrategias para minimizar los efectos adversos y
maximizar la respuesta terapéutica. ONCOLIBERYX
Código de expediente:
CPP2021-008362
Investigador principal:
María José Blanco Prieto
Financiador:
AGENCIA ESTATAL DE INVESTIGACION
Convocatoria:
2021 AEI Proyectos en Colaboración Público Privada
Fecha de inicio:
01/03/2022
Fecha fin:
28/02/2025
Importe concedido:
423.957,00€
Otros fondos:
Fondos MRR
Título:
Nueva generación de plataformas teragnósticas contra el cáncer asistidas por partículas superparamagnéticas
Código de expediente:
0011-1383-2018-000005 PC060
Investigador principal:
María José Blanco Prieto
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2018 GN Centros
Fecha de inicio:
01/02/2018
Fecha fin:
30/11/2018
Importe concedido:
84.225,94€
Otros fondos:
-
Título:
Reparación cardiaca utilizando ingeniería tisular y/o exosomas: mecanismos implicados y eficacia terapéútica en un modelo animal de infarto de miocardio.
Código de expediente:
SAF2017-83734-R
Financiador:
MINISTERIO DE CIENCIA E INNOVACIÓN
Convocatoria:
2017 MINECO RETOS INVESTIGACION. PROYECTOS DE I+D+i
Fecha de inicio:
01/01/2018
Fecha fin:
30/09/2022
Importe concedido:
127.050,00€
Otros fondos:
Fondos FEDER
Título:
Nuevas estrategias en regeneración cardíaca combinando células madre y factores de crecimiento incluidos en scaffolds poliméricos
biodegradables
Código de expediente:
SAF2013-42528-R
Investigador principal:
María José Blanco Prieto
Financiador:
MINISTERIO DE CIENCIA E INNOVACIÓN
Convocatoria:
2013 MINECO Retos Investigación
Fecha de inicio:
01/01/2014
Fecha fin:
31/12/2018
Importe concedido:
242.000,00€
Otros fondos:
-