Revistas
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2023
Vol.:
184
Págs.:
83 - 91
Nanomedicine offers great potential for the treatment of cardiovascular disease and particulate systems have the capacity to markedly improve bioavailability of therapeutics. The delivery of pro-angiogenic hepatocyte growth factor (HGF) and pro-survival and pro-myogenic insulin-like growth factor (IGF-1) encapsulated in Alginate-Sulfate nanoparticles (AlgS-NP) might improve left ventricular (LV) functional recovery after myocardial infarction (MI). In a porcine ischemia-reperfusion model, MI is induced by 75 min balloon occlusion of the mid-left anterior descending coronary artery followed by reperfusion. After 1 week, pigs (n = 12) with marked LV-dysfunction (LV ejection fraction, LVEF < 45%) are randomized to fusion imaging-guided intramyocardial injections of 8 mg AlgS-NP prepared with 200 µg HGF and IGF-1 (HGF/IGF1-NP) or PBS (Control). Intramyocardial injection is safe and pharmacokinetic studies of Cy5-labeled NP confirm superior cardiac retention compared to intracoronary infusion. Seven weeks after intramyocardial-injection of HGF/IGF1-NP, infarct size, measured using magnetic resonance imaging, is significantly smaller than in controls and is associated with increased coronary flow reserve. Importantly, HGF/IGF1-NP-treated pigs show significantly increased LVEF accompanied by improved myocardial remodeling. These findings demonstrate the feasibility and efficacy of using AlgS-NP as a delivery system for growth factors and offer the prospect of innovative treatment for refractory ischemic cardiomyopathy.
Revista:
BIOMEDICINES
ISSN:
2227-9059
Año:
2022
Vol.:
10
N°:
10
Págs.:
2350
Several Cre recombinase transgenic mouse models have been generated for cardiac fibroblast (CF) tracking and heart regulation. However, there is still no consensus on the ideal mouse model to optimally identify and/or regulate these cells. Here, a comparative evaluation of the efficiency and specificity of the indirect reporter Cre-loxP system was carried out in three of the most commonly used fibroblast reporter transgenic mice (Pdgfra-CreERT2, Col1a1-CreERT2 and PostnMCM) under healthy and ischemic conditions, to determine their suitability in in vivo studies of cardiac fibrosis. We demonstrate optimal Cre recombinase activity in CF (but also, although moderate, in endothelial cells (ECs)) derived from healthy and infarcted hearts in the PDGFRa-creERT2 mouse strain. In contrast, no positive reporter signal was found in CF derived from the Col1a1-CreERT2 mice. Finally, in the PostnMCM line, fluorescent reporter expression was specifically detected in activated CF but not in EC, which leads us to conclude that it may be the most reliable model for future studies on cardiovascular disease. Importantly, no lethality or cardiac fibrosis were induced after tamoxifen administration at the established doses, either in healthy or infarcted mice of the three fibroblast reporter lineages. This study lays the groundwork for future efficient in vivo CF tracking and functional analyses.
Revista:
EXPERIMENTAL DERMATOLOGY
ISSN:
0906-6705
Año:
2022
Vol.:
31
N°:
10
Págs.:
1638 - 1640
Autores:
Ontoria-Oviedo, I.; Amaro-Prellezo, E.; Castellano, D.; et al.
Revista:
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
ISSN:
1422-0067
Año:
2022
Vol.:
23
N°:
17
Págs.:
9918
Impaired wound healing in patients with type 2 diabetes (DM2) is characterized by chronic inflammation, which delays wound closure. Specialized pro-resolving lipid mediators (SPMs) are bioactive molecules produced from essential polyunsaturated fatty acids (PUFAs), principally omega-3 docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). SPMs are potent regulators of inflammation and have been used to suppress chronic inflammation in peripheral artery disease, non-alcoholic fatty liver disease, and central nervous system syndromes. LIPINOVA® is a commercially available safe-grade nutritional supplement made from a fractionated marine lipid concentrate derived from anchovy and sardine oil that is rich in SPMs and EPA, as well as DHA precursors. Here, we assessed the effect of LIPINOVA® in wound dressing applications. LIPINOVA® showed biocompatibility with keratinocytes and fibroblasts, reduced the abundance of pro-inflammatory macrophages (M¿1), and promoted in vitro wound closure. Daily application of the marine oil to open wounds made by punch biopsy in db/db mice promoted wound closure by accelerating the resolution of inflammation, inducing neoangiogenesis and M¿1/M¿2 macrophage polarization. In conclusion, LIPINOVA® displays pro-resolutive properties and could be exploited as a therapeutic agent for the treatment of diabetic ulcers.
