Nuestros investigadores

Publicaciones científicas más recientes (desde 2010)

Autores: González, A; Ravassa, S; López, B; et al.
Revista: HYPERTENSION
ISSN 0194-911X  Vol. 72  Nº 3  2018  págs. 549 - 558
Autores: Moreno, MU; Ravassa, S; Gallego, C.; et al.
Revista: EUROPEAN JOURNAL OF CLINICAL INVESTIGATION
ISSN 0014-2972  Vol. 48  Nº Supl. 1  2018  págs. 125 - 126
Autores: Moreno, MU; Gavira, Juan José; et al.
Revista: MEDICAL CLINICS OF NORTH AMERICA
ISSN 0025-7125  Vol. 101  Nº 1  2017  págs. 43-52
The chronic hemodynamic load imposed by hypertension on the left ventricle leads to lesions in the myocardium that result in structural remodeling, which provides support for alterations in cardiac function, perfusion, and electrical activity that adversely influence the clinical evolution of hypertensive heart disease. Management must include detecting, reducing, and reversing left ventricular hypertrophy, as well as the detection and repair of microscopic lesions responsible for myocardial remodeling. Reducing the burden associated with hypertensive heart disease can be targeted using personalized treatment. The noninvasive, biomarker-mediated identification of subsets of patients with hypertensive heart disease is essential to provide personalized treatment.
Autores: Ravassa, S; López, B; Querejeta, R.; et al.
Revista: JOURNAL OF HYPERTENSION
ISSN 1473-5598  Vol. 35  Nº 4  2017  págs. 853 - 861
OBJECTIVE: Myocardial fibrosis is associated with alterations in the cross-linking and deposition of collagen type I (CCL and CD, respectively). We aimed to evaluate whether the combination of circulating biomarkers of CCL [the carboxy-terminal telopeptide of collagen type I to matrix metalloproteinase-1 ratio (CITP¿:¿MMP-1)] and CD [the carboxy-terminal propeptide of procollagen type I (PICP)] identifies myocardial fibrosis phenotypes with distinct clinical outcome in hypertensive patients with heart failure. METHODS: Endomyocardial biopsies and blood samples from 38 patients (small cohort), and blood samples from 203 patients (large cohort) were analyzed. Myocardial CCL and CD were assessed by histological methods. Serum PICP, CITP, and MMP-1 were determined by ELISA. RESULTS: Small cohort: CITP¿:¿MMP-1 cutoff 1.968 or less and PICP cutoff at least 110.8¿ng/ml were used for predicting high CCL and severe CD, respectively. Large cohort: as defined by the above thresholds, patients were categorized into four subgroups based on the presence (+) or absence (-) of high CCL and severe CD. Compared with CCL-CD-, the adjusted hazard ratios for a composite end point of heart failure hospitalization or cardiovascular death over 5 years in CCL-CD+, CCL+CD-, and CCL+CD+ were 1.11 (P¿=¿0.79), 1.99 (P¿=¿0.07), and 2.18 (P¿=¿0.04), respectively (P for trend¿=¿0.005). In addition, the categorization based on CCL and CD yielded integrated discrimination (P¿=¿0.03) and net reclassification..
Autores: Beloqui, Óscar; Moreno, MU; San José, Gorka; et al.
Revista: FREE RADICAL RESEARCH
ISSN 1071-5762  Vol. 51  Nº 4  2017  págs. 389 - 396
Vascular calcification is a common feature in atherosclerosis and associates with cardiovascular events. Oxidative stress may be involved in the pathogenesis of vascular calcification. Previous studies have shown that the phagocytic NADPH oxidase is associated with atherosclerosis. The objective of the present study was to investigate the association between phagocytic NADPH oxidase-mediated superoxide production and coronary artery calcium (CAC). NADPH oxidase-mediated superoxide production was determined by chemiluminescence and CAC by computed tomography in 159 asymptomatic men free of overt clinical atherosclerosis. Multivariate linear regression analyses were used to assess the relationship between CAC and NADPH oxidase-mediated superoxide production. Compared with individuals in the lowest score of CAC (= 0 Agatston units), those in the upper score (> 400 Agatston units) showed higher superoxide production (p < 0.05). In correlation analysis, superoxide production positively (p < 0.01) correlated with CAC, which in multivariate analysis remained significant after adjusting for age, HDL-cholesterol, triglycerides, body mass index, smoking, arterial hypertension and diabetes mellitus. In conclusion, in a population of men without clinically overt atherosclerotic disease, increased NADPH oxidase-mediated superoxide production associated with enhanced CAC. Albeit descriptive, these findings suggest a potential involvement of phagocytic NADPH oxidase-mediated oxidative stress in CAC.
