Revistas
Revista:
FRONTIERS IN IMMUNOLOGY
ISSN:
1664-3224
Año:
2023
Vol.:
14
Págs.:
1138316
Revista:
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
ISSN:
1422-0067
Año:
2023
Vol.:
24
N°:
4
Págs.:
3412
Glycerol is a key metabolite for lipid accumulation in insulin-sensitive tissues. We examined the role of aquaporin-7 (AQP7), the main glycerol channel in adipocytes, in the improvement of brown adipose tissue (BAT) whitening, a process whereby brown adipocytes differentiate into white like unilocular cells, after cold exposure or bariatric surgery in male Wistar rats with diet-induced obesity (DIO) (n = 229). DIO promoted BAT whitening, evidenced by increased BAT hypertrophy, steatosis and upregulation of the lipogenic factors Pparg2 , Mogat2 and Dgat1. AQP7 was detected in BAT capillary endothelial cells and brown adipocytes, and its expression was upregulated by DIO. Interestingly, AQP7 gene and protein expressions were downregulated after cold exposure (4( ?)C) for 1 week or one month after sleeve gastrectomy in parallel to the improvement of BAT whitening. Moreover, Aqp7 mRNA expression was positively associated with transcripts of the lipogenic factors Pparg2 , Mogat2 and Dgat1 and regulated by lipogenic (ghrelin) and lipolytic (isoproterenol and leptin) signals. Together, the upregulation of AQP7 in DIO might contribute to glycerol influx used for triacylglycerol synthesis in brown adipocytes, and hence, BAT whitening. This process is reversible by cold exposure and bariatric surgery, thereby suggesting the potential of targeting BAT AQP7 as an anti-obesity therapy.
Revista:
CANCERS
ISSN:
2072-6694
Año:
2023
Vol.:
15
N°:
4
Págs.:
1038
Simple Summary Netrin-1 (NTN-1) regulates obesity-associated low-grade inflammation, being also involved in the control of cell migration and proliferation. We aim to study whether excess visceral adipose tissue in patients with obesity and colon cancer is associated with increased NTN1 and the expression levels of its main receptors, promoting an inflammatory microenvironment that favours colon cancer development. Increased expression levels of NTN1 and its receptor NEO1 in the visceral adipose tissue from patients with obesity and colon cancer together with elevated DCC and UNC5B mRNA levels in patients with colon cancer were found. Moreover, the treatment of colorectal cancer cells with NTN-1 and with the adipocyte-derived secretome obtained from patients with obesity increased the migration of colorectal cancer cells. These results suggest that NTN-1 plays an important role in obesity-associated colon cancer development. Netrin (NTN)-1, an extracellular matrix protein with a crucial role in inflammation, is dysregulated during obesity (OB) and influences colon cancer (CC) progression. To decipher the mechanisms underlying CC development during obesity, we examined the expression of NTN1 and its receptors in the visceral adipose tissue (VAT) of 74 (25 normal weight (NW)) (16 with CC) and 49 patients with OB (12 with CC). We also evaluated the effect of caloric restriction (CR) on the gene expression levels of Ntn1 and its receptors in the colon from a rat model fed a normal diet. The impact of adipocyte-conditioned media (ACM) from patients with OB and NTN-1 was assessed on the expression levels of neogenin 1(NEO1), deleted in colorectal carcinomas (DCC) and uncoordinated-5 homolog B (UNC5B) in Caco-2 and HT-29 human colorectal cell lines, as well as on Caco-2 cell migration. Increased NTN1 and NEO1 mRNA levels in VAT were due to OB (p < 0.05) and CC (p < 0.001). In addition, an upregulation in the expression levels of DCC and UNC5B in patients with CC (p < 0.01 and p < 0.05, respectively) was observed. Decreased (p < 0.01) Ntn1 levels in the colon from rats submitted to CR were found. In vitro experiments showed that ACM increased DCC (p < 0.05) and NEO1 (p < 0.01) mRNA levels in HT-29 and Caco-2 cell lines, respectively, while UNC5B decreased (p < 0.01) in HT-29. The treatment with NTN-1 increased (p < 0.05) NEO1 mRNA levels in HT-29 cells and DCC (p < 0.05) in both cell lines. Finally, we revealed a potent migratory effect of ACM and NTN-1 on Caco-2 cells. Collectively, these findings point to increased NTN-1 during OB and CC fuelling cancer progression and exerting a strong migratory effect on colon cancer cells.
Revista:
NUTRIENTS
ISSN:
2072-6643
Año:
2023
Vol.:
15
N°:
1
Págs.:
73
Biological sex and aging impact obesity development and type 2 diabetes, changing the secretion of leptin and adiponectin. The balance between these factors has been propounded as a reliable biomarker of adipose tissue dysfunction. Our proposal was to study sexual differences and aging on the adiponectin/leptin (Adpn/Lep) ratio in order to acquire a broader view of the impact of consuming an high-fat diet (HFD) on energy metabolism according to sex and age. Male and female C57BL/6J mice were fed a normal chow diet or an HFD for 12 or 32 weeks (n = 7-10 per group) and evolution of body weight, food intake and metabolic profile were registered. The HFD triggered an increase in body weight (p < 0.001), body weight gain (p < 0.01) and adiposity index (p < 0.01) in both sexes at 32 weeks of age, but female mice fed the HFD exhibited these changes to a significantly lower extent than males. Aged female mice showed an increase (p < 0.01) in the Adpn/Lep ratio, which was negatively correlated with body weight gain, changes in different fat depots and insulin resistance. Females were more metabolically protected from obesity development and its related comorbidities than males regardless of age, making the Adpn/Lep ratio a relevant factor for body composition and glucose metabolism.
Revista:
ACTA BIOMATERIALIA
ISSN:
1742-7061
Año:
2022
Vol.:
141
Págs.:
264 - 279
Biomechanical properties of adipose tissue (AT) are closely involved in the development of obesity associated comorbidities. Bariatric surgery (BS) constitutes the most effective option for a sustained weight loss in addition to improving obesity-associated metabolic diseases including type 2 diabetes (T2D). We aimed to determine the impact of weight loss achieved by BS and caloric restriction (CR) on the biomechanical properties of AT. BS but not CR changed the biomechanical properties of epididymal white AT (EWAT) from a diet-induced obesity rat model, which were associated with metabolic improvements. We found decreased gene expression levels of collagens and Lox together with increased elastin and Mmps mRNA levels in EWAT after BS, which were also associated with the biomechanical properties. Moreover, an increased blood vessel density was observed in EWAT after surgery, confirmed by an up regulation of Acta2 and Antxr1 gene expression levels, which was also correlated with the biomechanical properties. Visceral AT from patients with obesity showed increased stiffness after tensile tests compared to the EWAT from the animal model. This study uncovers new insights into EWAT adaptation after BS with decreased collagen crosslink and synthesis as well as an increased degradation together with enhanced blood vessel density providing, simultaneously, higher stiffness and more ductility.
Statement of Significance
Biomechanical properties of the adipose tissue (AT) are closely involved in the development of obesity associated comorbidities. In this study, we show for the first time that biomechanical properties of AT determined by E , UTS and strain at UTS are decreased in obesity, being increased after bariatric surgery by the promotion of ECM remodelling and neovascularization. Moreover, these changes in biomechanical properties are associated with improvements in metabolic homeostasis. Consistently, a better characterization of the plasticity and biomechanical properties of the AT after bariatric surgery opens up a new field for the development of innovative strategies for the reduction of fibrosis and inflammation in AT as well as to better understand obesity and its associated comorbidities.
Revista:
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
ISSN:
1422-0067
Año:
2022
Vol.:
23
N°:
16
Págs.:
9222
Dysfunctional adipose tissue (AT) in the context of obesity leads to chronic inflammation together with an altered extracellular matrix (ECM) remodelling, favouring cancer development and progression. Recently, the influence of dermatopontin (DPT) in AT remodelling and inflammation has been proposed. We aimed to evaluate the role of DPT in the development of obesity-associated colon cancer (CC). Samples obtained from 73 subjects [26 lean (LN) and 47 with obesity (OB)] were used in a case-control study. Enrolled subjects were further subclassified according to the established diagnostic protocol for CC (42 without CC and 31 with CC). In vitro studies in the adenocarcinoma HT-29 cell line were performed to analyse the impact of pro- and anti-inflammatory mediators on the transcript levels of DPT as well as the effect of DPT on ECM remodelling and inflammation. Although obesity increased (p < 0.05) the circulating levels of DPT, its concentrations were significantly decreased (p < 0.05) in patients with CC. Gene expression levels of DPT in the colon from patients with CC were downregulated and, oppositely, a tendency towards increased mRNA levels in visceral AT was found. We further showed that DPT expression levels in HT-29 cells were enhanced (p < 0.05) by inflammatory factors (LPS, TNF-alpha and TGF-beta), whereas the anti-inflammatory IL-4 decreased (p < 0.05) its expression levels. We also demonstrated that DPT upregulated (p < 0.05) the mRNA of key molecules involved in ECM remodelling (COL1A1, COL5A3, TNC and VEGFA) whereas decorin (DCN) expression was downregulated (p < 0.05) in HT-29 cells. Finally, we revealed that the adipocyte-conditioned medium obtained from volunteers with OB enhanced (p < 0.01) the expression of DPT in HT-29 and Caco-2 cells. The decreased circulating and expression levels of DPT in the colon together with the tendency towards increased levels in visceral AT in patients with CC and its influence on the expression of ECM proteins suggest a possible role of DPT in the OB-associated CC.
Revista:
METABOLISM-CLINICAL AND EXPERIMENTAL
ISSN:
0026-0495
Año:
2022
Vol.:
128
Págs.:
155119
Background: The biological mediators supporting long-term weight loss and changes in dietary choice behaviour after sleeve gastrectomy remain unclear. Guanylin and uroguanylin are gut hormones involved in the regulation of satiety, food preference and adiposity. Thus, we sought to analyze whether the guanylin system is involved in changes in food preference after sleeve gastrectomy in obesity.
Methods: Proguanylin (GUCA2A) and prouroguanylin (GUCA2B) were determined in patients with severe obesity (n = 41) as well as in rats with diet-induced obesity (n = 48), monogenic obesity (Zucker fa/fa) (n = 18) or in a food choice paradigm (normal diet vs high-fat diet) (n = 16) submitted to sleeve gastrectomy. Lingual distribution and expression of guanylins (GUCA2A and GUCA2B) and their receptor GUCY2C as well as the fatty acid receptor CD36 were evaluated in the preclinical models.
Results: Circulating concentrations of GUCA2A and GUCA2B were increased after sleeve gastrectomy in patients with severe obesity as well as in rats with diet-induced and monogenic (fa/fa) obesity. Interestingly, the lower dietary fat preference observed in obese rats under the food choice paradigm as well as in patients with obesity after sleeve gastrectomy were negatively associated with post-surgical GUCA2B levels. Moreover, sleeve gastrectomy upregulated the low expression of GUCA2A and GUCA2B in taste bud cells of tongues from rats with diet induced and monogenic (fa/fa) obesity in parallel to a downregulation of the lingual lipid sensor CD36.
Conclusions: The increased circulating and lingual GUCA2B after sleeve gastrectomy suggest an association between the uroguanylin-GUCY2C endocrine axis and food preference through the regulation of gustatory responses. (c) 2022 Elsevier Inc. All rights reserved.
