Revistas
Autores:
Navarro-Ocón, A.; Blaya-Cánovas, J. L.; López-Tejada, A.; et al.
Revista:
PHARMACEUTICS
ISSN 1999-4923
Vol. 14
N° 3
Año 2022
Págs.505
Breast cancer is the most common type of malignancy and leading cause of cancer death among women worldwide. Despite the current revolutionary advances in the field of cancer immunotherapy, clinical response in breast cancer is frequently below expectations, in part due to various mechanisms of cancer immune escape that produce tumor variants that are resistant to treatment. Thus, a further understanding of the molecular events underlying immune evasion in breast cancer may guarantee a significant improvement in the clinical success of immunotherapy. Furthermore, nanomedicine provides a promising opportunity to enhance the efficacy of cancer immunotherapy by improving the delivery, retention and release of immunostimulatory agents in targeted cells and tumor tissues. Hence, it can be used to overcome tumor immune escape and increase tumor rejection in numerous malignancies, including breast cancer. In this review, we summarize the current status and emerging trends in nanomedicine-based strategies targeting cancer immune evasion and modulating the immunosuppressive tumor microenvironment, including the inhibition of immunosuppressive cells in the tumor area, the activation of dendritic cells and the stimulation of the specific antitumor T-cell response.
Revista:
JOURNAL OF NANOBIOTECHNOLOGY
ISSN 1477-3155
Vol. 19
N° 1
Año 2021
Págs.102
Background: The immunomodulation of the antitumor response driven by immunocheckpoint inhibitors (ICIs) such as PD-L1 (Programmed Death Ligand-1) monoclonal antibody (alpha-PD-L1) have shown relevant clinical outcomes in a subset of patients. This fact has led to the search for rational combinations with other therapeutic agents such as Doxorubicin (Dox), which cytotoxicity involves an immune activation that may enhance ICI response. Therefore, this study aims to evaluate the combination of chemotherapy and ICI by developing Dox Immunoliposomes functionalized with monovalent-variable fragments (Fab') of alpha-PD-L1.
Results: Immunoliposomes were assayed in vitro and in vivo in a B16 OVA melanoma murine cell line over-expressing PD-L1. Here, immune system activation in tumor, spleen and lymph nodes, together with the antitumor efficacy were evaluated. Results showed that immunoliposomes bound specifically to PD-L1(+) cells, yielding higher cell interaction and Dox internalization, and decreasing up to 30-fold the IC50, compared to conventional liposomes. This mechanism supported a higher in vivo response. Indeed, immunoliposomes promoted full tumor regression in 20% of mice and increased in 1 month the survival rate. This formulation was the only treatment able to induce significant (p < 0.01) increase of activated tumor specific cytotoxic T lymphocytes at the tumor site.
Conclusion: PD-L1 targeted liposomes encapsulating Dox have proved to be a rational combination able to enhance the modulation of the immune system by blocking PD-L1 and selectively internalizing Dox, thus successfully providing a dual activity offered by both, chemo and immune therapeutic strategies.
Revista:
FRONTIERS IN PHARMACOLOGY
ISSN 1663-9812
Vol. 12
Año 2021
Págs.705443
V937 is an investigational novel oncolytic non-genetically modified Kuykendall strain of Coxsackievirus A21 which is in clinical development for the treatment of advanced solid tumor malignancies. V937 infects and lyses tumor cells expressing the intercellular adhesion molecule I (ICAM-I) receptor. We integrated in vitro and in vivo data from six different preclinical studies to build a mechanistic model that allowed a quantitative analysis of the biological processes of V937 viral kinetics and dynamics, viral distribution to tumor, and anti-tumor response elicited by V937 in human xenograft models in immunodeficient mice following intratumoral and intravenous administration. Estimates of viral infection and replication which were calculated from in vitro experiments were successfully used to describe the tumor response in vivo under various experimental conditions. Despite the predicted high clearance rate of V937 in systemic circulation (t(1/2) = 4.3 min), high viral replication was observed in immunodeficient mice which resulted in tumor shrinkage with both intratumoral and intravenous administration. The described framework represents a step towards the quantitative characterization of viral distribution, replication, and oncolytic effect of a novel oncolytic virus following intratumoral and intravenous administrations in the absence of an immune response. This model may further be expanded to integrate the role of the immune system on viral and tumor dynamics to support the clinical development of oncolytic viruses.