Autores: Beaumont Javier; San José, Gorka; Moreno, MU; et al.
Revista: SCIENTIFIC REPORTS
ISSN 2045-2322  Vol. 7  2017  págs. 41865
Excessive myocardial collagen deposition and cross-linking (CCL), a process regulated by lysyl oxidase (LOX), determines left ventricular (LV) stiffness and dysfunction. The angiotensin II antagonist losartan, metabolized to the EXP3179 and EXP3174 metabolites, reduces myocardial fibrosis and LV stiffness in hypertensive patients. Our aim was to investigate the differential influence of losartan metabolites on myocardial LOX and CCL in an experimental model of hypertension with myocardial fibrosis, and whether EXP3179 and EXP3174 modify LOX expression and activity in fibroblasts. In rats treated with NG-nitro-L-arginine methyl ester (L-NAME), administration of EXP3179 fully prevented LOX, CCL and connective tissue growth factor (CTGF) increase, as well as fibrosis, without normalization of blood pressure (BP). In contrast, administration of EXP3174 normalized BP and attenuated fibrosis but did not modify LOX, CCL and CTGF. In TGF-beta(1)-stimulated fibroblasts, EXP3179 inhibited CTGF and LOX expression and activity with lower IC50 values than EXP3174. Our results indicate that, despite a lower antihypertensive effect, EXP3179 shows higher anti-fibrotic efficacy than EXP3174, likely through its ability to prevent the excess of LOX and CCL. It is suggested that the anti-fibrotic effect of EXP3179 may be partially mediated by the blockade of CTGF-induced LOX in fibroblasts.
Autores: González, A; Pueyo, Jesús Ciro; et al.
Revista: EUROPEAN JOURNAL OF HEART FAILURE
ISSN 1388-9842  Vol. 19  Nº Supl. 1  2017  págs. 123
Autores: González, A; López, B; Ravassa, S; et al.
Revista: EUROPEAN JOURNAL OF HEART FAILURE
ISSN 1388-9842  Vol. 19  Nº Supl. 1  2017  págs. 9 - 10
Autores: Beaumont Javier; López, B; Ravassa, S; et al.
Revista: CLINICAL SCIENCE
ISSN 0143-5221  Vol. 130  Nº 23  2016  págs. 2139 - 2149
MicroRNAs have been associated with cardiomyocyte apoptosis, a process involved in myocardial remodelling in aortic valve (Av) stenosis (AS). Our aim was to analyse whether the dysregulation of myocardial microRNAs was related to cardiomyocyte apoptosis in AS patients. Endomyocardial biopsies were obtained from 28 patients with severe AS (based on pressure gradients and Av area) referred for Av replacement and from necropsies of 10 cardiovascular disease-free control subjects. AS patients showed an increased (P<0.001) cardiomyocyte apoptotic index (CMAI) compared with controls. Two clusters of patients were identified according to the CMAI: group 1 (CMAI ¿ 0.08%; n=16) and group 2 (CMAI > 0.08%; n=12). Group 2 patients presented lower cardiomyocyte density (P<0.001) and ejection fraction (P<0.05), and higher troponin T levels (P<0.05), prevalence of heart failure (HF; P<0.05) and NT-proBNP levels (P<0.05) than those from group 1. miRNA expression profile analysed in 5 patients randomly selected from each group showed 64 microRNAs down-regulated and 6 up-regulated (P<0.05) in group 2 compared with group 1. Those microRNAs with the highest fold-change were validated in the full two groups corroborating that miR-10b, miR-125b-2* and miR-338-3p were down-regulated (P<0.05) in group 2 compared with group 1 and control subjects. These three microRNAs were inversely correlated (P<0.05) with the CMAI. Inhibition of miR-10b induced an increase (P<0.05) of apoptosis and increased expression (P<0.05) of apoptosis protease-activating factor-1 (Apaf-1) in HL-1 cardiomyocytes. In conclusion, myocardial down-regulation of miR-10b may be involved in increased cardiomyocyte apoptosis in AS patients, probably through Apaf-1 up-regulation, contributing to cardiomyocyte damage and to the development of HF.