Revista:
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
ISSN:
1422-0067
Año:
2022
Vol.:
23
N°:
19
Págs.:
11641
Bariatric surgery has been recognized as the safest and most effective procedure for controlling type 2 diabetes (T2D) and obesity in carefully selected patients. The aim of the present study was to compare the effects of Sleeve Gastrectomy (SG) and Single Anastomosis Duodenoileal Bypass with SG (SADI-S) on the metabolic profile of diet-induced obese rats. A total of 35 four-week-old male Wistar rats were submitted to surgical interventions (sham operation, SG and SADI-S) after 4 months of being fed a high-fat diet. Body weight, metabolic profile and the expression of molecules involved in the control of subcutaneous white (SCWAT), brown (BAT) and beige (BeAT) adipose tissue function were analyzed. SADI-S surgery was associated with significantly decreased amounts of total fat pads (p < 0.001) as well as better control of lipid and glucose metabolism compared to the SG counterparts. An improved expression of molecules involved in fat browning in SCWAT and in the control of BAT and BeAT differentiation and function was observed following SADI-S. Together, our findings provide evidence that the enhanced metabolic improvement and their continued durability after SADI-S compared to SG rely, at least in part, on the improvement of the BeAT phenotype and function.
Revista:
FRONTIERS IN IMMUNOLOGY
ISSN:
1664-3224
Año:
2022
Vol.:
13
Págs.:
832185
Interleukin (IL)-36 is a recently described cytokine with well-known functions in the regulation of multiple inflammatory diseases. Since no data exists on how this cytokine regulates adipose tissue (AT) homeostasis, we aimed to explore the function of a specific isoform, IL-36 gamma, an agonist, in human obesity and obesity-associated type 2 diabetes as well as in AT inflammation and fibrosis. Plasma IL-36 gamma was measured in 91 participants in a case-control study and the effect of weight loss was evaluated in 31 patients with severe obesity undergoing bariatric surgery. Gene expression levels of IL36G and its receptor were analyzed in relevant human metabolic tissues. The effect of inflammatory factors and IL-36 gamma was determined in vitro in human adipocytes and macrophages. We found, for the first time, that the increased (P<0.05) circulating levels of IL-36 gamma in patients with obesity decreased (P<0.001) after weight and fat loss achieved by Roux-en-Y gastric bypass and that gene expression levels of IL36G were upregulated in the visceral AT (P<0.05) and in the peripheral blood mononuclear cells (P<0.01) from patients with obesity. We also demonstrated increased (P<0.05) expression levels of Il36g in the epididymal AT from diet-induced obese mice. IL36G was significantly enhanced (P<0.001) by LPS in human adipocytes and monocyte-derived macrophages, while no changes were found after the incubation with anti-inflammatory cytokines. The addition of IL-36 gamma for 24 h strongly induced (P<0.01) its own expression as well as key inflammatory and chemoattractant factors with no changes in genes associated with fibrosis. Furthermore, adipocyte-conditioned media obtained from patients with obesity increased (P<0.01) the release of IL-36 gamma and the expression (P<0.05) of cathepsin G (CTSG) in monocyte-derived macrophages. These findings provide, for the first time, evidence about the properties of IL-36 gamma in the regulation of AT-chronic inflammation, emerging as a link between AT biology and the obesity-associated comorbidities.
Revista:
NUTRIENTS
ISSN:
2072-6643
Año:
2022
Vol.:
14
N°:
20
Págs.:
4372
Netrin (NTN)-1 exhibits pro- and anti-inflammatory roles in different settings, playing important roles in the obesity-associated low-grade chronic inflammation. We aimed to determine the impact of NTN-1 on obesity and obesity-associated type 2 diabetes, as well as its role in visceral adipose tissue (VAT) inflammation. A total of 91 subjects were enrolled in this case-control study. Circulating levels of NTN-1 and its receptor neogenin (NEO)-1 were determined before and after weight loss achieved by caloric restriction and bariatric surgery. mRNA levels of NTN1 and NEO1 were assessed in human VAT, liver, and peripheral blood mononuclear cells. In vitro studies in human visceral adipocytes and human monocytic leukemia cells (THP-1)-derived macrophages were performed to analyze the impact of inflammation-related mediators on the gene expression levels of NTN1 and its receptor NEO1 as well as the effect of NTN-1 on inflammation. Increased (p < 0.001) circulating concentrations of NTN-1 in obesity decreased (p < 0.05) after diet-induced weight loss being also associated with a reduction in glucose (p < 0.01) and insulin levels (p < 0.05). Gene expression levels of NTN1 and NEO1 were upregulated (p < 0.05) in the VAT from patients with obesity with the highest expression in the stromovascular fraction cells compared with mature adipocytes (p < 0.01). NTN1 expression levels were enhanced (p < 0.01) under hypoxia and by inflammatory factors in both adipocytes and macrophages. Adipocyte-conditioned media strongly upregulated (p < 0.001) the mRNA levels of NTN1 in macrophages. The treatment of adipocytes with NTN-1 promoted the upregulation (p < 0.05) of pro-inflammatory and chemotactic molecules as well as its receptor NEO1. Collectively, these findings suggest that NTN-1 regulates VAT chronic inflammation and insulin resistance in obesity.
Revista:
JOURNAL OF INFLAMMATION RESEARCH
ISSN:
1178-7031
Año:
2022
Vol.:
15
Págs.:
1331 - 1345
Background: Excess adiposity leads to a dysfunctional adipose tissue that contributes to the development of obesity-associated comorbidities such as type 2 diabetes (T2D). Interleukin-1 receptor antagonist (IL-1RA) is a naturally occurring antagonist of the IL-1 receptor with anti-inflammatory properties. The aim of the present study was to compare the circulating concentrations of IL-1RA and its mRNA expression in visceral adipose tissue (VAT) in subjects with normal weight (NW), obesity with normoglycemia (OB-NG), or obesity with impaired glucose tolerance or T2D (OB-IGT&T2D) and to analyze the effect of changes in body fat percentage (BF%) on IL-1RA levels. Methods: Serum concentrations of IL-1RA were measured in 156 volunteers. Expression of IL1RN mRNA in VAT obtained from 36 individuals was determined. In addition, the concentrations of IL-1RA were measured before and after weight gain as well as weight loss following a dietetic program or Roux-en-Y gastric bypass (RYGB). Results: Serum levels of IL-1RA were significantly increased in individuals with obesity, being further increased in the OBIGT&T2D group (NW 440 +/- 316, OB-NG 899 +/- 562, OB-IGT&T2D 1265 +/- 739 pg/mL; P<0.001) and associated with markers of inflammation and fatty liver. IL1RN mRNA expression in VAT was significantly increased in the OB-IGT&T2D group and correlated in the global cohort with the mRNA expression of SPP1, CCL2, CD68, and MMP9. Levels of IL-1RA were not modified after modest changes in BF%, but RYGB-induced weight loss significantly decreased IL-1RA concentrations from 1233 +/- 1009 to 660 +/- 538 pg/ mL (P<0.001). Conclusion: Serum IL-1RA concentrations are increased in patients with obesity being further elevated in obesity-associated IGT and T2D in association with markers of adipose tissue dysfunction. The mRNA expression of IL1RN is markedly increased in VAT of subjects with obesity and T2D in relation with genes involved in macrophage recruitment, inflammation and matrix remodeling. Serum IL-1RA concentrations are reduced when a notable amount of BF% is loss. Measurement of IL-1RA is an excellent biomarker of adipose tissue dysfunction in obesity-associated metabolic alterations.
Autores:
Latorre, J.; Lluch, A.; Ortega, F. J.; et al.
Revista:
PHARMACOLOGICAL RESEARCH
ISSN:
1043-6618
Año:
2021
Vol.:
166
Págs.:
105486
Chronic systemic low-level inflammation in metabolic disease is known to affect adipose tissue biology. Lysozyme (LYZ) is a major innate immune protein but its role in adipose tissue has not been investigated. Here, we aimed to investigate LYZ in human and rodents fat depots, and its possible role in obesity-associated adipose tissue dysfunction. LYZ mRNA and protein were identified to be highly expressed in adipose tissue from subjects with obesity and linked to systemic chronic-low grade inflammation, adipose tissue inflammation and metabolic disturbances, including hyperglycemia, dyslipidemia and decreased markers of adipose tissue adipogenesis. These findings were confirmed in experimental models after a high-fat diet in mice and rats and also in ob/ob mice. Importantly, specific inguinal and perigonadal white adipose tissue lysozyme (Lyz2) gene knockdown in high-fat diet-fed mice resulted in improved adipose tissue inflammation in parallel to reduced lysozyme activity. Of note, Lyz2 gene knockdown restored adipogenesis and reduced weight gain in this model. In conclusion, altogether these observations point to lysozyme as a new actor in obesity-associated adipose tissue dysfunction. The therapeutic targeting of lysozyme production might contribute to improve adipose tissue metabolic homeostasis.
Revista:
LANCET
ISSN:
0140-6736
Año:
2021
Vol.:
397
N°:
10286
Págs.:
1687 - 1689
Revista:
NUTRIENTS
ISSN:
2072-6643
Año:
2021
Vol.:
13
N°:
7
Págs.:
2128
Energy restriction is a first therapy in the treatment of obesity, but the underlying biological mechanisms have not been completely clarified. We analyzed the effects of restriction of high-fat diet (HFD) on weight loss, circulating gut hormone levels and expression of hypothalamic neuropeptides. Ten-week-old male Wistar rats (n = 40) were randomly distributed into four groups: two fed ad libitum a normal diet (ND) (N group) or a HFD (H group) and two subjected to a 25% caloric restriction of ND (NR group) or HFD (HR group) for 9 weeks. A 25% restriction of HFD over 9 weeks leads to a 36% weight loss with regard to the group fed HFD ad libitum accompanied by normal values in adiposity index and food efficiency ratio (FER). This restriction also carried the normalization of NPY, AgRP and POMC hypothalamic mRNA expression, without changes in CART. Caloric restriction did not succeed in improving glucose homeostasis but reduced HFD-induced hyperinsulinemia. In conclusion, 25% restriction of HFD reduced adiposity and improved metabolism in experimental obesity, without changes in glycemia. Restriction of the HFD triggered the normalization of hypothalamic NPY, AgRP and POMC expression, as well as ghrelin and leptin levels.
Revista:
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
ISSN:
1422-0067
Año:
2021
Vol.:
22
N°:
16
Págs.:
8485
Objective: The protein microfibril-associated glycoprotein (MAGP)-1 constitutes a crucial extracellular matrix protein. We aimed to determine its impact on visceral adipose tissue (VAT) remodelling during obesity-associated colon cancer (CC). Methods: Samples obtained from 79 subjects (29 normoponderal (NP) (17 with CC) and 50 patients with obesity (OB) (19 with CC)) were used in the study. Circulating concentrations of MAGP-1 and its gene expression levels (MFAP2) in VAT were analysed. The impact of inflammation-related factors and adipocyte-conditioned media (ACM) on MFAP2 mRNA levels in colon adenocarcinoma HT-29 cells were further analysed. The effects of MAGP-1 in the expression of genes involved in the extracellular matrix (ECM) remodelling and tumorigenesis in HT-29 cells was also explored. Results: Obesity (p < 0.01) and CC (p < 0.001) significantly decreased MFAP2 gene expression levels in VAT whereas an opposite trend in TGFB1 mRNA levels was observed. Increased mRNA levels of MFAP2 after the stimulation of HT-29 cells with lipopolysaccharide (LPS) (p < 0.01) and interleukin (IL)-4 (p < 0.01) together with a downregulation (p < 0.05) after hypoxia mimicked by CoCl2 treatment was observed. MAGP-1 treatment significantly enhanced the mRNA levels of the ECM-remodelling genes collagen type 6 alpha 3 chain (COL6A3) (p < 0.05), decorin (DCN) (p < 0.01), osteopontin (SPP1) (p < 0.05) and TGFB1 (p < 0.05). Furthermore, MAGP-1 significantly reduced (p < 0.05) the gene expression levels of prostaglandin-endoperoxide synthase 2 (COX2/PTGS2), a key gene controlling cell proliferation, growth and adhesion in CC. Interestingly, a significant decrease (p < 0.01) in the mRNA levels of MFAP2 in HT-29 cells preincubated with ACM from volunteers with obesity compared with control media was observed. Conclusion: The decreased levels of MAGP-1 in patients with obesity and CC together with its capacity to modulate key genes involved in ECM remodelling and tumorigenesis suggest MAGP-1 as a link between AT excess and obesity-associated CC development.