Revista:
ACTA BIOMATERIALIA
ISSN:
1742-7061
Año:
2021
Vol.:
126
Págs.:
394 - 407
Despite tremendous progress in cell-based therapies for heart repair, many challenges still exist. To enhance the therapeutic potential of cell therapy one approach is the combination of cells with biomaterial delivery vehicles. Here, we developed a biomimetic and biodegradable micro-platform based on polymeric microparticles (MPs) capable of maximizing the therapeutic potential of cardiac progenitor cells (CPCs) and explored its efficacy in a rat model of chronic myocardial infarction. The transplantation of CPCs adhered to MPs within the infarcted myocardial microenvironment improved the long-term engraftment of transplanted cells for up to one month. Furthermore, the enhancement of cardiac cellular retention correlated with an increase in functional recovery. In consonance, better tissue remodeling and vasculogenesis were observed in the animals treated with cells attached to MPs, which presented smaller infarct size, thicker right ventricular free wall, fewer deposition of periostin and greater density of vessels than animals treated with CPCs alone. Finally, we were able to show that part of this beneficial effect was mediated by CPC derived extracellular vesicles (EVs). Taken together, these findings indicate that the biomimetic microcarriers support stem cell survival and increase cardiac function in chronic myocardial infarction through modulation of cardiac remodeling, vasculogenesis and CPCs-EVs mediated therapeutic effects. The biomimetic microcarriers provide a solution for biomaterial-assisted CPC delivery to the heart.
Statement of significance
In this study, we evaluate the possibility of using a biomimetic and biodegradable micro-platform to improve cardiovascular progenitor therapy. The strategy reported herein serves as an injectable scaffold for adherent cells due to their excellent injectability through cardiac catheters, capacity for biomimetic threedimensional stem cell support and controllable biodegradability. In a rat model of chronic myocardial infarction, the biomimetic microcarriers improved cardiac function, reduced chronic cardiac remodeling and increased vasculogenesis through the paracrine signaling of CPCs. We have also shown that extracellular vesicles derived from CPCs cultured on biomimetic substrates display antifibrotic effects, playing an important role in the therapeutic effects of our tissue-engineered approach. Therefore, biomimetic microcarriers represent a promising and effective strategy for biomaterial-assisted CPC delivery to the heart.
Revista:
PHARMACEUTICS
ISSN:
1999-4923
Año:
2021
Vol.:
13
N°:
8
Págs.:
1269
The use of allogeneic adipose-derived mesenchymal stromal cells (alloADSCs) represents an attractive approach for treating myocardial infarction (MI). Furthermore, adding a natural support improves alloADSCs engraftment and survival in heart tissues, leading to a greater therapeutic effect. We aimed to examine the safety and immunological reaction induced by epicardial implantation of a clinical-grade collagen scaffold (CS) seeded with alloADSCs for its future application in humans. Thus, cellularized scaffolds were myocardially or subcutaneously implanted in immunosuppressed rodent models. The toxicological parameters were not significantly altered, and tumor formation was not found over the short or long term. Furthermore, biodistribution analyses in the infarcted immunocompetent rats displayed cell engraftment in the myocardium but no migration to other organs. The immunogenicity of alloADSC-CS was also evaluated in a preclinical porcine model of chronic MI; no significant humoral or cellular alloreactive responses were found. Moreover, CS cellularized with human ADSCs cocultured with human allogeneic immune cells produced no alloreactive response. Interestingly, alloADSC-CS significantly inhibited lymphocyte responses, confirming its immunomodulatory action. Thus, alloADSC-CS is likely safe and does not elicit any alloreactive immunological response in the host. Moreover, it exerts an immunomodulatory action, which supports its translation to a clinical setting.