Autores: López, B; Ravassa, S; González, A; et al.
Revista: JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY
ISSN 0735-1097  Vol. 67  Nº 3  2016  págs. 251 - 260
BACKGROUND: Excessive myocardial collagen cross-linking (CCL) determines myocardial collagen's resistance to degradation by matrix metalloproteinase (MMP)-1 and interstitial accumulation of collagen fibers with impairment of cardiac function. OBJECTIVES: This study sought to investigate whether CCL and a newly identified biomarker of this alteration are associated with hospitalization for heart failure (HHF) or cardiovascular death in patients with HF and arterial hypertension in whom other comorbidities were excluded. METHODS: Endomyocardial biopsies and blood samples from 38 patients (invasive study), and blood samples from 203 patients (noninvasive study) were analyzed. Mean follow-ups were 7.74 ± 0.58 years and 4.72 ± 0.11 years, respectively. Myocardial CCL was calculated as the ratio between insoluble and soluble collagen. The ratio between the C-terminal telopeptide of collagen type I (CITP) and matrix metalloproteinase-1 (CITP:MMP-1) was determined in blood samples. RESULTS: Invasive study: CCL was increased (p < 0.001) in patients compared with controls. Patients were categorized according to normal or high CCL values. Patients with high CCL exhibited higher risk for subsequent HHF (log-rank test p = 0.022), but not for cardiovascular death. CITP:MMP-1 was inversely associated with CCL (r = -0.460; p = 0.005) in all patients. Receiver operating characteristic curves rendered a CITP:MMP-1 cutoff ¿1.968 (80% sensitivity and 76% specificity) for predicting high CCL. Noninvasive study: Patients were categorized according to CITP:MMP-1 ratio values as normal ratio (>1.968) or low ratio (¿1.968). Patients with a low ratio exhibited higher risk for HHF (log-rank test p = 0.014), which remained significant after adjustment for relevant covariables (adjusted hazard ratio: 2.22; 95% CI: 1.37 to 3.59, p = 0.001). In addition, CITP:MMP-1-based categorization yielded significant integrated discrimination and net reclassification improvements (p = 0.003 and p = 0.009, respectively) for HHF over relevant risk factors. CITP:MMP-1 was not associated with the risk of cardiovascular death. CONCLUSIONS: Excessive myocardial CCL is associated with HHF in hypertensive patients with HF. In this population, the serum CITP:MMP-1 ratio identifies patients with increased CCL and high risk of HHF.
Autores: López, B; González, A; Ravassa, S; et al.
Revista: JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY
ISSN 0735-1097  Vol. 65  Nº 22  2015  págs. 2449 - 2456
Myocardial fibrosis impairs cardiac function, in addition to facilitating arrhythmias and ischemia, and thus influences the evolution and outcome of cardiac diseases. Its assessment is therefore clinically relevant. Although tissue biopsy is the gold standard for the diagnosis of myocardial fibrosis, a number of circulating biomarkers have been proposed for the noninvasive assessment of this lesion. A review of the published clinical data available on these biomarkers shows that most of them lack proof that they actually reflect the myocardial accumulation of fibrous tissue. In this "call to action" article, we propose that this absence of proof may lead to misinterpretations when considering the incremental value provided by the biomarkers with respect to traditional diagnostic tools in the clinical handling of patients. We thus argue that strategies are needed to more strictly validate whether a given circulating biomarker actually reflects histologically proven myocardial fibrosis before it is applied clinically.