Revista:
CELLULAR AND MOLECULAR IMMUNOLOGY
ISSN:
1672-7681
Año:
2021
Vol.:
18
N°:
10
Págs.:
2457 - 2459
Revista:
CELLULAR AND MOLECULAR IMMUNOLOGY
ISSN:
1672-7681
Año:
2021
Vol.:
18
N°:
4
Págs.:
1045 - 1057
The NLRP3-IL-1 beta pathway plays an important role in adipose tissue (AT)-induced inflammation and the development of obesity-associated comorbidities. We aimed to determine the impact of NLRP3 on obesity and its associated metabolic alterations as well as its role in adipocyte inflammation and extracellular matrix (ECM) remodeling. Samples obtained from 98 subjects were used in a case-control study. The expression of different components of the inflammasome as well as their main effectors and inflammation- and ECM remodeling-related genes were analyzed. The impact of blocking NLRP3 using siRNA in lipopolysaccharide (LPS)-mediated inflammation and ECM remodeling signaling pathways was evaluated. We demonstrated that obesity (P < 0.01), obesity-associated T2D (P < 0.01) and NAFLD (P < 0.05) increased the expression of different components of the inflammasome as well as the expression and release of IL-1 beta and IL-18 in AT. We also found that obese patients with T2D exhibited increased (P < 0.05) hepatic gene expression levels of NLRP3, IL1B and IL18. We showed that NLRP3, but not NLRP1, is regulated by inflammation and hypoxia in visceral adipocytes. We revealed that the inhibition of NLRP3 in human visceral adipocytes significantly blocked (P < 0.01) LPS-induced inflammation by downregulating the mRNA levels of CCL2, IL1B, IL6, IL8, S100A8, S100A9, TLR4 and TNF as well as inhibiting (P < 0.01) the secretion of IL1-beta into the culture medium. Furthermore, blocking NLRP3 attenuated (P < 0.01) the LPS-induced expression of important molecules involved in AT fibrosis (COL1A1, COL4A3, COL6A3 and MMP2). These novel findings provide evidence that blocking the expression of NLRP3 reduces AT inflammation with significant fibrosis attenuation.
Revista:
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
ISSN:
1422-0067
Año:
2021
Vol.:
22
N°:
23
Angiopoietin-like protein 8 (ANGPTL8) is an hepatokine altered in several metabolic conditions, such as obesity, type 2 diabetes, dyslipidemia and nonalcoholic fatty liver disease (NAFLD). We sought to explore whether ANGPTL8 is involved in NAFLD amelioration after bariatric surgery in experimental models and patients with severe obesity. Plasma ANGPTL8 was measured in 170 individuals before and 6 months after bariatric surgery. Hepatic ANGPTL8 expression was evaluated in liver biopsies of patients with severe obesity undergoing bariatric surgery with available liver pathology analysis (n = 75), as well as in male Wistar rats with diet-induced obesity subjected to sham operation, sleeve gastrectomy or Roux-en-Y gastric bypass (RYGB) (n = 65). The effect of ANGPTL8 on lipogenesis was assessed in human HepG2 hepatocytes under palmitate-induced lipotoxic conditions. Plasma concentrations and hepatic expression of ANGPTL8 were increased in patients with obesity-associated NAFLD in relation to the degree of hepatic steatosis. Sleeve gastrectomy and RYGB improved hepatosteatosis and reduced the hepatic ANGPTL8 expression in the preclinical model of NAFLD. Interestingly, ANGPTL8 inhibited steatosis and expression of lipogenic factors (PPARG2, SREBF1, MOGAT2 and DGAT1) in palmitate-treated human hepatocytes. Together, ANGPTL8 is involved in the resolution of NAFLD after bariatric surgery partially by the inhibition of lipogenesis in steatotic hepatocytes.
Revista:
EUROPEAN JOURNAL OF CLINICAL INVESTIGATION
ISSN:
0014-2972
Año:
2021
Vol.:
51
N°:
9
Págs.:
e13586
Revista:
JOURNAL OF INFLAMMATION RESEARCH
ISSN:
1178-7031
Año:
2021
Vol.:
14
Págs.:
6431 - 6446
Background: Inflammasomes maintain tissue homeostasis and their altered regulation in the colon, and the adipose tissue (AT) leads to chronic activation of inflammatory pathways promoting colon cancer (CC) development. We aimed to analyze the potential involvement of inflammasomes in obesity-associated CC. Methods: Ninety-nine volunteers [61 with obesity (OB) and 38 normoponderal (NP)] further subclassified according to the approved protocol for the diagnosis of CC (58 without CC and 41 with CC) were included in the case-control study. Results: CC (P<0.01) and obesity (P<0.01) were accompanied by increased mRNA levels of NLRP3, NLRP6, ASC, IL1B and NOD2 in VAT. Contrarily, patients with CC exhibited a downregulation of NLRP6 and IL18 in their colon. Additionally, we revealed that the decreased Nlrp1 (P<0.05), Nlrp3 (P<0.01) and Nlrp6 (P<0.01) mRNA levels in the colon from obese rats significantly increase (P<0.05) after caloric restriction. Adipocyteconditioned media obtained from subjects with obesity reduced (P<0.01) the mRNA of NLRP3 as well as molecules involved in maintaining the intestinal integrity (MUC2, CLDN1 and TJP1) and the anti-inflammatory factors FGF21, KLF4, and IL33 and in HT 29 cells. We also found that the knockdown of NLRP6 in HT-29 cells significantly upregulated (P<0.05) the mRNA of NLRP1 and NLRP3 and inhibited (P<0.05) the expression levels of MUC2. Finally, we showed that the incubation of HT-29 with Akkermansia muciniphila influence (P<0.05) the inflammasome expression profile as well as intestinal integrity-related genes and aberrant inflammation. Conclusions: These findings provide evidence that the downregulated levels of NLRP6 and IL18 in the colon from patients with CC may be responsible for a reduced intestinal-barrier integrity, triggering local inflammation, which in turn acts on the dysfunctional AT in obesity, increasing the expression of different inflammasome components and flaring up a vicious cycle of uncontrollable inflammatory cascades that favours a pro-tumorigenic microenvironment.
Revista:
CELLS
ISSN:
2073-4409
Año:
2020
Vol.:
9
N°:
6
Págs.:
1403
Aquaporin-11 (AQP11) is expressed in human adipocytes, but its functional role remains unknown. Since AQP11 is an endoplasmic reticulum (ER)-resident protein that transports water, glycerol, and hydrogen peroxide (H2O2), we hypothesized that this superaquaporin is involved in ER stress induced by lipotoxicity and inflammation in human obesity. AQP11 expression was assessed in 67 paired visceral and subcutaneous adipose tissue samples obtained from patients with morbid obesity and normal-weight individuals. We found that obesity and obesity-associated type 2 diabetes increased (p < 0.05) AQP11 mRNA and protein in visceral adipose tissue, but not subcutaneous fat. Accordingly, AQP11 mRNA was upregulated (p < 0.05) during adipocyte differentiation and lipolysis, two biological processes altered in the obese state. Subcellular fractionation and confocal microscopy studies confirmed its presence in the ER plasma membrane of visceral adipocytes. Proinflammatory factors TNF-¿, and particularly TGF-ß1, downregulated (p < 0.05) AQP11 mRNA and protein expression and reinforced its subcellular distribution surrounding lipid droplets. Importantly, the AQP11 gene knockdown increased (p < 0.05) basal and TGF-ß1-induced expression of the ER markers ATF4 and CHOP. Together, the downregulation of AQP11 aggravates TGF-ß1-induced ER stress in visceral adipocytes. Owing to its "peroxiporin" properties, AQP11 overexpression in visceral fat might constitute a compensatory mechanism to alleviate ER stress in obesity.
Revista:
JOURNAL OF CLINICAL MEDICINE
ISSN:
2077-0383
Año:
2020
Vol.:
9
N°:
4
Págs.:
1069
Compelling evidence suggests that dermatopontin (DPT) regulates collagen and fibronectin fibril formation, the induction of cell adhesion and the prompting of wound healing. We aimed to evaluate the role of DPT on obesity and its associated metabolic alterations as well as its impact in visceral adipose tissue (VAT) inflammation and extracellular matrix (ECM) remodelling. Samples obtained from 54 subjects were used in a case-control study. Circulating and VAT expression levels of DPT as well as key ECM remodelling- and inflammation-related genes were analysed. The effect of pro- and anti-inflammatory mediators on the transcript levels of DPT in visceral adipocytes was explored. The impact of DPT on ECM remodelling and inflammation pathways was also evaluated in cultured adipocytes. We show that obesity and obesity-associated type 2 diabetes (T2D) increased (p < 0.05) circulating levels of DPT. In this line, DPT mRNA in VAT was increased (p < 0.05) in obese patients with and without T2D. Gene expression levels of DPT were enhanced (p < 0.05) in human visceral adipocytes after the treatment with lipopolysaccharide, tumour growth factor (TGF)-beta and palmitic acid, whereas a downregulation (p < 0.05) was detected after the stimulation with interleukin (IL)-4 and IL-13, critical cytokines mediating anti-inflammatory pathways. Additionally, we revealed that DPT increased (p < 0.05) the expression of ECM- (COL6A3, ELN, MMP9, TNMD) and inflammation-related factors (IL6, IL8, TNF) in human visceral adipocytes. These findings provide, for the first time, evidence of a novel role of DPT in obesity and its associated comorbidities by influencing AT remodelling and inflammation.
Autores:
Frühbeck, Gema; Fernandez-Quintana, B. ; Paniagua, M.; et al.
Revista:
METABOLISM-CLINICAL AND EXPERIMENTAL
ISSN:
0026-0495
Año:
2020
Vol.:
108
Págs.:
154261
Background: Fibronectin type IIIdomain-containing protein 4 (FNDC4) constitutes a secreted factor showing a high homology in the fibronectin type III and transmembrane domains with the exercise-associated myokine irisin (FNDC5). We sought to evaluate whether FNDC4 mimics the anti-obesity effects of FNDC5/irisin in human adipose tissue.
Methods: Plasma and adipose tissue samples of 78 patients with morbid obesity undergoing bariatric surgery and 26 normal-weight individuals were used in the present study.
Results: Plasma FNDC4 was decreased in patients with morbid obesity, related to obesity-associated systemic inflammation and remained unchanged six months after bariatric surgery. Visceral adipose tissue from patients with morbid obesity showed higher expression of FNDC4 and its putative receptor GPR116 regardless of the degree of insulin resistance. FNDC4 content was regulated by lipogenic, lipolytic and proinflammatory stimuli in human visceral adipocytes. FNDC4 reduced intracytosolic lipid accumulation and stimulated a brown-like pattern in human adipocytes, as evidenced by an upregulated expression of UCP-1 and the brown/beige adipocyte markers PRDM16, TMEM26 and CD137. Moreover, FNDC4 treatment upregulated mitochondrial DNA content and factors involved in mitochondrial biogenesis (TFAM, NRF1 and NRF2). Human FNDC4-knockdown adipocytes exhibited an increase in lipogenesis and a reduction of brown/beige-specific fat markers as well as factors involved in mitochondrial biogenesis.
Conclusions: Taken together, the novel adipokine FNDC4 reduces lipogenesis and increases fat browning in human visceral adipocytes. The upregulation of FNDC4 in human visceral fat might constitute an attempt to attenuate the adipocyte hypertrophy, inflammation and impaired beige adipogenesis in the obese state.