Revista:
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE
ISSN:
1932-6254
Año:
2020
Vol.:
14
N°:
1
Págs.:
123 - 134
Adeno-associated viruses (AAV) have become one of the most promising tools for gene transfer in clinics. Among all the serotypes, AAV9 has been described as the most efficient for cardiac transduction. In order to achieve optimal therapeutic delivery in heart disease, we have explored AAV9 transduction efficiency in an infarcted heart using different routes of administration and promoters, including a cardiac-specific one. AAV9 vectors carrying luciferase or green fluorescence protein under the control of the ubiquitous elongation-factor-1-alpha or the cardiac-specific troponin-T (TnT) promoters were administered by intramyocardial or intravenous injection, either in healthy or myocardial-infarcted mice. The transduction efficacy and specificity, the time-course expression, and the safety of each vector were tested. High transgene expression levels were found in the heart, but not in the liver, of mice receiving AAV-TnT, which was significantly higher after intramyocardial injection regardless of ischemia-induction. On the contrary, high hepatic transgene expression levels were detected with the elongation-factor-1-alpha-promoter, independently of the administration route and heart damage. Moreover, tissue-specific green fluorescence protein expression was found in cardiomyocytes with the TnT vector, whereas minimal cardiac expression was detected with the ubiquitous one. Interestingly, we found that myocardial infarction greatly increased the transcriptional activity of AAV genomes. Our findings show that the use of cardiac promoters allows for specific and stable cardiac gene expression, which is optimal and robust when intramyocardially injected. Furthermore, our data indicate that the pathological status of the tissue can alter the transcriptional activity of AAV genomes, an aspect that should be carefully evaluated for clinical applications.
Revista:
CIRCULATION
ISSN:
0009-7322
Año:
2020
Vol.:
142
N°:
19
Págs.:
1831 - 1847
BACKGROUND: Cardiac fibroblasts (CFs) have a central role in the ventricular remodeling process associated with different types of fibrosis. Recent studies have shown that fibroblasts do not respond homogeneously to heart injury. Because of the limited set of bona fide fibroblast markers, a proper characterization of fibroblast population heterogeneity in response to cardiac damage is lacking. The purpose of this study was to define CF heterogeneity during ventricular remodeling and the underlying mechanisms that regulate CF function. METHODS: Collagen1 alpha 1-GFP (green fluorescent protein)-positive CFs were characterized after myocardial infarction (MI) by single-cell and bulk RNA sequencing, assay for transposase-accessible chromatin sequencing, and functional assays. Swine and patient samples were studied using bulk RNA sequencing. RESULTS: We identified and characterized a unique CF subpopulation that emerges after MI in mice. These activated fibroblasts exhibit a clear profibrotic signature, express high levels of Cthrc1 (collagen triple helix repeat containing 1), and localize into the scar. Noncanonical transforming growth factor-beta signaling and different transcription factors including SOX9 are important regulators mediating their response to cardiac injury. Absence of CTHRC1 results in pronounced lethality attributable to ventricular rupture. A population of CFs with a similar transcriptome was identified in a swine model of MI and in heart tissue from patients with MI and dilated cardiomyopathy. CONCLUSIONS: We report CF heterogeneity and their dynamics during the course of MI and redefine the CFs that respond to cardiac injury and participate in myocardial remodeling. Our study identifies CTHRC1 as a novel regulator of the healing scar process and a target for future translational studies.