Autores: Moreno, MU; San José, Gorka; Pejenaute, Á.; et al.
Revista: HYPERTENSION
ISSN 0194-911X  Vol. 63  Nº 3  2014  págs. 468 - 474
Left ventricular hypertrophy (LVH) is an independent marker of mortality in hypertension. Although the mechanisms contributing to LVH are complex, inflammation and oxidative stress may favor its development. We analyzed the association of the phagocytic NADPH oxidase-mediated superoxide anion release and LVH in patients with essential hypertension and the role of cardiotrophin-1 (CT-1) and interleukin-6 (IL-6), cytokines implicated in cardiac growth. Blood pressure, echocardiography data, and serum CT-1 and IL-6 levels were obtained in 140 subjects: 18 normotensives without LVH, 42 hypertensives without LVH, and 80 hypertensives with LVH. The NADPH oxidase-dependent superoxide production was assessed by chemiluminescence in peripheral blood mononuclear cells. Peripheral blood mononuclear cells were stimulated with CT-1 in vitro. Superoxide anion production by peripheral blood mononuclear cells associated with LVH and correlated with the left ventricular mass index. Serum CT-1 and IL-6 levels, which associated with the left ventricular mass index, correlated with superoxide production. Serum CT-1 and IL-6 levels were correlated. CT-1 stimulated NADPH oxidase superoxide production in peripheral blood mononuclear cells, which resulted in an increased release of IL-6. Our results show that superoxide anion production by the phagocytic NADPH oxidase associates with hypertensive heart disease, being significantly enhanced in hypertensive patients with LVH. This may be attributable to the activation of the NADPH oxidase by CT-1 and the subsequent release of IL-6. The phagocytic NADPH oxidase may be a therapeutic target in hypertensive heart disease.
Autores: San José, Gorka; Moreno, MU; et al.
Revista: ANTIOXIDANTS AND REDOX SIGNALING
ISSN 1523-0864  Vol. 19  Nº 14  2013  págs. 1607 - 1618
Aims: The NADPH oxidases constitute a major source of superoxide anion (·O2¿) in hypertension. Several studies suggest an important role of NADPH oxidases in different effects mediated by transforming growth factor-ß1 (TGF-ß1). We investigated whether a chronic treatment with P144, a peptide synthesized from type III TGF-ß1 receptor, inhibited NADPH oxidases in the renal cortex of spontaneously hypertensive rats (SHR). Results: Here, we show that chronic administration of P144 significantly reduced the NADPH oxidase expression and activity as well as the oxidative stress observed in control vehicle-treated SHR (V-SHR). In addition, P144 was also able to reduce the significant increase in the renal fibrosis and in mRNA expression of different components of collagen metabolism, as well as in the levels of connective tissue growth factor observed in V-SHR. Finally, TGF-ß1-stimulated NRK52E exhibited a significant increase in NADPH oxidase expression and activity as well as a TGF-ß1-dependent intracellular pathway that were inhibited in the presence of P144. Innovation: Our experimental evidence suggests that reversing oxidative stress may be therapeutically useful in preventing fibrosis-associated renal damage. We show here that (i) the TGF-ß1-NADPH oxidases axis is crucial in the development of fibrosis in an experimental hypertensive renal disease animal model, and (ii) the use of P144 reverses TGF-ß1-dependent NADPH oxidase activity; thus, P144 may be considered a novel therapeutic tool in kidney disease associated with hypertension. Conclusion: We demonstrate that P144 inhibits NADPH oxidases and prevents oxidative stress in kidneys from hypertensive rats. Our data also suggest that these effects are associated with the renal antifibrotic effect of P144.
Autores: Moreno, MU; López, B; González, A; et al.