Revista:
INTERNATIONAL JOURNAL OF OBESITY
ISSN:
0307-0565
Año:
2020
Vol.:
44
N°:
2
Págs.:
475 - 487
BACKGROUND/OBJECTIVES:
Bariatric surgery improves nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), but the underlying mechanisms remain elusive. We evaluated the potential role of ghrelin isoforms in the amelioration of hepatic inflammation after sleeve gastrectomy and Roux-en-Y gastric bypass (RYGB).
SUBJECTS/METHODS:
Plasma ghrelin isoforms were measured in male Wistar rats (n¿=¿129) subjected to surgical (sham operation, sleeve gastrectomy, or RYGB) or dietary interventions [fed ad libitum a normal (ND) or a high-fat diet (HFD) or pair-fed diet]. The effect of acylated and desacyl ghrelin on markers of inflammation, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress in primary rat hepatocytes under palmitate-induced lipotoxic conditions was assessed.
RESULTS:
Plasma desacyl ghrelin was decreased after sleeve gastrectomy and RYGB, whereas the acylated/desacyl ghrelin ratio was augmented. Both surgeries diminished obesity-associated hepatic steatosis, CD68+- and apoptotic cells, proinflammatory JNK activation, and Crp, Tnf, and Il6 transcripts. Moreover, a postsurgical amelioration in the mitochondrial DNA content, oxidative phosphorylation (OXPHOS) complexes I and II, and ER stress markers was observed. Specifically, following bariatric surgery GRP78, spliced XBP-1, ATF4, and CHOP levels were reduced, as were phosphorylated eIF2¿. Interestingly, acylated and desacyl ghrelin inhibited steatosis and inflammation of palmitate-treated hepatocytes in parallel to an upregulation of OXPHOS complexes II, III, and V, and a downregulation of ER stress transducers IRE1¿, PERK, ATF6, their downstream effectors, ATF4 and CHOP, as well as chaperone GRP78.
CONCLUSIONS:
Our data suggest that the increased relative acylated ghrelin levels after bariatric surgery might contribute to mitigate obesity-associated hepatic inflammation, mitochondrial dysfunction, and ER stress.
Revista:
NUTRIENTS
ISSN:
2072-6643
Año:
2019
Vol.:
11
N°:
2
Págs.:
E454
Obesity favors the development of cardiometabolic alterations such as type 2 diabetes (T2D) and the metabolic syndrome (MS). Obesity and the MS are distinguished by an increase in circulating leptin concentrations, in parallel to a drop in the levels of adiponectin. Consequently, the Adpn/Lep ratio has been suggested as a maker of dysfunctional adipose tissue. We aimed to investigate in humans (n = 292) the reliability of the Adpn/Lep ratio as a biomarker of adipose tissue dysfunction. We considered that an Adpn/Lep ratio of ¿1.0 can be considered normal, a ratio of ¿0.5 <1.0 suggests moderate-medium increased risk, and a ratio of <0.5 indicates a severe increase in cardiometabolic risk. Using these cut-offs, 5%, 54% and 48% of the lean, normoglycemic and without-MS subjects, respectively, fall within the group with an Adpn/Lep ratio below 0.5; while 89%, 86% and 90% of the obese, with T2D and with MS patients fall within the same group (p < 0.001). A significant negative correlation (r = -0.21, p = 0.005) between the Adpn/Lep ratio and serum amyloid A (SAA) concentrations, a marker of adipose tissue dysfunction, was found. We concluded that the Adpn/Lep ratio is a good indicator of a dysfunctional adipose tissue that may be a useful estimator of obesity- and MS-associated cardiometabolic risk, allowing the identification of a higher number of subjects at risk.
Revista:
JOURNAL OF CLINICAL MEDICINE
ISSN:
2077-0383
Año:
2019
Vol.:
8
N°:
4
Págs.:
479
Objective: Glucagon-like peptide (GLP)-1 has been proposed as a key candidate in glucose improvements after bariatric surgery. Our aim was to explore the role of GLP-1 in surgically-induced type 2 diabetes (T2D) improvement and its capacity to regulate human adipocyte inflammation. Methods: Basal circulating concentrations of GLP-1 as well as during an oral glucose tolerance test (OGTT) were measured in lean and obese volunteers with and without T2D (n = 93). In addition, GLP-1 levels were determined before and after weight loss achieved by Roux-en-Y gastric bypass (RYGB) (n = 77). The impact of GLP-1 on inflammation signalling pathways was also evaluated. Results: We show that the reduced (p < 0.05) circulating levels of GLP-1 in obese T2D patients increased (p < 0.05) after RYGB. The area under the curve was significantly lower in obese patients with (p < 0.01) and without (p < 0.05) T2D compared to lean volunteers while obese patients with T2D exhibited decreased GLP-1 levels at baseline (p < 0.05) and 120 min (p < 0.01) after the OGTT. Importantly, higher (p < 0.05) pre-operative GLP-1 concentrations were found in patients with T2D remission after RYGB. We also revealed that exendin-4, a GLP-1 agonist, downregulated the expression of inflammation-related genes (IL1B, IL6, IL8, TNF) and, conversely, upregulated the mRNA levels of ADIPOQ in human visceral adipocytes. Furthermore, exendin-4 blocked (p < 0.05) LPS-induced inflammation in human adipocytes via downregulating the expression and secretion of key inflammatory markers. Conclusions: Our data indicate that GLP-1 may contribute to glycemic control and exert a role in T2D remission after RYGB. GLP-1 is also involved in limiting inflammation in human visceral adipocytes.
Revista:
JOURNAL OF CLINICAL ENDOCRINOLOGY AND METABOLISM
ISSN:
0021-972X
Año:
2019
Vol.:
104
N°:
1
Págs.:
21 - 37
CONTEXT:
Human obesity is associated with increased circulating TNF-¿, a proinflammatory cytokine that induces hepatocyte cell death.
OBJECTIVE:
The potential beneficial effects of acylated and desacyl ghrelin in the progression of nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitis in obesity via the inhibition of TNF-¿-induced hepatocyte apoptosis, autophagic cell death, and pyroptosis were investigated.
DESIGN, SETTINGS, AND PARTICIPANTS:
Plasma ghrelin isoforms and TNF-¿ were measured in 158 participants, and hepatocyte cell death was evaluated in liver biopsies from 76 patients with morbid obesity undergoing bariatric surgery with available liver echography and pathology analysis. The effect of acylated and desacyl ghrelin on basal and TNF-¿-induced cell death was determined in vitro in human HepG2 hepatocytes.
RESULTS:
Circulating TNF-¿ and the acylated/desacyl ghrelin ratio were increased, whereas desacyl ghrelin levels were decreased in patients with obesity and NAFLD. Six months after bariatric surgery, decreased acylated/desacyl ghrelin levels, and improved hepatic function were found. Patients with obesity and type 2 diabetes showed increased hepatic ghrelin O-acyltransferase transcripts as well as an increased hepatic apoptosis, pyroptosis, and compromised autophagy. In HepG2 hepatocytes, acylated and desacyl ghrelin treatment reduced TNF-¿-induced apoptosis, evidenced by lower caspase-8 and caspase-3 cleavage, as well as TUNEL-positive cells and pyroptosis, revealed by decreased caspase-1 activation and lower high-mobility group box 1 expression. Moreover, acylated ghrelin suppressed TNF-¿-activated hepatocyte autophagy, as evidenced by a decreased LC3B-II/I ratio and increased p62 accumulation via AMPK/mTOR.
CONCLUSIONS:
Ghrelin constitutes a protective factor against hepatocyte cell death. The increased acylated/desacyl ghrelin ratio in patients with obesity and NAFLD might constitute a compensatory mechanism to overcome TNF-¿-induced hepatocyte apoptosis, autophagy, and pyroptosis.
Revista:
NUTRIENTS
ISSN:
2072-6643
Año:
2019
Vol.:
11
N°:
9
Págs.:
2069
Bariatric surgery remains the most effective option for achieving important and sustained weight loss. We explored the effects of Roux-en-Y gastric bypass (RYGB) on the circulating levels of adiponectin, leptin, and the adiponectin/leptin (Adpn/Lep) ratio in patients with obesity and type 2 diabetes (T2D). Twenty-five T2D volunteers undergoing RYGB were included in the study, and further subclassified as patients that responded or not to RYBG, regarding remission of T2D. Anthropometric and biochemical variables were evaluated before and after RYGB. Obese patients with T2D exhibited an increase (p < 0.0001) in the Adpn/Lep ratio after RYGB. Changes in the Adpn/Lep ratio correlated better with changes in anthropometric data (p < 0.001) than with the variations of adiponectin or leptin alone. Multiple regression analysis revealed that the change in the Adpn/Lep ratio in patients with T2D was an independent predictor of the changes in body mass index (p < 0.001) and body fat percentage (p = 0.022). However, the Adpn/Lep ratio did not differ between individuals with or without T2D remission after RYGB. In summary, the current study demonstrated that after weight and body fat loss following RYGB, the Adpn/Lep ratio increased in patients with obesity and T2D.
Revista:
GENES
ISSN:
2073-4425
Año:
2019
Vol.:
10
N°:
3
Págs.:
184
The role of extracellular matrix (ECM) remodeling in fibrosis progression in nonalcoholic fatty liver disease (NAFLD) is complex and dynamic, involving the synthesis and degradation of different ECM components, including tenascin C (TNC). The aim was to analyze the influence of inducible nitric oxide synthase (iNOS) deletion on inflammation and ECM remodeling in the liver of ob/ob mice, since a functional relationship between leptin and iNOS has been described. The expression of molecules involved in inflammation and ECM remodeling was analyzed in the liver of double knockout (DBKO) mice simultaneously lacking the ob and the iNOS genes. Moreover, the effect of leptin was studied in the livers of ob/ob mice and compared to wild-type rodents. Liver inflammation and fibrosis were increased in leptin-deficient mice. As expected, leptin treatment reverted the obesity phenotype. iNOS deletion in ob/ob mice improved insulin sensitivity, inflammation, and fibrogenesis, as evidenced by lower macrophage infiltration and collagen deposition as well as downregulation of the proinflammatory and profibrogenic genes including Tnc. Circulating TNC levels were also decreased. Furthermore, leptin upregulated TNC expression and release via NO-dependent mechanisms in AML12 hepatic cells. iNOS deficiency in ob/ob mice improved liver inflammation and ECM remodeling-related genes, decreasing fibrosis, and metabolic dysfunction. The activation of iNOS by leptin is necessary for the synthesis and secretion of TNC in hepatocytes, suggesting an important role of this alarmin in the development of NAFLD.
Revista:
MOLECULAR NUTRITION AND FOOD RESEARCH
ISSN:
1613-4125
Scope: To investigate intestinal markers of iron absorption in morbidly obese subjects according to glucose tolerance. Methods and results: Gene expression of both non-heme (SLC40A1 (ferroportin), SLC11A2) and heme iron (SLC46A1 (HCP1), HMOX1) transporters is analyzed in 38 small intestine tissue samples [11 with normal glucose tolerance, 14 with glucose intolerance (GI), and 13 with newly diagnosed type 2 diabetes (T2D)]. SLC40A1 (r = 0.43, p = 0.008) and SLC11A2 (r = 0.35, p = 0.03) mRNA levels are positively correlated with ferritin-to-hepcidin ratio and with fasting glucose, being significantly increased in patients with T2D. Only ferroportin is negatively associated with serum hepcidin (r = -0.617, p < 0.0001). In multivariate regression analysis, fasting glucose contributes independently to intestinal SLC40A1 (p = 0.009) and SLC11A2 (p = 0.04) variance after controlling for age, sex, and BMI. When circulating hepcidin is incorporated into the model, fasting glucose contributes significantly and independently to intestinal SLC40A1 (p = 0.02), but not to SLC11A2 (p = 0.07) variance. SLC46A1 and HMOX1 are similar in all groups. Conclusion: The expression of ferroportin and SLC11A2 is increased in the intestine of patients with T2D in association with iron stores and serum hepcidin levels. Increased intestinal iron absorption is a potential mechanism that could explain the increased body iron stores frequently observed in patients with T2D.
