Contenido principal
Ir al contenido principal
Header Schemes
Menú de navegación
No hay
Navegación secundaria
disponible para el sitio actual.
Menú de navegación
No hay
Navegación secundaria
disponible para el sitio actual.
Selector de idioma
Es
En
Español
English
Redes
......
......
......
......
......
......
Toggle navigation
Información grados
Información másteres
Universidad de Navarra
Campus Universitario 31009
Pamplona Navarra España
T.
+34 948 42 56 00
info@unav.es
......
......
......
......
......
......
Selector de idioma
Es
En
Español
English
Redes
Nuestros investigadores
Navegación
Menú de navegación
No hay
Navegación secundaria
disponible para el sitio actual.
Menú de navegación
No hay
Navegación secundaria
disponible para el sitio actual.
Busquedas
Buscar
Elige tu idioma
X
Spanish XX
En YY
Universidad de Navarra
Nuestros investigadores
Ruta de navegación
Estás en:
Investigacion
Nuestros investigadores
Curriculum de nuestros investigadores
Curriculum de nuestros investigadores - Investigacion
Detalle Profesor
Nuestros investigadores
José Sebastián Gutiérrez Calderón
jsgutierrez@tecnun.es
Índice H
7, (WoS, 19/03/2022)
9, (Scopus, 19/03/2022)
11, (Google Scholar, 19/03/2022)
Publicaciones
Revistas (1)
Capítulos de libros (1)
Revistas
Autores:
Espinosa, R.; Ponce, H.;
Gutiérrez Calderón, José Sebastián
Título:
Click-event sound detection in automotive industry using machine/deep learning
Revista:
APPLIED SOFT COMPUTING
ISSN
1568-4946
Vol.
108
Año
2021
Págs.
107465
Resumen
In the automotive industry, despite the robotic systems on the production lines, factories continue employing workers in several custom tasks getting for semi-automatic assembly operations. Specifically, the assembly of electrical harnesses of engines comprises a set of connections between electrical components. Despite the task is easy to perform, employees tend not to notice that a few components are not being connected properly due to physical fatigue provoked by repetitive tasks. This yields a low quality of the assembly production line and possible hazards. In this work, we propose a sound detection system based on machine/deep learning (ML/DL) approaches to identify click sounds produced when electrical harnesses are connected. The purpose of this system is to count the number of connections properly made and to feedback to the employees. We collect and release a public dataset of 25,000 click sounds of 25 ms length at 22 kHz during three months of assembly operations in an automotive production line located in Mexico. Then, we design an ML/DL-based methodology for click sound detection of assembled harnesses under real conditions of a noisy environment (noise level ranging from ¿16.67 dB to ¿12.87 dB) including other machinery sounds. Our best ML/DL model (i.e., a combination between five acoustic features and an optimized convolutional neural network) is able to detect click sounds in a real assembly production line with an accuracy of 94.55±0.83 %.
Capítulos de libros
Autores:
Gutiérrez Calderón, José Sebastián
; Rocha, R.; Rendón, D.; et al.
Título:
Tracking greenhouses farming based on internet of technology
Libro:
Further Advances in Internet of Things in Biomedical and Cyber Physical Systems
Editorial:
Ed. Springer
Año
2021
Págs.
227 - 238
ISBN:
978-3-030-57834-3
Resumen
The Internet of Things plays role in all arenas. In this manuscript, we have to consider the growing flowers in a garden, vegetable, fruit, and other farming. We are considering the greenhouse which aims to introduce the productions of yields. Of course, the growth of plants, and farms are vital and need of everyone, keeping in view of this manuscript is aimed to discuss and study in line of IoT and agriculture. In this work, we propose a greenhouse automation system based on Arduino for the monitoring of temperature, humidity, and moisture of the soil. Arduino can obtain data on the environmental conditions of the greenhouse from various sensors and transfer the data to the ESP8266 module. Consequently, it's possible to change the state of greenhouse control devices like fans, lamp heater, and water pump in obedience to the necessary conditions of the crops. These parameters are modified by the type of plant to maximize their growth, the Aloe Vera plant was used in this project. For the architecture of the Internet of Things was used Blynk coming from the embedded board and the communication link with the Blynk Server was through the Wi-Fi protocol. Results indicate that the system allows the control and monitoring in real-time of the greenhouse correctly. As a future improvement, it is intended with the data obtained, to search for the best optimal conditions for plant growth through artificial intelligence