Revista: CLINICAL SCIENCE
ISSN 0143-5221  Vol. 125  Nº 6  2013  págs. 291 - 300
The NADPH oxidases are a key family of ROS (reactive oxygen species)-producing enzymes which may differentially contribute to cardiac pathophysiology. Animal studies show uncertain results regarding the regulation of cardiac Nox4 by pressure overload and no data are available on human myocardial Nox4. In the present study, we evaluated Nox4 expression and its relationship with myocardial remodelling and LV (left ventricular) function in patients with severe AS (aortic valve stenosis). Endomyocardial biopsies from 34 patients with AS were obtained during aortic valve replacement surgery. LV morphology and function were assessed by echocardiography. Myocardial samples from subjects deceased of non-CVDs (cardiovascular diseases) were analysed as controls. Nox4 localization was evaluated by immunohistochemistry and quantified by Western blot. Myocardial capillary density, fibrosis and cardiomyocyte dimensions and apoptosis were assessed histologically to evaluate myocardial remodelling. Nox4 was present in samples from all subjects and expressed in cardiomyocytes, VSMCs (vascular smooth muscle cells), endothelium and fibroblasts. Nox4 levels were reduced 5-fold in AS patients compared with controls (P<0.01). Nox4 levels directly correlated with cardiomyocyte cross-sectional area (r=0.299, P<0.05) and diameter (r=0.406, P<0.05) and capillary density (r=0.389, P<0.05), and inversely with cardiomyocyte apoptosis (r=-0.316, P<0.05) in AS patients. In addition, Nox4 levels correlated with echocardiographic parameters (LV ejection fraction: r=0.353, P<0.05; midwall fractional shortening: r=0.355, P<0.05; deceleration time: r=-0.345, P<0.05) in AS patients. Nox4 is expressed in human myocardium and reduced in AS patients. The observed associations of Nox4 with cardiomyocyte parameters and capillary density in AS patients suggest a potential role of Nox4 deficiency in the myocardial remodelling present in the human pressure-overloaded heart.
Autores: Moreno, MU; López, B; et al.
Revista: OXIDATIVE MEDICINE AND CELLULAR LONGEVITY
ISSN 1942-0900  Vol. 2012  Nº 2012  2012  págs. 8 p.
NADPH oxidases constitute a major source of superoxide anion (center dot O-2(-)) in hypertension. Several studies suggest an important role of NADPH oxidases in different effects mediated by TGF-beta 1. In this study we show that chronic administration of P144, a peptide synthesized from type III TGF-beta(1) receptor, significantly reduced the cardiac NADPH oxidase expression and activity as well as in the nitrotyrosine levels observed in control spontaneously hypertensive rats (V-SHR) to levels similar to control normotensive Wistar Kyoto rats. In addition, P144 was also able to reduce the significant increases in the expression of collagen type I protein and mRNA observed in hearts from V-SHR. In addition, positive correlations between collagen expression, NADPH oxidase activity, and nitrotyrosine levels were found in all animals. Finally, TGF-beta 1-stimulated Rat-2 exhibited significant increases in NADPH oxidase activity that was inhibited in the presence of P144. It could be concluded that the blockade of TGF-beta 1 with P144 inhibited cardiac NADPH oxidase in SHR, thus adding new data to elucidate the involvement of this enzyme in the profibrotic actions of TGF-beta 1.
Autores: Moreno, MU; San José, Gorka; Fortuño, Ana; et al.
Revista: FRONTIERS IN BIOSCIENCE (ELITE EDITION)
ISSN 1945-0494  Vol. 3  2011  págs. 1467 - 1474
Oxidative stress is implicated in diabetes. The NADPH oxidases are the main source of superoxide in phagocytic and vascular cells, and p22phox is a key subunit. Genetic variants of CYBA, the human p22phox gene, associate with cardiovascular disease. We investigated the association of the A640G polymorphism with diabetes and its impact on phagocytic NADPH oxidase-dependent superoxide production and subclinical atherosclerosis. We studied 1212 subjects in which clinical parameters including carotid intima-media thickness (cIMT) were assessed. The A640G polymorphism was genotyped by TaqMan probes. In 496 subjects, the NADPH oxidase-dependent superoxide production in peripheral blood mononuclear cells was assessed by chemiluminescence. The GG genotype prevalence was significantly higher in type 2 diabetic patients than in non-diabetic subjects. Peripheral blood mononuclear cells from diabetic GG patients presented higher NADPH oxidase-dependent superoxide production than those of diabetic AA/AG patients. Within the diabetic group, GG patients presented higher cIMT levels than AA/AG patients. The A640G CYBA polymorphism may be a marker of oxidative stress risk and may be indicative of subclinical atherosclerosis in type 2 diabetes.