Revista:
BRITISH JOURNAL OF CANCER
ISSN 0007-0920
Vol. 124
N° 7
Año 2021
Págs.1275 - 1285
Background Anti-programmed cell death 1 (PD-1)/programmed death-ligand 1 (PD-L1) monoclonal antibodies (mAbs) show remarkable clinical anti-tumour efficacy. However, rational combinations are needed to extend the clinical benefit to primary resistant tumours. The design of such combinations requires the identification of the kinetics of critical immune cell populations in the tumour microenvironment. Methods In this study, we compared the kinetics of immune cells in the tumour microenvironment upon treatment with immunotherapy combinations with different anti-tumour efficacies in the non-inflamed tumour model TC-1/A9. Tumour-bearing C57BL/6J mice were treated with all possible combinations of a human papillomavirus (HPV) E7 long peptide, polyinosinic-polycytidylic acid (PIC) and anti-PD-1 mAb. Tumour growth and kinetics of the relevant immune cell populations were assessed over time. The involvement of key immune cells was confirmed by depletion with mAbs and immunophenotyping with multiparametric flow cytometry. Results The maximum anti-tumour efficacy was achieved after intratumoural administration of HPV E7 long peptide and PIC combined with the systemic administration of anti-PD-1 mAb. The intratumoural immune cell kinetics of this combination was characterised by a biphasic immune response. An initial upsurge of proinflammatory myeloid cells led to a further rise in effector CD8(+) T lymphocytes at day 8. Depletion of either myeloid cells or CD8(+) T lymphocytes diminished the anti-tumour efficacy of the combination. Conclusions The anti-tumour efficacy of a successful immunotherapy combination in a non-inflamed tumour model relies on an early inflammatory process that remodels the myeloid cell compartment.
Revista:
CANCERS
ISSN 2072-6694
Vol. 13
N° 20
Año 2021
Págs.5049
Simple Summary: The clinical efficacy of immunotherapies when treating cold tumors is still low, and different treatment combinations are needed when dealing with this challenging scenario. In this work, a middle-out strategy was followed to develop a model describing the antitumor efficacy of different immune-modulator combinations, including an antigen, a toll-like receptor-3 agonist, and an immune checkpoint inhibitor in mice treated with non-inflamed tumor cells. Our results support that clinical response requires antigen-presenting cell activation and also relies on the amount of CD8 T cells and tumor resistance mechanisms present. This mathematical model is a very useful platform to evaluate different immuno-oncology combinations in both preclinical and clinical settings.
Immune checkpoint inhibitors, administered as single agents, have demonstrated clinical efficacy. However, when treating cold tumors, different combination strategies are needed. This work aims to develop a semi-mechanistic model describing the antitumor efficacy of immunotherapy combinations in cold tumors. Tumor size of mice treated with TC-1/A9 non-inflamed tumors and the drug effects of an antigen, a toll-like receptor-3 agonist (PIC), and an immune checkpoint inhibitor (anti-programmed cell death 1 antibody) were modeled using Monolix and following a middle-out strategy. Tumor growth was best characterized by an exponential model with an estimated initial tumor size of 19.5 mm(3) and a doubling time of 3.6 days. In the treatment groups, contrary to the lack of response observed in monotherapy, combinations including the antigen were able to induce an antitumor response. The final model successfully captured the 23% increase in the probability of cure from bi-therapy to triple-therapy. Moreover, our work supports that CD8(+) T lymphocytes and resistance mechanisms are strongly related to the clinical outcome. The activation of antigen-presenting cells might be needed to achieve an antitumor response in reduced immunogenic tumors when combined with other immunotherapies. These models can be used as a platform to evaluate different immuno-oncology combinations in preclinical and clinical scenarios.
