Nuestros investigadores

Marta Zalacain Díez

Publicaciones científicas más recientes (desde 2010)

Autores: García, Marc; et al.
ISSN 2041-1723  Vol. 10  Nº 1  2019  págs. 2235
Pediatric high-grade glioma (pHGG) and diffuse intrinsic pontine gliomas (DIPGs) are aggressive pediatric brain tumors in desperate need of a curative treatment. Oncolytic virotherapy is emerging as a solid therapeutic approach. Delta-24-RGD is a replication competent adenovirus engineered to replicate in tumor cells with an aberrant RB pathway. This virus has proven to be safe and effective in adult gliomas. Here we report that the administration of Delta-24-RGD is safe in mice and results in a significant increase in survival in immunodeficient and immunocompetent models of pHGG and DIPGs. Our results show that the Delta-24-RGD antiglioma effect is mediated by the oncolytic effect and the immune response elicited against the tumor. Altogether, our data highlight the potential of this virus as treatment for patients with these tumors. Of clinical significance, these data have led to the start of a phase I/II clinical trial at our institution for newly diagnosed DIPG (NCT03178032).
Autores: Collantes M; Zalacain, Marta; et al.
ISSN 1471-2407  Vol. 18  Nº 1  2018  págs. 1193
BACKGROUND: Osteosarcoma is the most common malignant bone tumor in children and young adults that produces aberrant osteoid. The aim of this study was to assess the utility of 2-deoxy-2-[18F-] fluoro-D-glucose ([18F] FDG) and sodium [18F] Fluoride (Na [18F] F) PET scans in orthotopic murine models of osteosarcoma to describe the metabolic pattern of the tumors, to detect and diagnose tumors and to evaluate the efficacy of a new treatment based in oncolytic adenoviruses. METHODS: Orthotopic osteosarcoma murine models were created by the injection of 143B and 531MII cell lines. [18F]FDG and Na [18F] F PET scans were performed 30 days (143B) and 90 days (531MII) post-injection. The antitumor effect of two doses (107 and 108 pfu) of the oncolytic adenovirus VCN-01 was evaluated in 531 MII model by [18F] FDG PET studies. [18F] FDG uptake was quantified by SUVmax and Total Lesion Glycolysis (TLG) indexes. For Na [18F] F, the ratio tumor SUVmax/hip SUVmax was calculated. PET findings were confirmed by histopathological techniques. RESULTS: The metabolic pattern of tumors was different between both orthotopic models. All tumors showed [18F] FDG uptake, with a sensitivity and specificity of 100%. The [18F] FDG uptake was significantly higher for the 143B model (p < 0.001). Sensitivity for Na [18F] F was around 70% in both models, with a specificity of 100%. 531MII tumors showed a heterogeneous Na [18F] F uptake, significantly higher than 143B tumors (p < 0.01).
Autores: Imbuluzqueta, Edurne; Zalacain, Marta; et al.
ISSN 0304-3835  Vol. 388  2017  págs. 262 - 268
Despite the great advances that have been made in osteosarcoma therapy during recent decades, recurrence and metastases are still the most common outcome of the primary disease. Current treatments include drugs such as doxorubicin (DOX) that produce an effective response during the initial exposure of tumor cells but sometimes induce drug resistance within a few cycles of chemotherapy. New therapeutic strategies are therefore needed to overcome this resistance. To this end, DOX was loaded into lipid nanoparticles (LN) and its efficacy was evaluated in commercial and patient-derived metastatic osteosarcoma cell lines. DOX efficacy was heavily influenced by passage number in metastatic cells, in which an overexpression of P-gp was observed. Notably, DOX-LN overcame the resistance associated with cell passage and improved DOX efficacy fivefold. Moreover, when DOX was co-administered with either free or encapsulated edelfosine (ET), a synergistic effect was observed. This higher efficacy of the combined treatment was found to be at least partially due to an increase in caspase-dependent cell death. The combination of DOX and ET is thus likely to be effective against osteosarcoma. (C) 2016 Elsevier Ireland Ltd. All rights reserved.
Autores: Ormazábal, Cristina; et al.
ISSN 0022-3417  Vol. 239  Nº 4  2016  págs. 438-49
Osteosarcoma (OS) is the most prevalent osseous tumour in children and adolescents and, within this, lung metastases remain one of the factors associated with a dismal prognosis. At present, the genetic determinants driving pulmonary metastasis are poorly understood. We adopted a novel strategy using robust filtering analysis of transcriptomic profiling in tumour osteoblastic cell populations derived from human chemo-naive primary tumours displaying extreme phenotypes (indolent versus metastatic) to uncover predictors associated with metastasis and poor survival. We identified MGP, encoding matrix-Gla protein (MGP), a non-collagenous matrix protein previously associated with the inhibition of arterial calcification. Using different orthotopic models, we found that ectopic expression of Mgp in murine and human OS cells led to a marked increase in lung metastasis. This effect was independent of the carboxylation of glutamic acid residues required for its physiological role. Abrogation of Mgp prevented lung metastatic activity, an effect that was rescued by forced expression. Mgp levels dramatically altered endothelial adhesion, trans-endothelial migration in vitro and tumour cell extravasation ability in vivo. Furthermore, Mgp modulated metalloproteinase activities and TGFß-induced Smad2/3 phosphorylation. In the clinical setting, OS patients who developed lung metastases had high serum levels of MGP at diagnosis. Thus, MGP represents a novel adverse prognostic factor and a potential therapeutic target in OS. Microarray datasets may be found at: Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Autores: Martínez-Vélez, N.; Vera, B.; et al.