Revista:
BRITISH JOURNAL OF DERMATOLOGY
ISSN:
0007-0963
Año:
2020
Vol.:
182
N°:
5
Págs.:
1194 - 1204
Background Acantholysis in pemphigus vulgaris (PV) may be triggered by desmoglein (Dsg) and non-Dsg autoantibodies. The autoantibody profile of each patient results in distinct intracellular signalling patterns. Objectives Based on our previous findings, we aimed to elucidate whether PV acantholysis in a mouse model may be mediated by activation of a disintegrin and metalloproteinase 10 (ADAM10). Methods We used three PV-IgG fractions from different patients containing high or low levels of anti-Dsg1 and anti-Dsg3 antibodies, and the presence or not of anti-desmocollin (Dsc) antibodies, using a passive transfer mouse model of PV. Results Although all of the PV-IgG fractions produced suprabasal acantholysis, only those containing anti-Dsg1/3, but not anti-Dsc2/3 antibodies, induced ADAM10 activation in a Src-dependent way, and an increase in the epidermal growth factor (EGF) receptor ligands EGF and betacellulin (BTC). In contrast, the presence of anti-Dsc2/3 antibodies, in addition to anti-Dsg1/3, triggered earlier and ADAM10-independent epidermal detachment, with no increase in EGF and BTC, which was associated with an earlier and more intense acantholysis. Conclusions All PV-IgG fractions produced suprabasal acantholysis, but our results reveal that depending on the levels of anti-Dsg antibodies or the presence of non-Dsg antibodies, such as anti-Dsc, more severe cell-cell epidermal detachment will occur at different times, and in an ADAM10-dependent manner or not. Acantholysis in these different groups of patients with PV may be a consequence of the activation of specific intracellular mechanisms downstream of Autoantibodies binding to Dsg or non-Dsg proteins, and therefore more specific therapeutic approaches in PV should be used. What's already known about this topic? Suprabasal acantholysis in pemphigus vulgaris (PV) may be triggered by both desmoglein (Dsg) and non-Dsg autoantibodies. The autoantibody profile of each patient is associated with a distinct intracellular signalling pattern. What does this study add? In patients with PV with anti-Dsg3 and anti-Dsg1, but not anti-desmocollin (Dsc)3 antibodies, ADAM10 activation is induced in an Src-dependent way, together with an increase in the epidermal growth factor receptor (EGFR) ligands EGF and betacellulin. The presence of anti-Dsc3 antibodies triggers an earlier and ADAM10-independent acantholysis, without increasing EGFR ligands, and is associated with more severe epidermal detachment. Lower levels of anti-Dsc3 antibodies are associated with less severe acantholysis. What is the translational message? In some patients with PV, the severity and the timing for cell-cell detachment seem to depend on the level of anti-Dsg1/3 antibodies, although other as yet uncharacterized antibodies may also participate. These patients with PV would exhibit inhibition of acantholysis by Src, ADAM10, EGF and EGFR inhibitors. In other patients, the presence of non-Dsg antibodies, such as anti-Dsc2/3, would produce an earlier and more severe ADAM10-independent suprabasal acantholysis.
Revista:
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY
ISSN:
1079-5642
Año:
2019
Vol.:
39
N°:
3
Págs.:
E106 - E106
Revista:
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS
ISSN:
0022-3565
Año:
2019
Vol.:
370
N°:
3
Págs.:
761 - 771
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) are a promising cell source for cardiac repair after myocardial infarction (MI) because they offer several advantages such as potential to remuscularize infarcted tissue, integration in the host myocardium, and paracrine therapeutic effects. However, cell delivery issues have limited their potential application in clinical practice, showing poor survival and engraftment after transplantation. In this work, we hypothesized that the combination of hiPSC-CMs with microparticles (MPs) could enhance long-term cell survival and retention in the heart and consequently improve cardiac repair. CMs were obtained by differentiation of hiPSCs by small-molecule manipulation of the Wnt pathway and adhered to biomimetic poly(lactic-co-glycolic acid) MPs covered with collagen and poly(D-lysine). The potential of the system to support cell survival was analyzed in vitro, demonstrating a 1.70-fold and 1.99-fold increase in cell survival after 1 and 4 days, respectively. The efficacy of the system was tested in a mouse MI model. Interestingly, 2 months after administration, transplanted hiPSC-CMs could be detected in the peri-infarct area. These cells not only maintained the cardiac phenotype but also showed in vivo maturation and signs of electrical coupling. Importantly, cardiac function was significantly improved, which could be attributed to a paracrine effect of cells. These findings suggest that MPs represent an excellent platform for cell delivery in the field of cardiac repair, which could also be translated into an enhancement of the potential of cell-based therapies in other medical applications.
