Nuestros investigadores

Juan Diego Azcona Armendáriz

Publicaciones científicas más recientes (desde 2010)

Autores: Azcona, Juan Diego, (Autor de correspondencia); Moreno, Marta; et al.
Revista: MEDICAL PHYSICS
ISSN 0094-2405  Vol. 46  Nº 10  2019  págs. 4346 - 4355
Purpose To use four-dimensional (4D) dose accumulation based on deformable image registration (DIR) to assess dosimetric uncertainty in lung stereotactic body radiation therapy (SBRT) treatment planning. A novel concept, the Evaluation Target Volume (ETV), was introduced to achieve this goal. Methods The internal target volume (ITV) approach was used for treatment planning for 11 patients receiving lung SBRT. Retrospectively, 4D dose calculation was done in Pinnacle v9.10. Total dose was accumulated in the reference phase using DIR with MIM. DIR was validated using landmarks introduced by an expert radiation oncologist. The 4D and three-dimensional (3D) dose distributions were compared within the gross tumor volume (GTV) and the planning target volume (PTV) using the D-95 and D-min (calculated as D-min,D-0.035cc) metrics. For lung involvement, the mean dose and V-20, V-10, and V-5 were used in the 3D to 4D dose comparison, and D-max (D-0.1cc) was used for all other organs at risk (OAR). The new evaluation target volume (ETV) was calculated by expanding the GTV in the reference phase in order to include geometrical uncertainties of the DIR, interobserver variability in the definition of the tumor, and uncertainties of imaging and delivery systems. D-95 and D-min,D-0.035cc metrics were then calculated on the basis of the ETV for 4D accumulated dose distributions, and these metrics were compared with those calculated from the PTV for 3D planned dose distributions.
Autores: Azcona, Juan Diego; Moreno, Marta; et al.
Revista: MEDICAL PHYSICS
ISSN 0094-2405  Vol. 45  Nº 6  2018  págs. E523 - E524
Autores: Martin-Martin, G.; Aguilar Redondo, P. B.; Barbes, B; et al.
Revista: RADIOTHERAPY AND ONCOLOGY
ISSN 0167-8140  Vol. 127  Nº Supl.1  2018  págs. S461 - S462
Autores: Arbea, Leire; et al.
Revista: NEURO-ONCOLOGY
ISSN 1522-8517  Vol. 20  Nº Supl. 3  2018  págs. 251 - 252
Autores: Garcia-Consuegra, A.; et al.
Revista: NEURO-ONCOLOGY
ISSN 1522-8517  Vol. 20  Nº Supl. 3  2018  págs. 253 - 253
Autores: Azcona, Juan Diego; Barbes, B; Morán, Verónica; et al.
Revista: MEDICAL DOSIMETRY
ISSN 0958-3947  Vol. 42  Nº 4  2017  págs. 282 - 288
This study aimed to describe the commissioning of small field size radiosurgery cones in a 6-MV flattening filter free (FFF) beam and report our measured values. Four radiosurgery cones of diameters 5, 10, 12.5, and 15¿mm supplied by Elekta Medical were commissioned in a 6-MV FFF beam from an Elekta Versa linear accelerator. The extraction of a reference signal for measuring small fields in scanning mode is challenging. A transmission chamber was attached to the lower part of the collimators and used for percentage depth dose (PDD) and profile measurements in scanning mode with a stereotactic diode. Tissue-maximum ratios (TMR) and output factors (OF) for all collimators were measured with a stereotactic diode (IBA). TMR and the OF for the largest collimator were also acquired on a polystyrene phantom with a microionization chamber of 0.016¿cm3 volume (PTW Freiburg PinPoint 3D). Measured TMR with diode and PinPoint microionization chamber agreed very well with differences smaller than 1% for depths below 20¿cm, except for the smaller collimator, for which differences were always smaller than 2%. Calculated TMR were significantly different (up to 7%) from measured TMR. OF measured with diode and chamber showed a difference of 3.5%. The use of a transmission chamber allowed the measurement of the small-field dosimetric properties with a simple setup. The commissioning of radiosurgery cones in FFF beams has been performed with essentially the same procedures and recommended ...
Autores: Azcona, Juan Diego; Barbes, B; Wang, L.; et al.
Revista: PHYSICS IN MEDICINE AND BIOLOGY
ISSN 0031-9155  Vol. 61  Nº 1  2015  págs. 50 - 66
This paper presents a method to obtain the pencil-beam kernels that characterize a megavoltage photon beam generated in a flattening filter free (FFF) linear accelerator (linac) by deconvolution from experimental measurements at different depths. The formalism is applied to perform independent dose calculations in modulated fields. In our previous work a formalism was developed for ideal flat fluences exiting the linac's head. That framework could not deal with spatially varying energy fluences, so any deviation from the ideal flat fluence was treated as a perturbation. The present work addresses the necessity of implementing an exact analysis where any spatially varying fluence can be used such as those encountered in FFF beams. A major improvement introduced here is to handle the actual fluence in the deconvolution procedure. We studied the uncertainties associated to the kernel derivation with this method. Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from two linacs from different vendors, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water-equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50mm diameter circular field, collimated with a lead block. The 3D kernel for a FFF beam was obtained by deconvolution using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. Error uncertainty in the kernel derivation procedure was estimated to be within 0.2%. Eighteen modulated fields used clinically in different treatment localizations were irradiated at four measurement depths (total of fifty-four film measurements). Comparison through the gamma-index to their corresponding calculated absolute dose distributions showed a number of passing points (3%, 3mm) mostly above 99%. This new procedure is more reliable and robust than the previous one. Its ability to perform accurate independent dose calculations was demonstrated.