ISSN 1078-0432  Vol. 22  Nº 9  2016  págs. 2217-25
These results uncover VCN-01 as a promising strategy for osteosarcoma, setting the bases to propel a phase I/II trial for kids with this disease.
Autores: Fernández. L.; Valentín, J.; Zalacain, Marta; et al.
ISSN 0304-3835  Vol. 368  Nº 1  2015  págs. 54-63
Current therapies fail to cure most metastatic or recurrent bone cancer. We explored the efficacy and the pathways involved in natural killer (NK) cells' elimination of osteosarcoma (OS) cells, including tumor initiating cells (TICs), which are responsible for chemotherapy resistance, recurrence, and metastasis. The expression of ligands for NK cell receptors was studied in primary OS cell lines by flow cytometry. In vitro cytotoxicity of activated and expanded NK (NKAE) cells against OS was tested, and the pathways involved explored by using specific antibody blockade. NKAE cells' ability to target OS TICs was analyzed by flow cytometry and sphere formation assays. Spironolactone (SPIR) was tested for its ability to increase OS cells' susceptibility to NK cell lysis in vitro and in vivo. We found OS cells were susceptible to NKAE cells' lysis both in vivo and in vitro, and this cytolytic activity relied on interaction between NKG2D receptor and NKG2D ligands (NKG2DL). SPIR increased OS cells' susceptibility to lysis by NKAE cells, and could shrink the OS TICs. Our results show NKAE cells target OS cells including the TICs compartment, supporting the use of NK-cell based immunotherapies for OS.
Autores: Bilbao-Aldaiturriaga, N. ; Gutierrez-Camino, A.; Martin-Guerrero, I.; et al.
ISSN 1545-5009  Vol. 62  Nº 5  2015  págs. 766-9
A total of three SNPs were associated with osteosarcoma susceptibility. Interestingly, these SNPs were located in miRNA processing genes (CNOT1, CNOT4 and SND1) which are part of the RISC complex. Among them, the association of rs11866002 in CNOT1 was nearly significant after Bonferroni correction. CONCLUSIONS: This study suggests that SNPs in RISC complex genes may be involved in osteosarcoma susceptibility, especially rs11866002 in CNOT1.
Autores: Martínez-Velez, N.; Xipell, E.; et al.
ISSN 0884-0431  Vol. 29  Nº 10  2014  págs. 2287 - 2296
Osteosarcoma is the most common malignant bone tumor in children and adolescents. The presence of metastases and the lack of response to conventional treatment are the major adverse prognostic factors. Therefore, there is an urgent need for new treatment strategies that overcome both of these problems. Our purpose was to elucidate whether the use of the oncolytic adenovirus ¿24-RGD alone or in combination with standard chemotherapy would be effective, in vitro and in vivo, against osteosarcoma. Our results showed that ¿24-RGD exerted a potent antitumor effect against osteosarcoma cell lines that was increased by the addition of cisplatin. ¿24-RGD osteosarcoma treatment resulted in autophagy in vitro that was further enhanced when combined with cisplatin. Of importance, administration of ¿24-RGD and/or cisplatin, in novel orthotopic and two lung metastatic models in vivo resulted in a significant reduction of tumor burden meanwhile maintaining a safe toxicity profile. Together, our data underscore the potential of ¿24-RGD to become a realistic therapeutic option for primary and metastatic pediatric osteosarcoma. Moreover, this study warrants a future clinical trial to evaluate the safety and efficacy of ¿24-RGD for this devastating disease.
Autores: Folio, Cecilia; Zalacain, Marta; et al.
ISSN 1574-0153  Vol. 10  Nº 1  2012  págs. 35 - 41
BACKGROUND: The cortactin (CTTN) gene has been found, by transcriptomic profiling, to be overexpressed in pediatric osteosarcoma. The location of CTTN at 11q13 and the role of cortactin in cytoskeleton restructuring make CTTN of interest as a potential biomarker for osteosarcoma. MATERIALS AND METHODS: Osteoblasts were isolated from 20 high-grade osteosarcomas before chemotherapy, and paired with cell samples from normal tissue, prior to RNA expression analysis on HG-U133A chips (Affymetrix). Semiquantitative CTTN mRNA expression was analyzed by real-time PCR. An osteosarcoma tissue microarray (TMA) containing 233 tissue spots from 48 patients was used for an immunohistochemical (IHC) study of cortactin. RESULTS: Transcriptomic profiling and real-time PCR analysis indicated increased CTTN expression in osteosarcomas (p = 0.001, Student's T test). TMA IHC showed cortactin to be present more frequently and in greater abundance in osteosarcomas than non-tumoral osteoblastic samples (p< 0.006, Mann-Withney test). Analysis of clinical outcomes indicated that overall survival for patients with primary tumors positive for cortactin was significantly lower than that for patients with cortactin negative (or only weakly staining) tumors (p = 0.0278, Log-rank test). CONCLUSIONS: Our preliminary data support the hypothesis that over-expression of cortactin, contained in the 11q13 amplicon, is involved in osteosarcoma carcinogenesis. The potential of cortactin overexpression as a biom
Autores: Caronia, D.; Patiño-Garcia, Ana; Pérez-Martínez, A.; et al.
Revista: PLOS ONE
ISSN 1932-6203  Vol. 6  Nº 10  2011  págs. e26091
Our findings suggest that these polymorphisms may affect osteosarcoma treatment efficacy. If these associations are independently validated, these variants could be used as genetic predictors of clinical outcome in the treatment of osteosarcoma, helping in the design of individualized therapy.