Revista:
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY
ISSN:
1079-5642
Año:
2018
Vol.:
38
N°:
9
Págs.:
2160 - 2173
Objective Cardiac progenitor cells reside in the heart in adulthood, although their physiological relevance remains unknown. Here, we demonstrate that after myocardial infarction, adult Bmi1(+) (B lymphoma Mo-MLV insertion region 1 homolog [PCGF4]) cardiac cells are a key progenitor-like population in cardiac neovascularization during ventricular remodeling.
Approach and Results These cells, which have a strong in vivo differentiation bias, are a mixture of endothelial- and mesenchymal-related cells with in vitro spontaneous endothelial cell differentiation capacity. Genetic lineage tracing analysis showed that heart-resident Bmi1(+) progenitor cells proliferate after acute myocardial infarction and differentiate to generate de novo cardiac vasculature. In a mouse model of induced myocardial infarction, genetic ablation of these cells substantially deteriorated both heart angiogenesis and the ejection fraction, resulting in an ischemic-dilated cardiac phenotype.
Conclusions These findings imply that endothelial-related Bmi1(+) progenitor cells are necessary for injury-induced neovascularization in adult mouse heart and highlight these cells as a suitable therapeutic target for preventing dysfunctional left ventricular remodeling after injury.
Autores:
Castellano, D.; Sanchis, A.; Blanes, M.; et al.
Revista:
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE
ISSN:
1932-6254
Año:
2018
Vol.:
12
N°:
2
Págs.:
E983 - E994
Human dermo-epidermal skin equivalents (DE) comprising in vitro expanded autologous keratinocytes and fibroblasts are a good option for massive burn treatment. However, the lengthy expansion time required to obtain sufficient surface to cover an extensive burn together with the challenging surgical procedure limits their clinical use. The integration of DE and biodegradable scaffolds has been proposed in an effort to enhance their mechanical properties. Here, it is shown that poly(hydroxybutyrate) electrospun scaffolds (PHB) present good biocompatibility both in vitro and in vivo and are superior to poly-epsilon-caprolactone electrospun scaffolds as a substrate for skin reconstruction. Implantation of PHB scaffolds in healthy rats polarized macrophages to an M2-type that promoted constructive in vivo remodelling. Moreover, implantation of DE-PHB composites in a NOD/SCID mouse xenograft model resulted in engraftment accompanied by an increase in angiogenesis that favoured the survival of the human graft. Thus, PHB scaffolds are an attractive substrate for further exploration in skin reconstruction procedures, probably due in part to their greater angiogenic and M2 macrophage polarization properties. Copyright (c) 2017 John Wiley & Sons, Ltd.
Revista:
JOURNAL OF TRANSLATIONAL MEDICINE
ISSN:
1479-5876
Año:
2017
Vol.:
15
N°:
1
Págs.:
56
PET/CT imaging of 18F-FDG-labeled CSC allows quantifying biodistribution and acute retention of implanted cells in a clinically relevant pig model of chronic myocardial infarction. Similar levels of acute retention are achieved when cells are IM or IC administered. However, acute cell retention does not correlate with cell engraftment, which is improved by IM injection.
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2016
Vol.:
6
Págs.:
25932
Cardiovascular protein therapeutics such as neuregulin (NRG1) and acidic-fibroblast growth factor (FGF1) requires new formulation strategies that allow for sustained bioavailability of the drug in the infarcted myocardium. However, there is no FDA-approved injectable protein delivery platform due to translational concerns about biomaterial administration through cardiac catheters. We therefore sought to evaluate the efficacy of percutaneous intramyocardial injection of poly(lactic-co-glycolic acid) microparticles (MPs) loaded with NRG1 and FGF1 using the NOGA MYOSTAR injection catheter in a porcine model of ischemia-reperfusion. NRG1- and FGF1-loaded MPs were prepared using a multiple emulsion solvent-evaporation technique. Infarcted pigs were treated one week after ischemia-reperfusion with MPs containing NRG1, FGF1 or non-loaded MPs delivered via clinically-translatable percutaneous transendocardial-injection. Three months post-treatment, echocardiography indicated a significant improvement in systolic and diastolic cardiac function. Moreover, improvement in bipolar voltage and decrease in transmural infarct progression was demonstrated by electromechanical NOGA-mapping. Functional benefit was associated with an increase in myocardial vascularization and remodeling. These findings in a large animal model of ischemia-reperfusion demonstrate the feasibility and efficacy of using MPs as a delivery system for growth factors and provide strong evidence to move forward with clinical studies using therapeutic proteins combined with catheter-compatible biomaterials.