Revista:
CLINICAL PHARMACOKINETICS
ISSN 0312-5963
Vol. 59
N° 2
Año 2020
Págs.123 - 135
In the oncology field, understanding the relationship between the dose administered and the exerted effect is particularly important because of the narrow therapeutic index associated with anti-cancer drugs and the high interpatient variability. Therefore, in this review, we provide a critical perspective of the different methods of characterising treatment exposure in the oncology setting. The increasing number of modelling applications in oncology reflects the applicability and the impact of pharmacometrics on all phases of the drug development process and patient management as well. Pharmacometric modelling is a worthy component within the current paradigm of model-based drug development, but pharmacometric modelling techniques are also accessible for the clinician in the optimisation of current oncology therapies. Consequently, the application of population models in a hospital setting by generating close collaborations between physicians and pharmacometricians is highly recommended, providing a systematic means of developing and assessing model-based metrics as 'drivers' for various responses to treatments, which can then be evaluated as predictors for treatment success. Characterising the key determinants of variability in exposure is of particular importance for anticancer agents, as efficacy and toxicity are associated with exposure. We present the different strategies to describe and predict drug exposure that can be applied depending on the data available, with the objective of obtaining the most useful information in the patients' favour throughout the full drug cycle. Therefore, the objective of the present article is to review the different approaches used to characterise a patient's exposure to oncology drugs, which will result in a better understanding of the time course of the response and the magnitude of interpatient variability.
Revista:
PHARMACEUTICS
ISSN 1999-4923
Vol. 12
N° 6
Año 2020
Págs.595
Immunotherapy has changed the paradigm of cancer treatments. In this way, several combinatorial strategies based on monoclonal antibodies (mAb) such as anti (a)-PD-1 or anti (a)-PD-L1 are often reported to yield promising clinical benefits. However, the pharmacokinetic (PK) behavior of these mAbs is a critical issue that requires selective analytical techniques. Indeed, few publications report data on a-PD1/a-PD-L1 exposure and its relationship with therapeutic or toxic effects. In this regard, preclinical assays allow the time profiles of antibody plasma concentrations to be characterized rapidly and easily, which may help to increase PK knowledge. In this study, we have developed and validated two in-house ELISAs to quantify a-PD-1 and a-PD-L1 in plasma collected from tumor-bearing mice. The linear range for the a-PD-1 assay was 2.5-125 ng/mL and 0.11-3.125 ng/mL for the a-PD-L1 assay, whereas the intra-and inter-day precision was lower than 20% for both analytes. The PK characterization revealed a significant decrease in drug exposure after administration of multiple doses. Plasma half-life for a-PD-1 was slightly shorter (22.3 h) than for a-PD-L1 (46.7 h). To our knowledge, this is the first reported preclinical ELISA for these immune checkpoint inhibitors, which is sufficiently robust to be used in different preclinical models. These methods can help to understand the PK behavior of these antibodies under different scenarios and the relationship with response, thus guiding the choice of optimal doses in clinical settings.
Revista:
NANOMEDICINE
ISSN 1743-5889
Vol. 17
Año 2019
Págs.13 - 25
Autores:
Yoncheva, K. (Autor de correspondencia); Merinos, M. ; Shenol, A.; et al.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN 0378-5173
Vol. 556
Año 2019
Págs.1 - 8
The present study evaluates the potential of encapsulated doxorubicin to reduce both the viability of melanoma cells and the tumor growth in a mouse melanoma model. The prepared doxorubicin loaded chitosan/alginate nanoparticles possessed mean diameter around 300 nm and negative zeta-potential. Classical molecular dynamic simulations revealed that the high encapsulation efficiency (above 90%) was mainly due to electrostatic interaction between doxorubicin and sodium alginate, although dipole-dipole and hydrophobic interactions might also contribute. The in vitro dissolution tests showed slower doxorubicin release in slightly alkaline medium (pH = 7.4) and faster release in acid one (pH = 5.5), indicating that higher concentration of doxorubicin might reach the acidic tumor tissue. The free and the encapsulated doxorubicin decreased the viability of melanoma cell lines (B16-F10 and B16-OVA) in a similar degree. However, the cytotoxic effect of the encapsulated doxorubicin still occurred in the more resistant B16-F10 cells even after removing the extracellular drug. The experiments on a syngeneic melanoma mouse model revealed that free and encapsulated doxorubicin elicited the control of the tumor growth (dose of 3 mg/kg). Thus, the encapsulation of doxorubicin into chitosan/alginate nanoparticles could be considered advantageous because of the better intracellular accumulation and longer cytotoxic effect on the investigated melanoma cells.