Autores: San José, Gorka; Rodríguez, C.; et al.
Revista: CARDIOVASCULAR RESEARCH
ISSN 0008-6363  Vol. 92  Nº 2  2011  págs. 247 - 255
Aims Cardiotrophin-1 (CT-1) is a cytokine of the interleukin-6 superfamily which is up-regulated in cardiac diseases, in part via hypoxia-dependent mechanisms. However, no evidence for a direct regulation of CT-1 gene (CTF1) promoter by hypoxia inducible factor-1 (HIF-1) has been provided. Methods and results Hypoxia increased CT-1 mRNA levels in the murine adult cardiomyocyte cell line HL-1 in a time-dependent manner. Interestingly, in a murine model (C57BL/6), we show that systemic hypoxia also significantly up-regulated CT-1 in myocardial tissue. The effect of hypoxia on CT-1 expression was mediated through a transcriptional mechanism, since hypoxia increased luciferase activity of constructs containing CTF1 promoter sequences. The increase in CT-1 levels was significantly reduced by drugs that prevent calcium mobilization, such as lercanidipine, or that inhibit the activation of the PI3K/Akt pathway (wortmannin) or mammalian target of rapamycin (rapamycin). The CT-1 elevation was similarly induced by HIF-1 alpha over-expression in co-transfection experiments and prevented by HIF-1 alpha silencing. The direct interaction of HIF-1 alpha with the CTF1 promoter was confirmed through site-directed mutagenesis of hypoxia response elements, electrophoreric mobility shift, and ChIP assays. Hypoxia induced HL-1 apoptosis (measured as annexin-V binding or caspase 3/7 activity) which was increased when CT-1 was silenced in knocked-down cells by lentiviral vectors. Conclusion Hypoxia increased CT-1 levels in cardiac cells (in vitro and in vivo) through a direct regulation of CTF1 promoter by HIF-1 alpha. This CT-1 activation by hypoxia may protect cells from apoptosis, thus supporting a protective role for CT-1 as a survival factor for cardiomyocytes.
Autores: Delles, C.; Dymott, J. A.; Neisius, U.; et al.
Revista: ATHEROSCLEROSIS
ISSN 0021-9150  Vol. 211  Nº 1  2010  págs. 271 - 277
OBJECTIVE: Recent guidelines recommend more aggressive lipid-lowering in secondary prevention protocols. We examined whether this resulted in improved endothelial function. METHODS: We studied saphenous vein specimens of patients undergoing surgical coronary revascularisation in 2007 and compared results with those of patients examined in 2003. Endothelium-dependent vasodilation was assessed by relaxation to calcium ionophore A23187, and vascular superoxide production by lucigenin enhanced chemiluminescence. RESULTS: Statin dose increased from 26+/-16 mg/d in 2003 to 37+/-17 mg/d in 2007 (P<0.001), and total (4.0+/-0.9 mmol/L vs 4.8+/-1.0 mmol/L) and LDL-cholesterol levels (2.0+/-0.7 mmol/L vs 3.0+/-0.9 mmol/L) were lower in 2007 compared to 2003 (P<0.001; n=90 each). Endothelium-dependent vasodilation was greater in 2007 (44+/-15%) compared to 2003 (28+/-12%; n=36 each; P<0.001). Vascular superoxide derived from endothelial NO synthase (eNOS) was lower in 2007 than in 2003 (reduction by NG-nitro-L-arginine-methyl ester, 0.29+/-0.21 nmol/(mg min) vs 0.09+/-0.20 nmol/(mg min); P=0.002). In linear regression analysis, LDL-cholesterol levels have been shown to be the major determinant of endothelial function in the combined 2003 and 2007 cohort. CONCLUSION: Intensive lipid-lowering is associated with improved endothelial function and reduced superoxide production from eNOS. Further improvement in vascular function could be achieved by targeting other sources of superoxide including xanthine oxidase.