Revista:
AMERICAN HEART ASSOCIATION. JOURNAL. CARDIOVASCULAR AND CEREBROVASCULAR DISEASE
ISSN:
2047-9980
Año:
2016
Vol.:
5
N°:
4
Págs.:
e002288
BOECs can be successfully culture-expanded from patients with ICMP. In contrast to impaired functionality of ICMP-derived bone marrow MNCs, BOECs retain a robust proangiogenic profile, both in vitro and in vivo, with therapeutic potential for targeting ischemic disease.
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN:
0168-3659
Año:
2015
Vol.:
202
Págs.:
31 - 39
PRGF is a platelet concentrate within a plasma suspension that forms an in situ-generated fibrin-matrix delivery system, releasing multiple growth factors and other bioactive molecules that play key roles in tissue regeneration. This study was aimed at exploring the angiogenic and myogenic effects of PRGF on in vitro endothelial cells (HUVEC) and skeletal myoblasts (hSkMb) as well as on in vivo mouse subcutaneously implanted matrigel and on limb muscles after a severe ischemia. Human PRGF was prepared and characterized. Both proliferative and anti-apoptotic responses to PRGF were assessed in vitro in HUVEC and hSkMb. In vivo murine matrigel plug assay was conducted to determine the angiogenic capacity of PRGF, whereas in vivo ischemic hind limb model was carried out to demonstrate PRGF-driven vascular and myogenic regeneration. Primary HUVEC and hSkMb incubated with PRGF showed a dose dependent proliferative and anti-apoptotic effect and the PRGF matrigel plugs triggered an early and significant sustained angiogenesis compared with the control group. Moreover, mice treated with PRGF intramuscular infiltrations displayed a substantial reperfusion enhancement at day 28 associated with a fibrotic tissue reduction. These findings suggest that PRGF-induced angiogenesis is functionally effective at expanding the perfusion capacity of the new vasculature and attenuating the endogenous tissue fibrosis after a severe-induced skeletal muscle ischemia. (C) 2015 Elsevier B.V. All rights reserved.
Revista:
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY
ISSN:
0735-1097
Año:
2015
Vol.:
65
N°:
19
Págs.:
2057 - 2066
BACKGROUND Although efforts continue to find new therapies to regenerate infarcted heart tissue, knowledge of cellular and molecular mechanisms involved remains poor. OBJECTIVES This study sought to identify the origin of cardiac fibroblasts (CFs) in the infarcted heart to better understand the pathophysiology of ventricular remodeling following myocardial infarction (MI). METHODS Permanent genetic tracing of epicardium-derived cell (EPDC) and bone marrow-derived blood cell (BMC) lineages was established using Cre/LoxP technology. In vivo gene and protein expression studies, as well as in vitro culture assays, were developed to characterize EPDC and BMC interaction and properties. RESULTS EPDCs, which colonize the cardiac interstitium during embryogenesis, massively differentiate into CFs MI. This response is disease-specific, because angiotensin II-induced pressure overload does not trigger significant fibroblastic differentiation. The expansion of epicardial-derived CFs follows BMC infiltration into the infarct site; the number of EPDCs equals that of BMCs 1 week post-infarction. BMC-EPDC interaction leads to cell polarization, massive collagen deposition, and scar formation. Moreover, epicardium-derived CFs display stromal properties with respect to BMCs, contributing to the sustained recruitment of circulating cells to the damaged zone and the cardiac persistence of hematopoietic progenitors/stem cells after MI. CONCLUSIONS EPDCs, but not BMCs, are the main origin of CFs in the ischemic heart. Adult resident EPDC contribution to the CF compartment is time-and disease-dependent. Our findings are relevant to the understanding of postventricular remodeling and may contribute to the development of new therapies to treat this disease. (C) 2015 by the American College of Cardiology Foundation.
