Nuestros investigadores

Carlos Castilla Ruíz

Publicaciones científicas más recientes (desde 2010)

Autores: Maska, M.; Sorokin, D. V. ; et al.
ISSN 0278-0062  Vol. 38  Nº 3  2019  págs. 862 - 872
We present a 3D bioimage analysis workflow to quantitatively analyze single, actin-stained cells with filopodial protrusions of diverse structural and temporal attributes, such as number, length, thickness, level of branching, and lifetime, in time-lapse confocal microscopy image data. Our workflow makes use of convolutional neural networks trained using real as well as synthetic image data, to segment the cell volumes with highly heterogeneous fluorescence intensity levels and to detect individual filopodial protrusions, followed by a constrained nearest-neighbor tracking algorithm to obtain valuable information about the spatio-temporal evolution of individual filopodia. We validated the workflow using real and synthetic 3-D time-lapse sequences of lung adenocarcinoma cells of three morphologically distinct filopodial phenotypes and show that it achieves reliable segmentation and tracking performance, providing a robust, reproducible and less time-consuming alternative to manual analysis of the 3D+t image data.
Autores: Anguiano, M.; Maska, M.; et al.
ISSN 1557-170X  Vol. 2015  2015  págs. 8139 - 8142
The geometry of 3D collagen networks is a key factor that influences the behavior of live cells within extra-cellular matrices. This paper presents a method for automatic quantification of the 3D collagen network geometry with fiber resolution in confocal reflection microscopy images. The proposed method is based on a smoothing filter and binarization of the collagen network followed by a fiber reconstruction algorithm. The method is validated on 3D collagen gels with various collagen and Matrigel concentrations. The results reveal that Matrigel affects the collagen network geometry by decreasing the network pore size while preserving the fiber length and fiber persistence length. The influence of network composition and geometry, especially pore size, is preliminarily analyzed by quantifying the migration patterns of lung cancer cells within microfluidic devices filled with three different hydrogel types. The experiments reveal that Matrigel, while decreasing pore size, stimulates cell migration. Further studies on this relationship could be instrumental for the study of cancer metastasis and other biological processes involving cell migration.