Autores: Fortuño, Ana; Moreno, MU; et al.
Revista: JOURNAL OF HYPERTENSION
ISSN 0263-6352  Vol. 28  Nº 9  2010  págs. 1944 - 1950
Autores: Taurino, C. ; Miller, W. H. ; McBride, M. W. ; et al.
Revista: CLINICAL SCIENCE
ISSN 0143-5221  Vol. 119  Nº 8  2010  págs. 335 - 343
Owing to the dynamic nature of the transcriptome, gene expression profiling is a promising tool for discovery of disease-related genes and biological pathways. In the present study, we examined gene expression in whole blood of 12 patients with CAD (coronary artery disease) and 12 healthy control subjects. Furthermore, ten patients with CAD underwent whole-blood gene expression analysis before and after the completion of a cardiac rehabilitation programme following surgical coronary revascularization. mRNA and miRNA (microRNA) were isolated for expression profiling. Gene expression analysis identified 365 differentially expressed genes in patients with CAD compared with healthy controls (175 up- and 190 down-regulated in CAD), and 645 in CAD rehabilitation patients (196 up- and 449 down-regulated post-rehabilitation). Biological pathway analysis identified a number of canonical pathways, including oxidative phosphorylation and mitochondrial function, as being significantly and consistently modulated across the groups. Analysis of miRNA expression revealed a number of differentially expressed miRNAs, including hsa-miR-140-3p (control compared with CAD, P=0.017), hsa-miR-182 (control compared with CAD, P=0.093), hsa-miR-92a and hsa-miR-92b (post- compared with pre-exercise, P<0.01). Global analysis of predicted miRNA targets found significantly reduced expression of genes with target regions compared with those without: hsa-miR-140-3p (P=0.002), hsa-miR-182 (P=0.001), hsa-miR-92a and hsa-miR-92b (P=2.2x10-16). In conclusion, using whole blood as a 'surrogate tissue' in patients with CAD, we have identified differentially expressed miRNAs, differentially regulated genes and modulated pathways which warrant further investigation in the setting of cardiovascular function. This approach may represent a novel non-invasive strategy to unravel potentially modifiable pathways and possible therapeutic targets in cardiovascular disease.
Autores: Moreno, MU; Beloqui, Óscar; et al.
Revista: JOURNAL OF HYPERTENSION
ISSN 0263-6352  Vol. 28  Nº 11  2010  págs. 2219 - 2226
Autores: Moreno, MU; Zalba, Guillermo;
Revista: DRUG NEWS AND PERSPECTIVES
ISSN 0214-0934  Vol. 23  Nº 5  2010  págs. 316 - 324
Oxidative stress plays a key rote in the pathophysiology of coronary artery disease, and constitutes a common mechanism behind the risk factors associated with this disease such as atherosclerosis, hypertension, diabetes and the metabolic syndrome. Oxidative stress is defined as an imbalance between the production of reactive oxygen and nitrogen species and the detoxification by the appropriate cellular systems. Reactive oxygen species induce cardiovascular dysfunction by modulating cell contraction/dilation, migration, growth/apoptosis and extracellular matrix protein turnover, which contribute to vascular and cardiac remodeling. In the last decade, the NADPH oxidase family has emerged as one of the most relevant sources of reactive oxygen species within the cardiovascular system. Recent data suggest a significant role of the genetic background in NADPH oxidase regulation. Common genetic polymorphisms within the promoter and exonic sequences of CYBA, the gene that encodes the p22(phox) subunit of the NADPH oxidase, have been characterized in the context of cardiovascular diseases. This review aims to present the current state of research into these polymorphisms with regards to their relationship to coronary artery disease.
Autores: Moreno, MU; Zalba, Guillermo;
Libro:  Oxidative Stress. A focus on cardiovascular disease pathogenesis
2010  págs. 95 - 109

ACTIVIDAD DOCENTE