Heterogeneous micromechanical properties of the extracellular matrix in healthy and infarcted hearts

Autores: Andreu Arzuaga, Ion; Luque, T.; Sancho Erkizia, Ana; Pelacho Samper, Beatriz; Iglesias García, Olalla; Melo E.; Farre, R.; Prosper Cardoso, Felipe; Elizalde González, Reyes; Navajas, D.
Título de la revista: ACTA BIOMATERIALIA
ISSN: 1742-7061
Volumen: 10
Número: 7
Páginas: 3235 - 3242
Fecha de publicación: 2014
Lugar: WOS
Infarcted hearts are macroscopically stiffer than healthy organs. Nevertheless, although cell behavior is mediated by the physical features of the cell niche, the intrinsic micromechanical properties of healthy and infarcted heart extracellular matrix (ECM) remain poorly characterized. Using atomic force microscopy, we studied ECM micromechanics of different histological regions of the left ventricle wall of healthy and infarcted mice. Hearts excised from healthy (n = 8) and infarcted mice (n = 8) were decellularized with sodium dodecyl sulfate and cut into 12 gm thick slices. Healthy ventricular ECM revealed marked mechanical heterogeneity across histological regions of the ventricular wall with the effective Young's modulus ranging from 30.2 +/- 2.8 to 74.5 +/- 8.7 kPa in collagen- and elastin-rich regions of the myocardium, respectively. Infarcted ECM showed a predominant collagen composition and was 3-fold stiffer than collagen-rich regions of the healthy myocardium. ECM of both healthy and infarcted hearts exhibited a solid-like viscoelastic behavior that conforms to two power-law rheology. Knowledge of intrinsic micromechanical properties of the ECM at the length scale at which cells sense their environment will provide further insight into the cell-scaffold interplay in healthy and infarcted hearts.