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN 0168-3659
Vol. 275
Año 2018
Págs.162 - 176
Liposomal formulations entrapping a vast number of molecules have improved cancer therapies overcoming certain pharmacokinetic (PK) and pharmacodynamic limitations, many of which are associated with tumor characteristics. In this context, immunoliposomes represent a new strategy that has been widely investigated in preclinical cancer models with promising results, although few have reached the stage of clinical trials. This contrasts with the emerging clinical application of monoclonal antibodies (mAbs). This formulation allows the conjugation of different mAbs or antibody derivatives, such as monovalent variable fragments Fab', to the polymers covering the surface of liposomes. The combination of this targeting strategy together with drug encapsulation in a single formulation may contribute to enhance the efficacy of these associated agents, reducing their toxicities. In this paper we will consider how factors such as particle size, lipid composition and charge, lipid-polymer conjugation, method of production and type of ligand for liposome coupling influence the efficacy of these formulations. Furthermore, the high inter-individual variability in the tumor microenvironment, as well as the poor experimental designs for the PK characterization of liposomes, make the establishment of the relationship between plasma or tumor concentrations and efficacy difficult. Thus, adequate dosing regimens and patient stratification regarding the target expression may contribute to enhance the possibility of incorporating these immunoliposomes into the therapeutic arsenal for cancer treatments. All these issues will be briefly dealt with here, together with a section showing the state of the art of those targeted liposomes that are coming up for testing in clinical trials. Finally, some insights into future developments such as the combination of specificity and controlled release, based on the application of different stimuli, for the manipulation of stability and cargo release, will be offered. This has been included in order to highlight the new opportunities for targeted liposomes, including immunoliposomes.
Revista:
CPT: PHARMACOMETRICS & SYSTEMS PHARMACOLOGY
ISSN 2163-8306
Vol. 6
N° 1
Año 2017
Págs.8 - 10
This commentary provides an overview of recent examples of pharmacometrics applied during the clinical development of two antagonists of the programmed death-1 (PD-1) cell surface receptor, pembrolizumab and nivolumab. Despite the remarkable achievements obtained in predicting the correct dosing schedule from different quantitative approaches, data indicated a great degree of heterogeneity in tumor response. To achieve therapeutic goals the search for predictive biomarkers associated with a lack of response and mechanism-based combination studies are warranted.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES
ISSN 0928-0987
Vol. 106
Año 2017
Págs.294 - 301
This study was aimed to evaluate the in vitro transdermal direct/pulsed current iontophoretic delivery of an amphiphilic model compound from various lipid vesicle-encapsulated formulations compared to free-drug formulation. Conventional, pegylated, ultradeformable liposomes (transfersomes) and ethosomes loaded with a negatively charged drug diclofenac sodium (DS) were prepared and characterized. All the liposomes possessed an average size of approximate to 100-150 nm and negative zeta potential. No changes in colloidal stability were detected after 8 h incubation of any vesicle formulation under constant or pulsed iontophoretic current. DS was released from all the liposome formulations with a similar, limited rate (approximate to 50% in 24 h), leading therefore to significantly lower transdermal fluxes across full-thickness porcine skin compared to the respective free drug formulation. From the tested lipid vesicle formulations, the transfersomes resulted in the highest passive flux and the ethosomes in the highest iontophoretic flux under direct constant current treatment. Higher negative surface charge of the vesicle led to better transport efficiency due to the higher mobility of the drug carrier under electric field. Pulsed current iontophoresis had no advantage over constant current treatment in combination with any type of lipid vesicular nanocarriers, in contrast to what has been described earlier with drug-loaded polymeric nano carriers.