Revista:
METABOLISM-CLINICAL AND EXPERIMENTAL
ISSN:
0026-0495
Año:
2018
Vol.:
87
Págs.:
123 - 135
Objective: Kallistatin plays an important role in the inhibition of inflammation, oxidative stress, fibrosis and angiogenesis. We aimed to determine the impact of kallistatin on obesity and its associated metabolic alterations as well as its role in adipocyte inflammation and oxidative stress.
Methods: Samples obtained from 95 subjects were used in a case-control study. Circulating concentrations and expression levels of kallistatin as well as key inflammation, oxidative stress and extracellular matrix remodelling-related genes were analyzed. Circulating kallistatin concentrations were measured before and after weight loss achieved by Roux-en-Y gastric bypass (RYGB). The impact of kallistatin on lipopolysaccharide (LPS)- and tumour necrosis factor (TNF)-alpha-mediated inflammatory as well as oxidative stress signalling pathways was evaluated.
Results: We show that the reduced (P < 0.00001) circulating levels of kallistatin in obese patients increased (P < 0.00001) after RYGB. Moreover, gene expression levels of SERPINA4, the gene coding for kallistatin, were down regulated (P < 0.01) in the liver from obese subjects with non-alcoholic fatty liver disease. Additionally, we revealed that kallistatin reduced (P < 0.05) the expression of inflammation-related genes (CCL2, IL1B, IL6, IL8, TNFA, TGFB) and, conversely, upregulated (P < 0.05) mRNA levels of ADIPOQ and KLF4 in human adipocytes in culture. Kallistatin inhibited (P < 0.05) LPS- and INF-alpha-induced inflammation in human adipocytes via downregulating the expression and secretion of key inflammatory markers. Furthermore, kallistatin also blocked (P < 0.05) TNF-alpha-mediated lipid peroxidation as well as NOX2 and HIF1A expression while stimulating (P < 0.05) the. expression of SIRT1 and FOXO1.
Conclusions: These findings provide, for the first time, evidence of a novel role of kallistatin in obesity and its associated comorbidities by limiting adipose tissue inflammation and oxidative stress.
Revista:
INTERNATIONAL JOURNAL OF OBESITY
ISSN:
0307-0565
Año:
2018
Vol.:
42
N°:
8
Págs.:
1458 - 1470
Background/Objectives: Obesity is related to a dynamic extracellular matrix (ECM) remodeling, which involves the synthesis and degradation of different proteins, such as tenascin C (TNC) in the adipose tissue (AT). Given the functional relationship between leptin and inducible nitric oxide synthase (iNOS), our aim was to analyze the impact of the absence of the iNOS gene in AT inflammation and ECM remodeling in ob/ob mice. Subjects/Methods: The expression of genes involved in inflammation and ECM remodeling was evaluated in 10-week-old male double knockout (DBKO) mice simultaneously lacking the ob and iNOS genes as well as in ob/ob mice classified into three groups [control, leptin-treated (1 mg kg(-1) day(-1)) and pair-fed]. Results: Leptin deficiency increased inflammation and fibrosis in AT. As expected, leptin treatment improved the obesity phenotype. iNOS deficiency in ob/ob mice improved insulin sensitivity, AT inflammation, and ECM remodeling, as evidenced by lower AT macrophage infiltration and collagen deposition, a downregulation of proinflammatory and profibrogenic genes Tnf, Emr1, Hif1a, Col6a1, Col6a3, and Tnc, as well as lower circulating TNC levels. Interestingly, leptin upregulated TNC expression and release in 3T3-L1 adipocytes, and iNOS knockdown in 3T3-L1 fat cells produced a significant decrease in basal and leptin-induced Tnc expression. Conclusions: Ablation of iNOS in leptin-deficient mice improved AT inflammation and ECM remodeling-related genes, attenuating fibrosis, and metabolic dysfunction. The activation of iNOS by leptin is necessary for the synthesis and secretion of TNC in adipocytes, suggesting an important role of this alarmin in the development of AT inflammation and fibrosis.
Revista:
OBESITY SURGERY
ISSN:
0960-8923
Año:
2017
Vol.:
27
N°:
7
Págs.:
1763 - 1774
BACKGROUND:
Gastric plication is a minimally invasive bariatric surgical procedure, where the greater curvature is plicated inside the gastric lumen. Our aims were to analyze the effectiveness of gastric plication on the resolution of obesity, impaired glucose tolerance, and fatty liver in an experimental model of diet-induced obesity (DIO) and to evaluate changes in glycerol metabolism, a key substrate for adiposity and gluconeogenesis, in adipose tissue and the liver.
METHODS:
Male Wistar DIO rats (n = 58) were subjected to surgical (sham operation and gastric plication) or dietary interventions [fed a normal diet (ND) or high-fat diet (HFD) or pair-fed to the amount of food eaten by gastric-plicated animals]. The expression of aquaglyceroporins (AQPs) in epididymal (EWAT) and subcutaneous (SCWAT) fat and the liver was analyzed by real-time PCR and Western blot.
RESULTS:
Gastric plication did not result in a significant weight loss in DIO rats, showing a modest reduction in whole-body adiposity and hepatic steatosis. However, gastric-plicated animals exhibited an improvement in basal glycemia and glucose clearance, without changes in hepatic gluconeogenic genes. DIO was associated with an increase in glycerol, higher AQP3 and AQP7 in EWAT and SCWAT, and a decrease in hepatic AQP9. Gastric plication downregulated AQP3 in both fat depots without changes in adipose AQP7 and hepatic AQP9.
CONCLUSION:
Gastric plication results in a modest reduction in adiposity and hepatosteatosis but restores glycemia by downregulating AQP3, which entails lower efflux of glycerol from fat, lower plasma glycerol availability, and a reduced use of glycerol as a substrate for hepatic gluconeogenesis.
Revista:
DIABETOLOGIA
ISSN:
0012-186X
Año:
2017
Vol.:
60
N°:
5
Págs.:
915 - 926
Iron excess in adipose tissue is known to promote adipose tissue dysfunction. Here, we aimed to investigate the possible role of haem oxygenase 1 (HMOX1) in iron excess-induced adipose tissue dysfunction. Cross-sectionally, HMOX1 gene expression in subcutaneous and visceral adipose tissue was analysed in two independent cohorts (n = 234 and 40) in relation to obesity. We also evaluated the impact of weight loss (n = 21), weight gain (in rats, n = 20) on HMOX1 mRNA; HMOX1 mRNA levels during human adipocyte differentiation; the effects of inflammation and iron on adipocyte HMOX1; and the effects of HMOX1-induced activity on adipocyte mitochondrial respiratory function, glucose uptake and adipogenesis. Adipose tissue HMOX1 was increased in obese participants (p = 0.01) and positively associated with obesity-related metabolic disturbances, and markers of iron accumulation, inflammation and oxidative stress (p < 0.01). HMOX1 was negatively correlated with mRNAs related to mitochondrial biogenesis, the insulin signalling pathway and adipogenesis (p < 0.01). These associations were replicated in an independent cohort. Bariatric surgery-induced weight loss led to reduced HMOX1 (0.024 +/- 0.010 vs 0.010 +/- 0.004 RU, p < 0.0001), whereas in rats, high-fat diet-induced weight gain resulted in increased Hmox1 mRNA levels (0.22 +/- 0.15 vs 0.54 +/- 0.22 RU, p = 0.005). These changes were in parallel with changes in BMI and adipose tissue markers of iron excess, adipogenesis and inflammation. In human adipocytes, iron excess and inflammation led to increased HMOX1 mRNA levels. HMOX1 induction (by haem arginate [hemin] administration), resulted in a significant reduction of mitochondrial respiratory capacity (including basal respiration and spare respiratory capacity), glucose uptake and adipogenesis in parallel with increased expression of inflammatory- and iron excess-related genes. HMOX1 is an important marker of iron excess-induced adipose tissue dysfunction and metabolic disturbances in human obesity.
Revista:
OBESITY
ISSN:
1930-7381
Año:
2017
Vol.:
25
N°:
10
Págs.:
1723 - 1733
OBJECTIVE:
To investigate key enzymes of heme biosynthesis in human adipocytes and adipose tissue (AT).
METHODS:
Heme biosynthesis-related gene expression (ALAS1, ALAD, HMBS) was investigated in whole AT from humans (n¿=¿178 and n¿=¿75) and rats according to obesity status and during adipogenesis of human preadipocytes. The effects of aminotriazole (an ALAD inhibitor) and of ALAD knockdown were also studied.
RESULTS:
Consistent heme biosynthesis-related gene expression was detected in both subcutaneous AT (SAT) and visceral AT (VAT) and was significantly increased in SAT. ALAS1, ALAD, and HMBS mRNAs were positively associated with adipogenic gene expression in human AT and significantly decreased in subjects with obesity. These results were replicated in an independent cohort. Both SAT and VAT heme levels were positively correlated with ALAS1, ALAD, and HMBS mRNAs. ALAD and HMBS were mainly expressed in adipocytes and increased during differentiation of human adipocytes in parallel to adipogenic genes. In rats, high-fat diet-induced weight gain resulted in decreased Alad and Hmbs mRNAs in a similar way to what was observed with Adipoq. Aminotriazole administration or ALAD knockdown attenuated adipogenesis in parallel with decreased glucose uptake and impaired mitochondrial respiratory function during human adipocyte differentiation.
CONCLUSIONS:
Current data suggest a possible role of heme biosynthesis in human adipogenesis
Revista:
ONCOIMMUNOLOGY
ISSN:
2162-402X
Año:
2017
Vol.:
6
N°:
7
Págs.:
e1328338
Growing evidence indicates that adipose tissue inflammation is an important mechanism whereby obesity promotes cancer risk and progression. Since IL-32 is an important inflammatory and remodeling factor in obesity and is also related to colon cancer (CC) development, the aim of this study was to explore whether IL-32 could function as an inflammatory factor in human obesity-associated CC promoting a microenvironment favorable for tumor growth. Samples obtained from 84 subjects [27 lean (LN) and 57 obese (OB)] were used in the study. Enrolled subjects were further subclassified according to the established diagnostic protocol for CC (49 without CC and 35 with CC). We show, for the first time, that obesity (p = 0.009) and CC (p = 0.026) increase circulating concentrations of IL-32¿. Consistently, we further showed that gene (p < 0.05) and protein (p < 0.01) expression levels of IL-32¿ were upregulated in VAT from obese patients with CC. Additionally, we revealed that IL32 expression levels are enhanced by hypoxia and inflammation-related factors in HT-29 CC cells as well as that IL-32¿ is involved in the upregulation of inflammation (IL8, TNF, and CCL2) and extracellular matrix (ECM) remodeling (SPP1 and MMP9) genes in HT-29 cancer cells. Additionally, we also demonstrate that the adipocyte-conditioned medium obtained from obese patients stimulates (p < 0.05) the expression of IL32 in human CC cells. These findings provide evidence of the potential involvement of IL-32 in the development of obesity-associated CC as a pro-inflammatory and ECM remodeling cytokine.
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2017
Vol.:
7
N°:
1
Págs.:
5305
Iron status is known to be associated with the physiology of adipose tissue (AT). We aimed to investigate AT heme and expression of heme exporter (FLVCR1) in association with obesity and type 2 diabetes (T2D). Substantial amounts of FLVCR1 mRNA and protein levels were detected in AT, being significantly increased in subjects with T2D, and positively correlated with fasting glucose, fasting triglycerides and with circulating markers of iron stores (serum ferritin, blood hemoglobin and hematocrit). In both visceral (VAT) and subcutaneous AT (SAT), increased heme levels were found in subjects with T2D. Reinforcing these associations, FLVCR1 mRNA levels were positively linked to fasting glucose in an independent cohort. Longitudianlly, the percent change of FLVCR1 positively correlated with the percent change in fasting glucose (r = 0.52, p = 0.03) after bariatric surgery-induced weight loss. High-fat diet-induced weight gain in rats did not result in significant changes in AT Flvcr1 mRNA but, remarkably, the expression of this gene positively correlated with fasting glucose and negatively with insulin sensitivity (QUICKI). Altogether, these findings showed a direct association between FLVCR1 mRNA levels and hyperglycemia, suggesting that increased adipose tissue heme exportation might disrupt, or is the consequence of, impaired systemic glucose metabolism during the progression to T2D.