Autores: Barbes, B; Azcona, Juan Diego; Prieto, Elena; et al.
Revista: JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS
ISSN 1526-9914  Vol. 16  Nº 5  2015  págs. 306-321
Autores: Azcona, Juan Diego, (Autor de correspondencia); Xing, L.; Chen, X.; et al.
Revista: INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS
ISSN 1879-355X  Vol. 88  Nº 5  2014  págs. 1167 - 1174
PURPOSE: To develop a method for dose reconstruction by incorporating the interplay effect between aperture modulation and target motion, and to assess the dosimetric impact of real-time prostate motion during volumetric modulated arc therapy (VMAT). METHODS AND MATERIALS: Clinical VMAT plans were delivered with the TrueBeam linac for 8 patients with prostate cancer. The real-time target motion during dose delivery was determined based on the 2-dimensional fiducial localization using an onboard electronic portal imaging device. The target shift in each image was correlated with the control point with the same gantry angle in the VMAT plan. An in-house-developed Monte Carlo simulation tool was used to calculate the 3-dimensional dose distribution for each control point individually, taking into account the corresponding real-time target motion (assuming a nondeformable target with no rotation). The delivered target dose was then estimated by accumulating the dose from all control points in the plan. On the basis of this information, dose-volume histograms and 3-dimensional dose distributions were calculated to assess their degradation from the planned dose caused by target motion. Thirty-two prostate motion trajectories were analyzed. RESULTS: The minimum dose to 0.03 cm(3) of the gross tumor volume (D0.03cc) was only slightly degraded after taking motion into account, with a minimum value of 94.1% of the planned dose among all patients and fractions. However, the gross tumor volume receiving prescription dose (V100%) could be largely affected by motion, dropping below 60% in 1 trajectory. We did not observe a correlation between motion magnitude and dose degradation. CONCLUSIONS: Prostate motion degrades the delivered dose to the target in an unpredictable way, although its effect is reduced over multiple fractions, and for most patients the degradation is small. Patients with greater prostate motion or those treated with stereotactic body radiation therapy would benefit from real-time prostate tracking to reduce the margin.
Autores: Barbes, B; Azcona, Juan Diego; Burguete, Javier; et al.
Revista: MEDICAL PHYSICS
ISSN 0094-2405  Vol. 41  Nº 1  2014  págs. 12102-11
Autores: Azcona, Juan Diego; Burguete, Javier;
Revista: MEDICAL PHYSICS
ISSN 0094-2405  Vol. 37  Nº 9  2010  págs. 4634 - 4642
Purpose: This article presents an improved pencil-beam dose calculation formalism based on an experimental kernel obtained by deconvolution. The new algorithm makes it possible to calculate the absorbed dose for all field sizes. Methods: The authors have enhanced their previous work [J. D. Azcona and J. Burguete, Med. Phys. 35, 248-259 (2008)] by correcting the kernel tail representing the contribution to the absorbed dose far from the photon interaction point. The correction was performed by comparing the calculated and measured output factors. Dose distributions and absolute dose values calculated using the new formalism have been compared to measurements. The agreement between calculated and measured dose distributions was evaluated according to the gamma-index criteria. In addition, 35 individual intensity-modulated radiation therapy (IMRT) fields were calculated and measured in polystyrene using an ionization chamber. Furthermore, a series of 541 IMRT fields was calculated using the algorithm proposed here and using a commercial IMRT optimization and calculation software package. Comparisons were made between the calculations at single points located at the isocenter for all the beams, as well as between beams grouped by anatomic location. Results: The percentage of points passing the gamma-index criteria (3%, 3 mm) when comparing calculated and measured dose distributions is generally greater than 99% for the cases studied. The agreement between the calculations and the experimental measurements generally lies in the +/- 2% interval for single points, with a mean value of 0.2%. The agreement between calculations using the proposed algorithm and using a commercial treatment planning system is also between +/- 5%. Conclusions: An improved algorithm based on an experimental pencil-beam kernel obtained by deconvolution has been developed. It has been validated clinically and promises to be a valuable tool for IMRT quality assurance as an independent calculation system for monitor units and dose distributions. An important point is that the algorithm presented here uses an experimental kernel, which is therefore independent of Monte-Carlo-calculated kernels.