Revista:
ONCOTARGET
ISSN 1949-2553
Vol. 7
N° 47
Año 2017
Págs.76891 - 76901
Revista:
INTERNATIONAL JOURNAL OF PHARMACOLOGY
ISSN 1811-7775
Vol. 13
N° 1
Año 2017
Págs.54 - 63
Objective: To describe quantitatively the variability associated to the pharmacokinetic (PK) processes of clarithromycin (CLA) in Mexican hospitalized patients with respiratory infection and to determine whether the 6-beta-hydroxycortisol (6 beta-OHC)/cortisol ratio, among other factors would partially explain such variability. Materials and Methods: Fifty three patients aged >18 years with respiratory disease treated with CLA were included in the study. An average of 3 blood samples per patient were obtained at approximately the following Times After Dosing (TAD): 0.5, 1.25, 2, 3, 4, 6, 9 and 12 h. Clarithromycin was given orally or i.v., twice daily at the dose of 500 mg. Around the same times at which blood samples were collected, one urine sample was obtained for determining the 6 beta-OHC/cortisol ratio. The serum concentration vs time data of CLA were modeled using the population approach with NONMEM 7.2. Results: A one-compartment disposition model with first-order rate of absorption and concentration independent distribution and elimination provided a reasonable description of the data. Absolute bioavailability of CLA was not different from 1 (p>0.05). The population estimate of total clearance was 14.6 L h(-1), lower than that reported previously for healthy volunteers. Final population model included body weight as the unique covariate affecting the apparent volume of distribution. Conclusion: The study population showed a total clearance lower than that reported for healthy volunteers from other countries, probably due to the low activity of CYP3A determined in this population. However, the CYP3A activity level did not result as a significative covariable of the CLA total clearance.
Revista:
NANOMEDICINE
ISSN 1743-5889
Vol. 11
N° 5
Año 2016
Págs.465 - 477
Aim: Development of EGF-liposomes (LP-EGF) for selective molecules delivery in tumors expressing EGFR. Material & methods: In vitro cellular interaction of EGF-LP and nontargeted liposomes (LP-N) was assayed at 37 and 4°C in cells expressing different EGFR levels. Receptor-mediated uptake was investigated by competition with a monoclonal antibody anti-EGFR. Selective intracellular drug delivery and efficacy was tested by oxaliplatin encapsulation. In vivo biodistribution of LP-N and LP-EGF was done in xenograft model. Results: LP-EGF was internalized by an active and selective mechanism through EGFR without receptor activation. Oxaliplatin LP-EGF decreased IC50 between 48 and 13% in cell EGFR+. LP-EGF was accumulated in tumor over 72 h postdosing, while LP-N in spleen. Conclusion: LP-EGF represents an attractive nanosystem for cancer therapy or diagnosis.
Revista:
CLINICAL PHARMACOKINETICS
ISSN 0312-5963
Vol. 55
N° 4
Año 2016
Págs.461 - 473
BACKGROUND AND OBJECTIVES:
Lanreotide Autogel (lanreotide Depot in the USA) has demonstrated anti-tumor activity and control of the symptoms associated with hormone hypersecretion in patients with neuroendocrine tumors. The objectives of this study were to describe the pharmacokinetics of lanreotide Autogel administered 4-weekly by deep subcutaneous injections of 60, 90, or 120 mg in patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs), to quantify the magnitude of inter-patient variability (IPV), and to identify those patient characteristics that impact on pharmacokinetics.
METHODS:
Analyses were based on pooled data from clinical trials. A total of 1541 serum concentrations from 290 patients were analyzed simultaneously by the population approach using NONMEM version 7.2. Covariates evaluated included demographics, renal and hepatic function markers, and disease-related parameters.