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2017
Vol.:
7
N°:
1
Págs.:
6619
The aim of the present work was to study whether the leptin-adiponectin axis may have a pathophysiological role in the increased systemic inflammation and oxidative stress observed in patients with the metabolic syndrome (MS). Leptin, adiponectin, and markers of inflammation and oxidative stress were measured in a sample of 140 Caucasian subjects (74 males/66 females), aged 28-82 years, 60 with and 80 without the MS. Total concentrations of adiponectin as well as its multimeric forms HMW, MMW and LMW were significantly lower in individuals with the MS. The ratio adiponectin/leptin, a marker of dysfunctional adipose tissue, was dramatically decreased in the MS group. Systemic oxidative stress, as evidenced by levels of thiobarbituric acid reactive substances (TBARS), as well as markers of inflammation such as serum amyloid A (SAA), C-reactive protein (CRP) and osteopontin were significantly increased in subjects with the MS. Total adiponectin concentrations were negatively correlated with levels of TBARS and CRP levels. Furthermore, the ratio adiponectin/leptin was negatively correlated with SAA concentrations as well as with CRP levels. We concluded that a dysfunctional adipose tissue as suggested by a low adiponectin/leptin ratio may contribute to the increased oxidative stress and inflammation, hallmarks of the MS.
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2017
Vol.:
7
N°:
1
Págs.:
2752
The circulating concentrations of adiponectin, an antidiabetic adipokine, have been shown to be reduced in obesity, in relation to an increase in inflammation. The aim of the present work was to assess the effect of leptin replacement on adiponectin levels and expression as well as on markers of oxidative stress and inflammation in leptin-deficient ob/ob mice. Twelve-week-old male mice (n=7-10 per group) were treated with either saline (wild type and ob/ob mice) or leptin (ob/ob mice) for 18 days. A third group of ob/ob mice was treated with saline and pair-fed to the amount of food consumed by the leptin-treated group. Leptin replacement restored values of adiponectin (P < 0.001), reduced circulating 8-isoprostane and serum amyloid A (SAA) levels (P < 0.05 for both), and significantly downregulated the increased gene expression of osteopontin (Spp1, P < 0.05), Saa3 (P < 0.05), Cd68 ( P < 0.01), Il6 (P < 0.01) and NADPH oxidase (Nox1 and Nox2, P < 0.01) in the perirenal WAT and Spp1 (P < 0.05) in the liver of ob/ ob mice. In cultured adipocytes from ob/ ob mice, leptin increased (P < 0.05) the mRNA expression and secretion of adiponectin. We concluded that circulating concentrations of adiponectin are positively regulated by leptin and ameliorate obesity-associated oxidative stress and inflammation in mice.
Revista:
CLINICAL AND EXPERIMENTAL PHARMACOLOGY & PHYSIOLOGY (ONLINE)
ISSN:
1440-1681
Año:
2017
Vol.:
44
N°:
3
Págs.:
386 - 394
We aimed to investigate the effects of two physical exercise models, voluntary physical activity (VPA) and endurance training (ET) as preventive and therapeutic strategies, respectively, on lipid accumulation regulators and mitochondrial content in VAT of rats fed a high-fat diet (HFD). Sprague-Dawley rats (6weeks old, n=60) were assigned into sedentary and VPA groups fed isoenergetic diets: standard (S, 35kcal% fat) or HFD (71kcal% fat). The VPA groups had free access to wheel running during the entire protocol. After 9weeks, half of the sedentary animals were exercised on a treadmill while maintaining the dietary treatments. The HFD induced no changes in plasma non-esterified fatty acids (NEFA) and glycerol levels and decreased oxidative phosphorylation (OXPHOS) subunit IV and increased truncated/full-length sterol regulatory element-binding transcription factor 1c (SREBP1c) ratio in epididymal white adipose tissue (eWAT). VPA decreased plasma glycerol levels, aquaglyceroporin 7 (AQP7) and increased subunit I of cytochrome c oxidase (COX) protein, in standard diet fed animals. Eight weeks of ET decreased body weight, visceral adiposity and adipocyte size and plasma NEFA and glycerol levels, as well as AQP7 protein expression in eWAT. ET increased fatty acid translocase (FAT/CD36), mitochondrial content of complexes IV and V subunits, mitochondrial biogenesis and dynamic (mitofusins and optic atrophy 1)-related proteins. Moreover, lipogenesis-related markers (SREBP1c and acetyl CoA carboxylase) were reduced after 8weeks of ET. In conclusion, ET-induced alterations reflect a positive effect on mitochondrial function and the overall VAT metabolism of HFD-induced obese rats.
Revista:
INTERNATIONAL JOURNAL OF OBESITY
ISSN:
0307-0565
Año:
2017
Vol.:
41
N°:
9
Págs.:
1394 - 1402
BACKGROUND/OBJECTIVES: Glycerol is a key metabolite for lipid accumulation in insulin-sensitive tissues as well as for pancreatic insulin secretion. We examined the role of aquaporin-7 (AQP7), the main glycerol channel in beta-cells, and AQP12, an aquaporin related to pancreatic damage, in the improvement of pancreatic function and steatosis after sleeve gastrectomy in diet-induced obese rats. SUBJECTS/METHODS: Male Wistar obese rats (n = 125) were subjected to surgical (sham operation and sleeve gastrectomy) or dietary (pair-fed to the amount of food eaten by sleeve-gastrectomized animals) interventions. The tissue distribution and expression of AQPs in the rat pancreas were analyzed by real-time PCR, western blotting and immunohistochemistry. The effect of ghrelin isoforms and glucagon-like peptide 1 (GLP-1) on insulin secretion, triacylglycerol (TG) accumulation and AQP expression was determined in vitro in RIN-m5F beta-cells. RESULTS: Sleeve gastrectomy reduced pancreatic beta-cell apoptosis, steatosis and insulin secretion. Lower ghrelin and higher GLP-1 concentrations were also found after bariatric surgery. Acylated and desacyl ghrelin increased TG content, whereas GLP-1 increased insulin release in RIN-m5F beta-cells. Sleeve gastrectomy was associated with an upregulation of AQP7 together with a normalization of the increased AQP12 levels in the rat pancreas. Interestingly, ghrelin and GLP-1 repressed AQP7 and AQP12 expression in RINm5F beta-cells. AQP7 protein was negatively correlated with intracellular lipid accumulation in acylated ghrelin-treated cells and with insulin release in GLP-1-stimulated beta-cells. CONCLUSIONS: AQP7 upregulation in beta-cells after sleeve gastrectomy contributes, in part, to the improvement of pancreatic steatosis and insulin secretion by increasing intracellular glycerol used for insulin release triggered by GLP-1 rather than for ghrelin-induced TG biosynthesis.
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2016
Vol.:
6
Págs.:
39942
Bariatric surgery improves non-alcoholic fatty liver disease (NAFLD). Our aim was to investigate the potential role of ghrelin isoforms in the resolution of hepatic steatosis after sleeve gastrectomy, a restrictive bariatric surgery procedure, in diet-induced obese rats. Male Wistar rats (n = 161) were subjected to surgical (sham operation and sleeve gastrectomy) or dietary interventions [fed ad libitum a normal (ND) or a high-fat (HFD) diet or pair-fed]. Obese rats developed hepatosteatosis and showed decreased circulating desacyl ghrelin without changes in acylated ghrelin. Sleeve gastrectomy induced a dramatic decrease of desacyl ghrelin, but increased the acylated/desacyl ghrelin ratio. Moreover, sleeve gastrectomy reduced hepatic triglyceride content and lipogenic enzymes Mogat2 and Dgat1, increased mitochondrial DNA amount and induced AMPK-activated mitochondrial FFA beta-oxidation and autophagy to a higher extent than caloric restriction. In primary rat hepatocytes, the incubation with both acylated and desacyl ghrelin (10, 100 and 1,000 pmol/L) significantly increased TG content, triggered AMPK-activated mitochondrial FFA beta-oxidation and autophagy. Our data suggest that the decrease in the most abundant isoform, desacyl ghrelin, after sleeve gastrectomy contributes to the reduction of lipogenesis, whereas the increased relative acylated ghrelin levels activate factors involved in mitochondrial FFA beta-oxidation and autophagy in obese rats, thereby ameliorating NAFLD.
Revista:
INTERNATIONAL JOURNAL OF OBESITY
ISSN:
0307-0565
Año:
2016
Vol.:
40
N°:
9
Págs.:
1405 - 1415
Background/Objectives:Uroguanylin and guanylin are secreted by intestinal epithelial cells as prohormones postprandially and act on the hypothalamus to induce satiety. The impact of obesity and obesity-associated type 2 diabetes (T2D) on proguanylin and prouroguanylin expression/secretion as well as the potential role of guanylin and uroguanylin in the control of lipolysis in humans was evaluated.Subjects/Methods:Circulating and gastrointestinal expression of proguanylin (GUCA2A) and prouroguanylin (GUCA2B) were measured in 134 subjects. In addition, plasma proguanylin and prouroguanylin were measured before and after weight loss achieved either by Roux-en-Y gastric bypass (RYGB) (n=24) or after a conventional diet (n=15). The effect of guanylin and uroguanylin (1¿100¿nmol¿l-1) on lipolysis was determined in vitro in omental adipocytes.Results:Circulating concentrations of prouroguanylin, but not proguanylin, were decreased in obesity in relation to adiposity. Weight loss achieved by RYGB increased plasma proguanylin and prouroguanylin. Obese T2D individuals showed higher expression of intestinal GUCA2A as well as of the receptors of the guanylin system, GUCY2C and GUCY2D, in omental adipocytes. The incubation with guanylin and uroguanylin significantly stimulated lipolysis in differentiated omental adipocytes, as evidenced by hormone-sensitive lipase phosphorylation at Ser563, an increase in fatty acids and glycerol release together with an upregulation of several lipolysis-related genes, including AQP3, AQP7, FATP1 or CD36.Conclusions:Both guanylin and uroguanylin trigger lipolysis in human visceral adipocytes. Given the lipolytic action of the guanylin system on visceral adipocytes, the herein reported decrease of circulating prouroguanylin concentrations in obese patients may have a role in excessive fat accumulation in obesity
Revista:
OBESITY SURGERY
ISSN:
0960-8923
Año:
2016
Vol.:
26
N°:
7
Págs.:
1549-58
Background
Aging and obesity are two conditions associated with increased risk of cardiovascular disease. Our aim was to analyze whether an advanced age affects the beneficial effects of sleeve gastrectomy on weight loss and blood pressure in an experimental model of diet-induced obesity (DIO).
Methods
Young (6-month-old) and old (18-month-old) male Wistar DIO rats (n¿=¿101) were subjected to surgical (sham operation and sleeve gastrectomy) or dietary interventions (pair-fed to the amount of food eaten by sleeve gastrectomized animals). Systolic (SBP), diastolic (DBP), and mean (MBP) blood pressure values and heart rate (HR) were recorded in conscious, resting animals by non-invasive tail-cuff plethysmography before and 4 weeks after surgical or dietary interventions.
