Nuestros investigadores

Marc García Moure

Publicaciones científicas más recientes (desde 2010)

Autores: García, Marc; et al.
Revista: NATURE COMMUNICATIONS
ISSN 2041-1723  Vol. 10  Nº 1  2019  págs. 2235
Pediatric high-grade glioma (pHGG) and diffuse intrinsic pontine gliomas (DIPGs) are aggressive pediatric brain tumors in desperate need of a curative treatment. Oncolytic virotherapy is emerging as a solid therapeutic approach. Delta-24-RGD is a replication competent adenovirus engineered to replicate in tumor cells with an aberrant RB pathway. This virus has proven to be safe and effective in adult gliomas. Here we report that the administration of Delta-24-RGD is safe in mice and results in a significant increase in survival in immunodeficient and immunocompetent models of pHGG and DIPGs. Our results show that the Delta-24-RGD antiglioma effect is mediated by the oncolytic effect and the immune response elicited against the tumor. Altogether, our data highlight the potential of this virus as treatment for patients with these tumors. Of clinical significance, these data have led to the start of a phase I/II clinical trial at our institution for newly diagnosed DIPG (NCT03178032).
Autores: García, Marc; González, María Soledad; et al.
Revista: SCIENTIFIC REPORTS
ISSN 2045-2322  Vol. 9  Nº 1  2019  págs. 14368
Last advances in the treatment of pediatric tumors has led to an increase of survival rates of children affected by primitive neuroectodermal tumors, however, still a significant amount of the patients do not overcome the disease. In addition, the survivors might suffer from severe side effects caused by the current standard treatments. Oncolytic virotherapy has emerged in the last years as a promising alternative for the treatment of solid tumors. In this work, we study the anti-tumor effect mediated by the oncolytic adenovirus VCN-01 in CNS-PNET models. VCN-01 is able to infect and replicate in PNET cell cultures, leading to a cytotoxicity and immunogenic cell death. In vivo, VCN-01 increased significantly the median survival of mice and led to long-term survivors in two orthotopic models of PNETs. In summary, these results underscore the therapeutic effect ofVCN-01 for rare pediatric cancers such as PNETs, and warrants further exploration on the use of this virus to treat them.
Autores: García, Marc; et al.
Revista: NEURO-ONCOLOGY
ISSN 1522-8517  Vol. 21  2019  págs. 56 - 56
Autores: García, Marc; et al.
Revista: NEURO-ONCOLOGY
ISSN 1522-8517  Vol. 21  2019  págs. 36 - 36
Autores: Aldave, G.; González, María Soledad; Rubio, A; et al.
Revista: NEURO-ONCOLOGY
ISSN 1522-8517  Vol. 20  Nº 7  2018  págs. 930 - 941
Background: Glioblastoma, the most aggressive primary brain tumor, is genetically heterogeneous. Alternative splicing (AS) plays a key role in numerous pathologies, including cancer. The objectives of our study were to determine whether aberrant AS could play a role in the malignant phenotype of glioma and to understand the mechanism underlying its aberrant regulation. Methods: We obtained surgical samples from patients with glioblastoma who underwent 5-aminolevulinic fluorescence-guided surgery. Biopsies were taken from the tumor center as well as from adjacent normal-appearing tissue. We used a global splicing array to identify candidate genes aberrantly spliced in these glioblastoma samples. Mechanistic and functional studies were performed to elucidate the role of our top candidate splice variant, BAF45d, in glioblastoma. Results: BAF45d is part of the switch/sucrose nonfermentable complex and plays a key role in the development of the CNS. The BAF45d/6A isoform is present in 85% of over 200 glioma samples that have been analyzed and contributes to the malignant glioma phenotype through the maintenance of an undifferentiated cellular state. We demonstrate that BAF45d splicing is mediated by polypyrimidine tract-binding protein 1 (PTBP1) and that BAF45d regulates PTBP1, uncovering a reciprocal interplay between RNA splicing regulation and transcription. Conclusions: Our data indicate that AS is a mechanism that contributes to the malignant phenotype of glioblastoma. Understanding the consequences of this biological process will uncover new therapeutic targets for this devastating disease.
Autores: Varela-Guruceaga M; Tejada, Sonia; García, Marc; et al.
Revista: CANCERS
ISSN 2072-6694  Vol. 10  Nº 7  2018  págs.  E226.
Autores: Marigil, M. ; Aristu, José Javier; et al.
Revista: CANCER RESEARCH
ISSN 0008-5472  Vol. 78  Nº 13 Supl.  2018 
Autores: Martinez-Velez, N.; Domínguez, Pablo Daniel; et al.
Revista: PLOS ONE
ISSN 1932-6203  Vol. 12  Nº 1  2017  págs. e0170501