RESULTS:
Serum profiles were described by a one-compartment disposition model in which the absorption process was characterized by two parallel pathways following first- and zero-order kinetics. The estimated apparent volume of distribution was 18.3 L. The estimated apparent total serum clearance for a typical 74 kg patient was 513 L/day, representing a substantial difference in clearance in this population of patients with respect to healthy volunteers that could not be explained by any of the covariates tested. Body weight was the only covariate to show a statistically significant effect on the pharmacokinetic profile, but due to the overlap between the pharmacokinetic profiles of patients with lower or higher body weights the effect of body weight on clearance was not considered clinically relevant. The IPV was low for clearance (27%) and moderate to high for volume of distribution (150%) and the absorption constant (61%).
CONCLUSIONS:
Using two mechanisms of absorption, the pharmacokinetics of lanreotide Autogel were well-described in patients with GEP-NET. None of the patient characteristics tested were of clinical relevance to potential dose adjustment in clinical practice.
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN 0168-3659
Vol. 210
Año 2015
Págs.26 - 36
Oxaliplatin (L-OH), a platinum derivative with good tolerability is currently combined with Cetuximab (CTX), a monoclonal antibody (mAb), for the treatment of certain (wild-type KRAS) metastatic colorectal cancer (CRC) expressing epidermal growth factor receptor (EGFR).
Improvement of L-OH pharmacokinetics (PK) can be provided by its encapsulation into liposomes, allowing a more selective accumulation and delivery to the tumor. Here, we aim to associate both agents in a novel liposomal targeted therapy by linking CTX to the drug-loaded liposomes. These EGFR-targeted liposomes potentially combine the therapeutic activity and selectivity of CTX with tumor-cell delivery of L-OH in a single therapeutic approach.
L-OH liposomes carrying whole CTX or CTX-Fab¿ fragments on their surface were designed and characterized. Their functionality was tested in vitro using four human CRC cell lines, expressing different levels of EGFR to investigate the role of CTX-EGFR interactions in the cellular binding and uptake of the nanocarriers and encapsulated drug. Next, those formulations were evaluated in vivo in a colorectal cancer xenograft model with regard to tumor drug accumulation, toxicity and therapeutic activity.
In EGFR-overexpressing cell lines, intracellular drug delivery by targeted liposomes increased with receptor density reaching up to 3-fold higher levels than with non-targeted liposomes. Receptor specific uptake was demonstrated by competition with free CTX, which reduced...
Revista:
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS
ISSN 0022-3565
Vol. 354
N° 1
Año 2015
Págs.55 - 64
The current work integrates cell-cycle dynamics occurring in the bone marrow compartment as a key element in the structure of a semimechanistic pharmacokinetic/pharmacodynamic model for neutropenic effects, aiming to describe, with the same set of system-and drug-related parameters, longitudinal data of neutropenia gathered after the administration of the anticancer drug diflomotecan (9,10-difluoro-homocamptothecin) under different dosing schedules to patients (n = 111) with advanced solid tumors. To achieve such an objective, the general framework of the neutropenia models was expanded, including one additional physiologic process resembling cell cycle dynamics. The main assumptions of the proposed model are as follows: within the stem cell compartment, proliferative and quiescent cells coexist, and only cells in the proliferative condition are sensitive to drug effects and capable of following the maturation chain. Cell cycle dynamics were characterized by two new parameters, F-Prol (the fraction of proliferative [ Prol] cells that enters into the maturation chain) and k(cycle) (first-order rate constant governing cell cycle dynamics within the stem cell compartment). Both model parameters were identifiable as indicated by the results from a bootstrap analysis, and their estimates were supported by date from the literature. The estimates of F-Prol and k(cycle) were 0.58 and 1.94 day(-1), respectively. The new model could properly describe the neutropenic effects of diflomotecan after very different dosing scenarios, and can be used to explore the potential impact of dosing schedule dependencies on neutropenia prediction.