Revista:
STEM CELLS AND DEVELOPMENT
ISSN:
1547-3287
Año:
2015
Vol.:
24
N°:
4
Págs.:
484 - 496
Stem cell-derived cardiomyocytes (CMs) are often electrophysiologically immature and heterogeneous, which represents a major barrier to their in vitro and in vivo application. Therefore, the purpose of this study was to examine whether Neuregulin-1 beta (NRG-1 beta) treatment could enhance in vitro generation of mature "working-type" CMs from induced pluripotent stem (iPS) cells and assess the regenerative effects of these CMs on cardiac tissue after acute myocardial infarction (AMI). With that purpose, adult mouse fibroblast-derived iPS from alpha-MHC-GFP mice were derived and differentiated into CMs through NRG-1 beta and/or dimethyl sulfoxide (DMSO) treatment. Cardiac specification and maturation of the iPS was analyzed by gene expression array, quantitative real-time polymerase chain reaction, immunofluorescence, electron microscopy, and patch-clamp techniques. In vivo, the iPS-derived CMs or culture medium control were injected into the peri-infarct region of hearts after coronary artery ligation, and functional and histology changes were assessed from 1 to 8 weeks post-transplantation. On differentiation, the iPS displayed early and robust in vitro cardiogenesis, expressing cardiac-specific genes and proteins. More importantly, electrophysiological studies demonstrated that a more mature ventricular-like cardiac phenotype was achieved when cells were treated with NRG-1 beta and DMSO compared with DMSO alone. Furthermore, in vivo studies demonstrated that iPS-derived CMs were able to engraft and electromechanically couple to heart tissue, ultimately preserving cardiac function and inducing adequate heart tissue remodeling. In conclusion, we have demonstrated that combined treatment with NRG-1 beta and DMSO leads to efficient differentiation of iPS into ventricular-like cardiac cells with a higher degree of maturation, which are capable of preserving cardiac function and tissue viability when transplanted into a mouse model of AMI.
Revista:
TISSUE ENGINEERING PART A
ISSN:
1937-3341
Año:
2015
Vol.:
21
N°:
43017
Págs.:
1633 - 1641
Substrate stiffness, biochemical composition, and matrix topography deeply influence cell behavior, guiding motility, proliferation, and differentiation responses. The aim of this work was to determine the effect that the stiffness and protein composition of the underlying substrate has on the differentiation of induced pluripotent stem (iPS) cells and the potential synergy with specific soluble cues. With that purpose, murine iPS-derived embryoid bodies (iPS-EBs) were seeded on fibronectin- or collagen I-coated polyacrylamide (pAA) gels of tunable stiffness (0.6, 14, and 50 kPa) in the presence of basal medium; tissue culture polystyrene plates were employed as control. Specification of iPS cells toward the three germ layers was analyzed, detecting an increase of tissue-specific gene markers in the pAA matrices. Interestingly, soft matrix (0.6 kPa) coated with fibronectin favored differentiation toward cardiac and neural lineages and, in the case of neural differentiation, the effect was potentiated by the addition of specific soluble factors. The generation of mature astrocytes, neural cells, and cardiomyocytes was further proven by immunofluorescence and transmission electron microscopy. In summary, this work emphasizes the importance of using biomimetic matrices to accomplish a more specific and mature differentiation of stem cells for future therapeutic applications.
Autores:
Castellano, D. ; Blanes, M. ; Marco, B.; et al.
Revista:
STEM CELLS AND DEVELOPMENT
ISSN:
1547-3287
Año:
2014
Vol.:
23
N°:
13
Págs.:
1479 - 1490
The development of biomaterials for myocardial tissue engineering requires a careful assessment of their performance with regards to functionality and biocompatibility, including the immune response. Poly(3-hydroxybutyrate) (PHB), poly(e-caprolactone) (PCL), silk, poly-lactic acid (PLA), and polyamide (PA) scaffolds were generated by electrospinning, and cell compatibility in vitro, and immune response and cardiac function in vitro and in vivo were compared with a noncrosslinked collagen membrane (Col) control material. Results showed that cell adhesion and growth of mesenchymal stem cells, cardiomyocytes, and cardiac fibroblasts in vitro was dependent on the polymer substrate, with PHB and PCL polymers permitting the greatest adhesion/growth of cells. Additionally, polymer substrates triggered unique expression profiles of anti- and pro-inflammatory cytokines in human peripheral blood mononuclear cells. Implantation of PCL, silk, PLA, and PA patches on the epicardial surface of healthy rats induced a classical foreign body reaction pattern, with encapsulation of polymer fibers and induction of the nonspecific immune response, whereas Col and PHB patches were progressively degraded. When implanted on infarcted rat heart, Col, PCL, and PHB reduced negative remodeling, but only PHB induced significant angiogenesis. Importantly, Col and PHB modified the inflammatory response to an M2 macrophage phenotype in cardiac tissue, indicating a more beneficial reparative process and remodeling. Collectively, these results identify PHB as a superior substrate for cardiac repair.