Results
Aging was associated with higher (P¿<¿0.05) body weight and subcutaneous and perirenal fat mass as well as mild cardiac hypertrophy. Sleeve gastrectomy induced a reduction in body weight, whole-body adiposity, and serum total ghrelin in both young and old DIO rats. The younger group achieved a higher excess weight loss than the older group (164¿±¿60 vs. 82¿±¿17 %, P¿<¿0.05). A significant (P¿<¿0.05) decrease in insulin resistance, SBP, DBP, MBP, and HR without changes in heart weight was observed after sleeve gastrectomy independently of age.
Conclusion
Our results provide evidence for the effectiveness of sleeve gastrectomy without increased operative risk in body weight and blood pressure reduction
Revista:
OBESITY SURGERY
ISSN:
0960-8923
Año:
2016
Vol.:
26
N°:
7
Págs.:
1537-48
Background: Susceptibility to obesity is associated with a notable inter-individual variation. The aim of the present study was to compare the effectiveness of sleeve gastrectomy (SG) on weight loss and metabolic profile in obesity-prone (OP) rats vs animals that are non-susceptible to obesity (NSO). Methods: Young male Wistar rats (n = 101) were put in a diet-induced obesity (DIO) programme with ad libitum access to a high-fed diet (HFD) during 12 months. Body weight and food intake were regularly registered. Thereafter, rats were ranked by final body weight to identify the obesity-prone (OP) (n = 13) and non-susceptible to obesity (NSO) (n = 14) animals. OP and NSO rats were submitted to surgical interventions (sham operation, SG and pair-fed to the amount of food eaten by sleeve-gastrectomized rats). Body weight, food intake, energy expenditure, body temperature, fat pads weight, and metabolic profiling were analysed 4 weeks after surgical or dietary interventions. Results: SG in both OP and NSO rats decreased body weight as compared to sham and pair-fed groups (P < 0.05), mainly due to reductions in subcutaneous and perirenal fat mass (P < 0.001). Total weight loss achieved in sleeve-gastrectomized OP and NSO rats was higher than that of pair-fed ones (P < 0.05), showing that the SG effect goes beyond caloric restriction. In this regard, sleeve-gastrectomized rats exhibited significantly (P < 0.05) increased basal rectal temperature together with upregulated brown adipose tissue Ucp-1 protein expression levels. A significant (P < 0.05) improvement in insulin sensitivity was also observed in both OP and NSO animals that underwent SG as compared with pair-fed counterparts. Conclusion: Our findings provide the first evidence that obesity-prone rats also benefit from surgery responding effectively to SG, as evidenced by the significant body weight reduction and the metabolic profile improvement.
Revista:
INTERNATIONAL JOURNAL OF OBESITY
ISSN:
0307-0565
Año:
2015
Vol.:
39
N°:
3
Págs.:
397-407
Taken together, our results provide evidence for a regulatory role of leptin on FNDC5/irisin, favoring muscle accretion but reducing fat browning
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2015
Vol.:
5
Págs.:
12067
Glycerol is an important metabolite for the control of lipid accumulation in white adipose tissue (WAT) and liver. We aimed to investigate whether exogenous administration of leptin improves features of non-alcoholic fatty liver disease (NAFLD) in leptin-deficient ob/ob mice via the regulation of AQP3 and AQP7 (glycerol channels mediating glycerol efflux in adipocytes) and AQP9 (aquaglyceroporin facilitating glycerol influx in hepatocytes). Twelve-week-old male wild type and ob/ob mice were divided in three groups as follows: control, leptin-treated (1 mg/kg/d) and pair-fed. Leptin deficiency was associated with obesity and NAFLD exhibiting an AQP3 and AQP7 increase in WAT, without changes in hepatic AQP9. Adipose Aqp3 and hepatic Aqp9 transcripts positively correlated with markers of adiposity and hepatic steatosis. Chronic leptin administration (4-weeks) was associated with improved body weight, whole-body adiposity, and hepatosteatosis of ob/ob mice and to a down-regulation of AQP3, AQP7 in WAT and an up-regulation of hepatic AQP9. Acute leptin stimulation in vitro (4-h) induced the mobilization of aquaglyceroporins towards lipid droplets (AQP3) and the plasma membrane (AQP7) in murine adipocytes. Our results show that leptin restores the coordinated regulation of fat-specific AQP7 and liver-specific AQP9, a step which might prevent lipid overaccumulation in WAT and liver in obesity
Revista:
OBESITY SURGERY
ISSN:
0960-8923
Año:
2015
Vol.:
25
N°:
9
Págs.:
1723 - 1734
BACKGROUND:
Glycerol constitutes an important metabolite for the control of lipid accumulation and glucose homeostasis. Our aim was to investigate the potential role of aquaglyceroporins, which are glycerol channels mediating glycerol efflux in adipocytes (AQP3 and AQP7) and glycerol influx (AQP9) in hepatocytes, in the improvement of adiposity and hepatic steatosis after sleeve gastrectomy in an experimental model of diet-induced obesity (DIO).
METHODS:
Male Wistar DIO rats (n = 161) were subjected to surgical (sham operation and sleeve gastrectomy) or dietary interventions [fed ad libitum a normal diet (ND) or a high-fat diet (HFD) or pair-fed to the amount of food eaten by sleeve-gastrectomized animals]. The tissue distribution and expression of AQPs in biopsies of epididymal (EWAT) and subcutaneous (SCWAT) white adipose tissue and liver were analyzed by real-time PCR, Western blot, and immunohistochemistry.
RESULTS:
Four weeks after surgery, DIO rats undergoing sleeve gastrectomy showed a reduction in body weight, whole-body adiposity, and hepatic steatosis. DIO was associated with a tendency towards an increase in EWAT AQP3 and SCWAT AQP7 and a decrease in hepatic AQP9. Sleeve gastrectomy downregulated AQP7 in both fat depots and upregulated AQP3 in EWAT, without changing hepatic AQP9. Aqp7 transcript levels in EWAT and SCWAT were positively associated with adiposity and glycemia, while Aqp9 mRNA was negatively correlated with markers of hepatic steatosis and insulin resistance.
CONCLUSION:
Our results show, for the first time, that sleeve gastrectomy, a widely applied bariatric surgery procedure, restores the coordinated regulation of fat-specific AQP7 and liver-specific AQP9, thereby improving whole-body adiposity and hepatic steatosis.
Revista:
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES
ISSN:
0930-2794
Año:
2014
Vol.:
28
N°:
2
Págs.:
2412 - 2420
Background
Bariatric surgery (BS) has proven to be an effective treatment for morbid obesity. Osteopontin (OPN) is a proinflammatory cytokine involved in the development of obesity. The aim of our study was to determine the effect of weight loss following BS on circulating levels of OPN in humans.
Methods
Body composition and circulating concentrations of OPN and markers of bone metabolism were determined in obese patients who underwent Roux-en-Y gastric bypass (RYGB; n = 40) or sleeve gastrectomy (SG; n = 11).
Results
Patients who underwent RYGB or SG showed decreased body weight (P < 0.001) and body fat percentage (P < 0.001) as well as lower insulin resistance. However, plasma OPN levels were significantly increased after RYGB (P < 0.001) but remained unchanged following SG (P = 0.152). Patients who underwent RYGB also showed significantly increased C-terminal telopeptide of type-I collagen (ICTP) (P < 0.01) and osteocalcin (P < 0.001) while bone mineral density tended to decrease (P = 0.086). Moreover, OPN concentrations were positively correlated with the bone resorption marker ICTP after surgery. On the other hand, patients who underwent SG showed significantly increased ICTP levels (P < 0.05), and the change in OPN was positively correlated with the change in ICTP and negatively with the change in vitamin D after surgery (P < 0.05).
Conclusions
RYGB increased circulating OPN levels, while they remained unaltered after SG. The increase in OPN levels after RYGB could be related to the increased bone resorption in relation to its well-known effects on bone of this malabsorptive procedure in comparison to the merely restrictive SG.
Revista:
OBESITY SURGERY
ISSN:
0960-8923
Año:
2014
Vol.:
24
Págs.:
1702-1708
Circulating OPN levels decreased with HFD feeding remaining unaltered after SG. The expression of Spp1 in EWAT and liver was not modified by SG. The global improvement of metabolism after SG appears not to involve changes in serum OPN concentrations as well as in EWAT and liver expression in rats.
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2014
Vol.:
9
N°:
5
Págs.:
e98398
Osteopontin (OPN) is a multifunctional extracellular matrix (ECM) protein involved in multiple physiological processes. OPN expression is dramatically increased in visceral adipose tissue in obesity and the lack of OPN protects against the development of insulin resistance and inflammation in mice. We sought to unravel the potential mechanisms involved in the beneficial effects of the absence of OPN. We analyzed the effect of the lack of OPN in the development of obesity and hepatic steatosis induced by a high-fat diet (HFD) using OPN-KO mice. OPN expression was upregulated in epididymal white adipose tissue (EWAT) and liver in wild type (WT) mice with HFD. OPN-KO mice had higher insulin sensitivity, lower body weight and fat mass with reduced adipose tissue ECM remodeling and reduced adipocyte size than WT mice under a HFD. Reduced MMP2 and MMP9 activity was involved in the decreased ECM remodeling. Crown-like structure number in EWAT as well as F4/80-positive cells and Emr1 expression in EWAT and liver increased with HFD, while OPN-deficiency blunted the increase. Moreover, our data show for the first time that OPN-KO under a HFD mice display reduced fibrosis in adipose tissue and liver, as well as reduced oxidative stress in adipose tissue. Gene expression of collagens Col1a1, Col6a1 and Col6a3 in EWAT and liver, as well as the profibrotic cytokine Tgfb1 in EWAT were increased with HFD, while OPN-deficiency prevented this increase. OPN deficiency prevented hepatic steatosis via reduction in the expression of molecules involved in the onset of fat accumulation such as Pparg, Srebf1, Fasn, Mogat1, Dgat2 and Cidec. Furthermore, OPN-KO mice exhibited higher body temperature and improved BAT function. The present data reveal novel mechanisms of OPN in the development of obesity, pointing out the inhibition of OPN as a promising target for the treatment of obesity and fatty liver.
Revista:
OBESITY SURGERY
ISSN:
0960-8923
Año:
2012
Vol.:
22
N°:
11
Págs.:
1786 - 1787
Revista:
OBESITY SURGERY
ISSN:
0960-8923
Año:
2012
Vol.:
22
N°:
4
Págs.:
634 - 640
Background: Sleeve gastrectomy (SG) has been used as a multipurpose surgical procedure for the treatment of morbid obesity. The aim of the study was to analyze gastric morphology and histology at two different time points after SG in rats. Methods: Thirty-five male Wistar rats were fed ad libitum during 3 months on a high-fat diet to induce obesity. Subsequently, 25 diet-induced obese rats underwent either SG (n=12) or a sham operation (n=13). The remaining ten obese animals encompassed the nonoperated control group (Co). Four weeks postoperatively, 15 rats (n05 rats/experimental group) were sacrificed, while the remaining 20 rats were sacrificed after 16 weeks (animals/group; Co=5, sham=8, SG=7) to compare the gastric morphological and histopathological changes over time. Body weight and food intake were regularly recorded. Results: For both time periods, the Co groups exhibited the highest body weight, while the rats undergoing the SG showed the lowest weight gain (P<0.05). Initially, significant differences (P<0.005) in food intake relative to body weight were observed between the Co rats and animals undergoing surgery, which disappeared thereafter. The actual total stomach sizeafter both experimental periods in the SG group was similar to that of non- and sham-operated rats mainly due to a forestomach enlargement, which was more pronounced after 16 weeks. Traits of gastritis cystica profunda characterized by gastric foveolae elongation with hyperplasia and cystic dilatation of the glandswere observed in the residual stomachs of the sleeve-gastrectomized rats. These findings were mostly observed after 16 weeks of performing the SG, although they were also detected occasionally following 4 weeks postoperatively. No intestinal metaplasia was observed. Conclusion: After SG gastric macro- and microscopic changes with functional implications in both the short and long term take place.