Revista:
JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
ISSN 1567-567X
Vol. 41
N° 5
Año 2014
Págs.523 - 536
Monoclonal antibodies (mAbs) represent a therapeutic strategy that has been increasingly used in different diseases. mAbs are highly specific for their targets leading to induce specific effector functions. Despite their therapeutic benefits, the presence of immunogenic reactions is of growing concern. The immunogenicity identified as anti-drug antibodies (ADA) production due to the continuous administration of mAbs may affect the pharmacokinetics (PK) and/or the pharmacodynamics (PD) of mAbs administered to patients. Therefore, the immunogenicity and its clinical impact have been studied by several authors using PK modeling approaches. In this review, the authors try to present all those models under a unique theoretical mechanism-based framework incorporating the main considerations related to ADA formation, and how ADA may affect the efficacy or toxicity profile of some therapeutic biomolecules.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN 0939-6411
Vol. 83
N° 3
Año 2013
Págs.358 - 363
In this work, we have developed and evaluated a new targeted lipopolyplex (LPP), by combining polyethylenimine (PEI), 1,2-dioleoy1-3-(trimethylammonium) propane (DOTAP)/Chol liposomes, the plasmids pCMVLuc/pCMVIL-12, and the ligand folic acid (FA), able to transfect HeLa and B16-F10 cells in the presence of very high concentration of serum (60% FBS). These complexes (Fol-LPP) have a net positive surface charge. The combination of folic acid with lipopolyplexes also enhanced significantly the transfection activity of the therapeutic gene interleukin-12 (IL-12), without any significant cytotoxicity. The specificity of the folate receptor (FR)-mediated gene transfer was corroborated by employing a folate receptor deficient cell line (HepG2). This formulation improved gene delivery showed by conventional lipoplexes or polyplexes resulting an efficient, simple, and nontoxic method for gene delivery of therapeutic genes in vitro and very probably in vivo.
Revista:
EXPERT OPINION ON DRUG DELIVERY
ISSN 1742-5247
Vol. 10
N° 6
Año 2013
Págs.829 - 844
INTRODUCTION:
Liposomes represent a versatile system for drug delivery in various pathologies. Platinum derivatives have been demonstrated to have therapeutic efficacy against several solid tumors. But their use is limited due to their side effects. Since liposomal formulations are known to reduce the toxicity of some conventional chemotherapeutic drugs, the encapsulation of platinum derivatives in these systems may be useful in reducing toxicity and maintaining an adequate therapeutic response.
AREAS COVERED:
This review describes the strategies applied to platinum derivatives in order to improve their therapeutic activity, while reducing the incidence of side effects. It also reviews the results found in the literature for the different platinum-drugs liposomal formulations and their current status.
EXPERT OPINION:
The design of liposomes to achieve effectiveness in antitumor treatment is a goal for platinum derivatives. Liposomes can change the pharmacokinetic parameters of these encapsulated drugs, reducing their side effects. However, few liposomal formulations have demonstrated a significant advantage in therapeutic terms. Lipoplatin, a cisplatin formulation in Phase III, combines a reduction in the toxicity associated with an antitumor activity similar to the free drug. Thermosensitive or targeted liposomes for tumor therapy are also included in this review. Few articles about this strategy applied to platinum drugs can be found in the literature.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN 0939-6411
Vol. 81
N° 2
Año 2012
Págs.273 - 280
In this work, the Film Method (FM), Reverse-Phase Evaporation (REV), and the Heating Method (HM) were applied to prepare PEG-coated liposomes of oxaliplatin with natural neutral and cationic lipids, respectively. The formulations developed with the three methods, showed similar physicochemical characteristics, except in the loading of oxaliplatin, which was statistically lower (P < 0.05) using the HM. The incorporation of a semi-synthetic lipid in the formulation developed by FM, provided liposomes with a particle size of 115 nm associated with the lowest polydispersity index and the highest drug loading, 35%, compared with the other two lipids, suggesting aft increase in the membrane stability. That stability was also evaluated according to the presence of cholesterol, the impact of the temperature, and the application of different cryoprotectants during the lyophilization. The results indicated long-term stability of the developed formulation, because after its intravenous in vivo administration to HT-29 tumor bearing mice was able to induce an inhibition of tumor growth statistically higher (P < 0.05) than the inhibition caused by the free drug. In conclusion, the FM was the simplest method in comparison with REV and HM to develop in vivo stable and efficient PEG-coated liposomes of oxaliplatin with a loading higher than those reported for REV. (C) 2012 Elsevier B.V. All rights reserved.