Objective In this work we set to develop and to validate a new in vivo frameless orthotopic Diffuse Intrinsic Pontine Glioma (DIPG) model based in the implantation of a guide-screw system. Methods It consisted of a guide-screw also called bolt, a Hamilton syringe with a 26-gauge needle and an insulin-like 15-gauge needle. The guide screw is 2.6 mm in length and harbors a 0.5 mm central hole which accepts the needle of the Hamilton syringe avoiding a theoretical displacement during insertion. The guide-screw is fixed on the mouse skull according to the coordinates: 1 mm right to and 0.8 mm posterior to lambda. To reach the pons the Hamilton syringe is adjusted to a 6.5 mm depth using a cuff that serves as a stopper. This system allows delivering not only cells but also any kind of intratumoral chemotherapy, antibodies or gene/viral therapies. Results The guide-screw was successfully implanted in 10 immunodeficient mice and the animals were inoculated with DIPG human cell lines during the same anesthetic period. All the mice developed severe neurologic symptoms and had a median overall survival of 95 days ranging the time of death from 81 to 116 days. Histopathological analysis confirmed tumor into the pons in all animals confirming the validity of this model. Conclusion Here we presented a reproducible and frameless DIPG model that allows for rapid evaluation of tumorigenicity and efficacy of chemotherapeutic or gene therapy products delivered intratumorally to the pons.
Autores: García, Marc; Martinez-Velez, N.; Gonzalez-Huarriz, M.; et al.
Revista: NEURO-ONCOLOGY
ISSN 1522-8517  Vol. 19  Nº Supl. 4  2017  págs. 42
Primitive Neuroectodermal Tumors (PNETs) are very rare aggressive pediatric tumors characterized by the presence of poorly differentiated tumor cells. Despite formidable advances in targeted therapies and in the knowledge of the molecular make-up of these tumors, the development of curative therapies is still lagging. Therefore, the outcome for children affected with PNETs still remains dismal. Thus, it is critical to propel alternative therapeutic approaches to improve the survival and quality of life of these children. Delta-24-RGD is an oncolytic adenovirus engineered to have a tumor restricted replication and an expanded tropism to cancer cells. Altogether, these modifications result in a potent antitumor and lack of toxicity as shown by preclinical and clinical studies. In this work we describe the antitumor effect mediated by Delta-24-RGD in PNETs (PFSK-1 and SK-PN-DW cells), as well as a in a new unpublished cell line (PBT-25) that we have generated from a tumor biopsy. First, we demonstrated in vitro that Delta-24-RGD transduces efficiently PNET cells leading to an effective replication yielding high titers of new infectious particles when compared with other type of brain tumors such as glioma. Treatment with the virus in vitro resulted in an effective cell killing effect, obtaining IC50 values ranging from 7 to 18 MOIs. In vivo, Delta-24-RGD showed a safety profile since no signs of toxicity were observed upon its administration. Finally, the antitumor effect of Delta-24-RGD was assessed in vivo in two orthotopic models of sPNET. Delta-24-RGD treatment resulted in a significant increase in overall survival of the animals (19 and 21 days for PFSK-1 and SK-PN-DW, respectively) compared to vehicle treated animals (14 days) and led to long-term survivors free of disease. In vivo antitumor effect in PBT-25 is on-going. In summary, these results demonstrate the potential therapeutic benefit of Delta-24-RGD for the treatment of PNETs.
Autores: González, María Soledad; García, Marc; et al.
Revista: NEURO-ONCOLOGY
ISSN 1522-8517  Vol. 19  Nº Supl 6  2017  págs. 34
Autores: García, Marc; Martínez-Velez, N; Patiño-Garcia, Ana; et al.
Revista: JOURNL OF BONE ONCOLOGY
ISSN 2212-1366  Vol. 9  2016  págs. 41-47
Osteosarcoma is the most common bone cancer among those with non-hematological origin and affects mainly pediatric patients. In the last 50 years, refinements in surgical procedures, as well as the introduction of aggressive neoadjuvant and adjuvant chemotherapeutic cocktails, have increased to nearly 70% the survival rate of these patients. Despite the initial therapeutic progress the fight against osteosarcoma has not substantially improved during the last three decades, and almost 30% of the patients do not respond or recur after the standard treatment. For this group there is an urgent need to implement new therapeutic approaches. Oncolytic adenoviruses are conditionally replicative viruses engineered to selectively replicate in and kill tumor cells, while remaining quiescent in healthy cells. In the last years there have been multiple preclinical and clinical studies using these viruses as therapeutic agents in the treatment of a broad range of cancers, including osteosarcoma. In this review, we summarize some of the most relevant published literature about the use of oncolytic adenoviruses to treat human osteosarcoma tumors in subcutaneous, orthotopic and metastatic mouse models. In conclusion, up to date the preclinical studies with oncolytic adenoviruses have demonstrated that are safe and efficacious against local and metastatic osteosarcoma. Knowledge arising from phase I/II clinical trials with oncolytic adenoviruses in other tumors have shown the potential of viruses to awake the patient¿s own immune system generating a response against the tumor. Generating osteosarcoma immune-competent adenoviruses friendly models will allow to better understand this potential. Future clinical trials with oncolytic adenoviruses for osteosarcoma tumors are warranted.