Revista:
OBESITY SURGERY
ISSN:
0960-8923
Año:
2012
Vol.:
22
N°:
9
Págs.:
1481 - 1490
Sleeve gastrectomy constitutes an effective surgical procedure for the treatment of morbid obesity. The aim of the present study was to establish the effects of sleeve gastrectomy and caloric restriction on weight loss and cardiovascular parameters in diet-induced obese (DIO) rats.
Male Wistar DIO rats were subjected to surgical interventions (n = 30) (sham operation, sleeve gastrectomy, or pair-fed to the amount of food eaten by sleeve-gastrectomized animals and compared to lean control rats) or dietary interventions (n = 40) (fed ad libitum a normal diet (ND) or a high-fat diet or an ND with a caloric restriction of 25 %). Systolic blood pressure (SBP), diastolic blood pressure, and mean blood pressure values and heart rate (HR) were recorded in conscious, resting animals by noninvasive tail-cuff plethysmography before and 3 weeks after surgical or dietary interventions.
Both sleeve gastrectomy and caloric restriction induced a reduction in body weight, whole-body adiposity, and serum leptin together with an increased excess weight loss in DIO rats. Sleeve gastrectomy was further associated with an improvement in insulin resistance and the lipid profile, as well as with a reduction in serum ghrelin levels. A decrease in HR and heart weight was observed in caloric-restricted groups. Sleeve-gastrectomized rats not only exhibited a reduction in HR (a dagger HR = -45 +/- 19 bpm) but also in SBP values (a dagger SBP = -22 +/- 10 mmHg) compared to the DIO rats (a dagger SBP = 14 +/- 8 mmHg).
Our findings provide evidence that the beneficial effects of sleeve gastrectomy on blood pressure values are beyond weight loss in rats with diet-induced obesity.
Revista:
OBESITY SURGERY
ISSN:
0960-8923
Año:
2012
Vol.:
22
N°:
2
Págs.:
309-315
Sleeve gastrectomy constitutes an effective surgical procedure for the treatment of morbid obesity in humans and rodents with diet-induced obesity. The aim of the present study was to establish the effects of sleeve gastrectomy on weight loss and cardiovascular parameters in genetically obese (fa/fa) Zucker rats.
Eleven-week-old male obese (fa/fa) (n = 20) Zucker rats were assigned to three alternative procedures (sham operation, sleeve gastrectomy, or pair-fed to the amount of food eaten by sleeve-gastrectomized animals) and compared with lean Zucker (Fa/Fa) rats (n = 9). Systolic (SBP), diastolic (DBP), and mean (MBP) blood pressure values as well as heart rate (HR) were recorded in conscious, resting animals by non-invasive tail-cuff plethysmography before and 3 weeks after the surgical interventions.
Sleeve-gastrectomized rats experienced a reduction in body weight (P < 0.01), total adiposity amounts (P < 0.001), together with an increased excess weight loss (%EWL) (P < 0.05) compared with sham-operated and pair-fed animals 3 weeks after the surgical interventions. Rats with sleeve gastrectomy exhibited reduced (P < 0.01) blood pressure values (Delta SBP = -11 +/- 8 mmHg; Delta DBP = -6 +/- 4 mmHg; Delta MBP = -8 +/- 6 mmHg) compared with the control group, but no changes were observed in HR (P = 0.560). Sham-operated and pair-fed groups did not alter their cardiovascular variables.
Our findings provide evidence of the beneficial effects of sleeve gastrectomy on blood pressure values in addition to the weight loss in obese (fa/fa) Zucker rats independently of surgical trauma and food intake reduction.
Revista:
PHYSIOLOGICAL GENOMICS (ONLINE)
ISSN:
1531-2267
Año:
2012
Vol.:
44
N°:
13
Págs.:
678-688
Leptin and nitric oxide (NO) are implicated in the control of energy homeostasis. The aim of the present study was to examine the impact of the absence of the inducible NO synthase (iNOS) gene on the regulation of energy balance in ob/ob mice analyzing the changes in gene expression levels in brown adipose tissue (BAT). Double knockout (DBKO) mice simultaneously lacking the ob and iNOS genes were generated and the expression of genes involved in energy balance including fatty acid and glucose metabolism as well as mitochondrial genes were analyzed by microarrays. DBKO mice exhibited an improvement in energy balance with a decrease in body weight
(P < 0.001), total fat pads (P < 0.05) and food intake (P < 0.05) as well as an enhancement in BAT function as compared to ob/ob mice. To better understand the molecular events associated with this improvement, BAT gene expression was analyzed. Of particular interest, gene expression levels of the key subunit of the Mediator complex Med1 was upregulated (P < 0.05) in DBKO mice. Real-Time PCR and immunohistochemistry further confirmed this data. Med1 is implicated in adipogenesis, lipid metabolic and biosynthetic processes, glucose metabolism and mitochondrial metabolic pathways. Med1 plays an important role in the transcriptional control of genes implicated in energy homeostasis, suggesting that the improvement in energy balance and BAT function of the DBKO mice is mediated, at least in part, through the transcription coactivator Med1.
Revista:
OBESITY SURGERY
ISSN:
0960-8923
Año:
2011
Vol.:
21
N°:
9
Págs.:
1438 - 1443
Background: Sleeve gastrectomy (SG) has been used for the surgical treatment of morbid obesity as a first or definitive procedure with satisfactory results. The objective of this study in rats was to establish the effects of SG on weight loss depending on the post-surgical type of diet followed. Methods: Thirty male Wistar rats were fed ad libitum during 3 months on a high-fat diet (HFD) to induce obesity. After this first phase, rats were subdivided in three groups of ten rats each and underwent a sham intervention, an SG, or no surgery but were pair-fed to the amount of food eaten by the animals of the SG group. At this time point, half of the animals in each group continued to be fed on the HFD, while the other half was switched to a normal chow diet (ND). Thus, the following subgroups were established: sham-ND, sleeve-ND, pair-fed-ND as well as sham-HFD, sleeve-HFD, and pair-fed-HFD. Body weight and food intake were recorded daily for 4 weeks. The feed efficiency rate (FER) was determined from weekly weight gains and caloric consumption during this period. Results: Statistically significant (P¿<¿0.05) differences in body weight were observed between the six experimental groups after 4 weeks of the interventions with rats in the sleeve-ND group experimenting the highest weight loss (-78.2¿±¿10.3 g) and animals in the pair-fed-HFD group exhibiting the lowest weight reduction (-4.0¿±¿0.1 g). Interestingly, the FER value of rats that underwent the SG and continued to be fed on a HFD was significantly (P¿<¿0.05) lower than that of sham operated and pair-fed animals on the same diet. Conclusion: The positive effects of SG on weight reduction are observed in obese rats submitted to the intervention and subsequently following an ND or even an HFD.
Revista:
Journal of hypertension
ISSN:
0263-6352
Año:
2010
Vol.:
28
N°:
3
Págs.:
560 - 567
Objective The gut-derived hormone, ghrelin, improves cardiac function in healthy individuals and patients with chronic heart failure. The aim of this study was to investigate whether the major isoforms of the hormone, acylated and desacyl ghrelin, are related to inappropriate left ventricular mass in patients with the metabolic syndrome (MetS).
Methods and results Plasma concentrations of ghrelin forms were measured in 180 white participants (65 normal weight, 60 obese without MetS and 55 obese with MetS; 56% men). MetS was defined according to Adult Treatment Panel III criteria. The presence of left ventricular hypertrophy (LVH) was diagnosed by sex-specific left ventricular mass/height(2.7) cut-off values (> 49.2 g/m(2.7) for men and > 46.7 g/m(2.7) for women). Circulating concentrations of acylated ghrelin were increased in obesity and MetS, whereas desacyl ghrelin levels were decreased. Compared with participants in the lowest tertiles, the age-adjusted and sex-adjusted odds of having MetS were lower in the highest category of desacyl ghrelin (odds ratio 0.1, 95% confidence interval 0.1-0.4, P < 0.001). The prevalence of LVH was increased in the highest tertile of acylated ghrelin (odds ratio 3.4, 95% confidence interval 1.7-5.6, P < 0.05). Plasma acylated ghrelin was increased (P < 0.05) in patients with MetS exhibiting LVH compared with those with appropriate left ventricular mass, whereas plasma desacyl ghrelin was not changed (P = 0.490).
Conclusion Acylated ghrelin was positively associated with SBP and left ventricular mass indices, even after correction for BMI. These results suggest that the increased acylated ghrelin concentrations may represent a compensatory mechanism to overcome the development of hypertension and LVH in patients with MetS.
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2010
Vol.:
5
N°:
6
Págs.:
e10962
BACKGROUND:
Leptin and nitric oxide (NO) on their own participate in the control of non-shivering thermogenesis. However, the functional interplay between both factors in this process has not been explored so far. Therefore, the aim of the present study was to analyze the impact of the absence of the inducible NO synthase (iNOS) gene in the regulation of energy balance in ob/ob mice.
METHODS AND FINDINGS:
Double knockout (DBKO) mice simultaneously lacking the ob and iNOS genes were generated, and the expression of molecules involved in the control of brown fat cell function was analyzed by real-time PCR, western-blot and immunohistochemistry. Twelve week-old DBKO mice exhibited reduced body weight (p<0.05), decreased amounts of total fat pads (p<0.05), lower food efficiency rates (p<0.05) and higher rectal temperature (p<0.05) than ob/ob mice. Ablation of iNOS also improved the carbohydrate and lipid metabolism of ob/ob mice. DBKO showed a marked reduction in the size of brown adipocytes compared to ob/ob mutants. In this sense, in comparison to ob/ob mice, DBKO rodents showed an increase in the expression of PR domain containing 16 (Prdm16), a transcriptional regulator of brown adipogenesis. Moreover, iNOS deletion enhanced the expression of mitochondria-related proteins, such as peroxisome proliferator-activated receptor gamma coactivator-1 alpha (Pgc-1alpha), sirtuin-1 (Sirt-1) and sirtuin-3 (Sirt-3). Accordingly, mitochondrial uncoupling proteins 1 and 3 (Ucp-1 and Ucp-3) were upregulated in brown adipose tissue (BAT) of DBKO mice as compared to ob/ob rodents.
CONCLUSION:
Ablation of iNOS improved the energy balance of ob/ob mice by decreasing food efficiency through an increase in thermogenesis. These effects may be mediated, in part, through the recovery of the BAT phenotype and brown fat cell function improvement.
Revista:
MEDIATORS OF INFLAMMATION
ISSN:
0962-9351
Año:
2010
Vol.:
2010
Págs.:
784343
Obese leptin-deficient ob/ob mice exhibit a low-grade chronic inflammation together with a low muscle mass. Our aim was to analyze the changes in muscle expression levels of genes related to oxidative stress and inflammatory responses in leptin deficiency and to identify the effect of in vivo leptin administration. Ob/ob mice were divided in three groups as follows: control ob/ob, leptin-treated ob/ob (1 mg/kg/d) and leptin pair-fed ob/ob mice. Gastrocnemius weight was lower in control ob/ob than in wild type mice (P < .01) exhibiting an increase after leptin treatment compared to control and pair-fed (P < .01) ob/ob animals. Thiobarbituric acid reactive substances, markers of oxidative stress, were higher in serum (P < .01) and gastrocnemius (P = .05) of control ob/ob than in wild type mice and were significantly decreased (P < .01) by leptin treatment. Leptin deficiency altered the expression of 1,546 genes, while leptin treatment modified the regulation of 1,127 genes with 86 of them being involved in oxidative stress, immune defense and inflammatory response. Leptin administration decreased the high expression of Crybb1, Hspb3, Hspb7, Mt4, Cat, Rbm9, Serpinc1 and Serpinb1a observed in control ob/ob mice, indicating that it improves inflammation and muscle loss