Revista:
NANOMEDICINE
ISSN 1743-5889
Vol. 6
N° 1
Año 2011
Págs.89 - 98
Aims: In this work, we have evaluated the ability of targeted lipoplexes to enhance transgene expression in EGF receptor (EGFR) overexpressing tumor cells by using lipoplexes. Materials & methods: We prepared DOTAP/cholesterol liposomes modified with EGF at 0.5/1, 1/1, 2/1 and 5/1 lipid/DNA (+/-) charge ratio by sequentially mixing the liposomes with the ligand and addling the reporter or the therapeutic plasmid gene, pCMVLuc (pVR1216) or pCMVIL12, respectively. HepG2, DHDK12proB and SW620 cells were used for in vitro experiments, which were performed in the presence of 60% serum. Results: The characterization of EGF-lipoplexes indicated a size close to 300 nm and a variable net surface charge as a function of the amount of EGF associated to the cationic liposomes. EGF-lipoplexes, which showed an increased transfection activity, were positively charged, noncytotoxic and highly effective in protecting DNA from DNase I attack. Transfection activity in vitro resulted in an enhancement in the luciferase and IL-12 expression by EGF-lipoplexes compared with those without ligand (plain-lipoplexes) and to naked DNA. The results observed in SW620 cells, which are deficient in EGFR, confirmed that DNA uptake was predominantly via EGFR-mediated endocytosis. In vivo transfection activity was confirmed by luciferase imaging in living mice. Bioluminiscence could be detected mainly in the lung with a maximum signal 24 h after application. The resulting EGF-lipoplexes significantly ...
Revista:
J CLIN PHARMACOL
ISSN 0091-2700
Vol. 52
N° 4
Año 2011
Págs.487-498
Revista:
PHARMACEUTICAL RESEARCH
ISSN 0724-8741
Vol. 27
N° 3
Año 2010
Págs.431 - 441
Revista:
Microchemical Journal
ISSN 0026-265X
Vol. 96
N° 2
Año 2010
Págs.415 - 421
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN 0939-6411
Vol. 74
N° 2
Año 2010
Págs.265 - 274
Biodegradable poly (lactic-co-glycolic) acid (PLGA) nanoparticles incorporating cisplatin have been developed to evaluate its in vivo efficacy in tumor-bearing mice.
In vitro Study proved two mechanisms of action for cisplatin depending on the dose and the rate at which this dose is delivered. In vivo study, 5 mg/kg of cisplatin nanoparticles administered to mice, exhibited a tumour inhibition similar to free cisplatin, although the area under cisplatin concentration-time Curve between 0 and 21 days (AUC(0-21)) had lower Value for the formulation than for drug solution (P < 0.05). This result was associated with a higher activation of apoptosis in tumor, mediated by caspase-3, after nanoparticles administration. Toxicity measured as the change in body weight, and blood urea nitrogen (BUN) plasma levels showed that cisplatin nanoparticles treatment did not induce significant changes in both parameters compared to control, while for free drug, a statistical (P < 0.01) increase was observed. In addition, a good correlation was found between time profiles of tumor volume and vascular endothelial growth factor (VEGF) plasma levels, suggesting that its expression could help to follow the efficacy of the treatment. Therefore, the PLGA nanoparticles seem to provide a promising carrier for cisplatin administration avoiding its side effects without a reduction of the efficacy, which was consistent with a higher activation of apoptosis than free drug.