In vitro intestinal co-culture cell model to evaluate intestinal absorption of edelfosine

Autores: Lasa Saracíbar, Beatriz; Guada Ramírez, Melissa; Sebastián, V.; Blanco Prieto, María José
ISSN: 1568-0266
Volumen: 14
Número: 9
Páginas: 1124 - 1132
Fecha de publicación: 2014
Nanotechnology is providing a new therapeutic paradigm by enhancing drug efficacy and preventing side-effects. Edelfosine is a synthetic ether lipid analogue of platelet activating factor with high antitumor activity. The encapsulation of this potent antitumor drug in lipid nanoparticles increases its oral bioavailability; moreover, it prevents the hemolytic and gastrointestinal side-effects of the free drug. The literature points towards lymphatic absorption of lipid nanoparticles after oral administration, and previous in vitro and in vivo studies stress the protection against toxicity that these nanosystems provide. The present study is intended to assess the permeability of lipid nanoparticles across the intestinal barrier. Caco-2 monoculture and Caco-2/Raji co-culture were used as in vitro models of enterocytes and Microfold cells respectively. Results showed that free drug is internalized and possibly metabolized in enterocytes. These results do not correlate with those observed in vivo when edelfosine-lipid nanoparticles were administered orally in mice, which suggests that the microfold model is not a good model to study the absorption of edelfosine-lipid nanoparticles across the intestinal barrier in vitro.