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN:
0168-3659
Año:
2014
Vol.:
173
Págs.:
132 - 139
Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague-Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit ofNRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. (C) 2013 Elsevier B.V. All rights reserved.
Revista:
BIOMATERIALS
ISSN:
0142-9612
Año:
2014
Vol.:
35
N°:
1
Págs.:
143 - 151
Although transplantation of adipose-derived stem cells (ADSC) in chronic myocardial infarction (MI) models is associated with functional improvement, its therapeutic value is limited due to poor long-term cell engraftment and survival. Thus, the objective of this study was to examine whether transplantation of collagen patches seeded with ADSC could enhance cell engraftment and improve cardiac function in models of chronic MI. With that purpose, chronically infarcted Sprague-Dawley rats (n = 58) were divided into four groups and transplanted with media, collagen scaffold (CS), rat ADSC, or CS seeded with rat ADSC (CS-rADSC). Cell engraftment, histological changes, and cardiac function were assessed 4 months after transplantation. In addition, Gottingen minipigs (n = 18) were subjected to MI and then transplanted 2 months later with CS or CS seeded with autologous minipig ADSC (CS-pADSC). Functional and histological assessments were performed 3 months post-transplantation. Transplantation of CS-rADSC was associated with increased cell engraftment, significant improvement in cardiac function, myocardial remodeling, and revascularization. Moreover, transplantation of CS-pADSC in the pre-clinical swine model improved cardiac function and was associated with decreased fibrosis and increased vasculogenesis. In summary, transplantation of CS-ADSC resulted in enhanced cell engraftment and was associated with a significant improvement in cardiac function and myocardial remodeling. (C) 2013 Elsevier Ltd. All rights reserved.
Revista:
ACTA BIOMATERIALIA
ISSN:
1742-7061
Año:
2014
Vol.:
10
N°:
7
Págs.:
3235 - 3242
Infarcted hearts are macroscopically stiffer than healthy organs. Nevertheless, although cell behavior is mediated by the physical features of the cell niche, the intrinsic micromechanical properties of healthy and infarcted heart extracellular matrix (ECM) remain poorly characterized. Using atomic force microscopy, we studied ECM micromechanics of different histological regions of the left ventricle wall of healthy and infarcted mice. Hearts excised from healthy (n = 8) and infarcted mice (n = 8) were decellularized with sodium dodecyl sulfate and cut into 12 gm thick slices. Healthy ventricular ECM revealed marked mechanical heterogeneity across histological regions of the ventricular wall with the effective Young's modulus ranging from 30.2 +/- 2.8 to 74.5 +/- 8.7 kPa in collagen- and elastin-rich regions of the myocardium, respectively. Infarcted ECM showed a predominant collagen composition and was 3-fold stiffer than collagen-rich regions of the healthy myocardium. ECM of both healthy and infarcted hearts exhibited a solid-like viscoelastic behavior that conforms to two power-law rheology. Knowledge of intrinsic micromechanical properties of the ECM at the length scale at which cells sense their environment will provide further insight into the cell-scaffold interplay in healthy and infarcted hearts.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2013
Vol.:
440
N°:
1
Págs.:
13 - 18
The potential of poly(lactic-co-glycolic) acid (PLGA) microparticles as carriers for vascular endothelial growth factor (VEGF) has been demonstrated in a previous study by our group, where we found improved angiogenesis and heart remodeling in a rat myocardial infarction model (Formiga et al., 2010). However, the observed accumulation of macrophages around the injection site suggested that the efficacy of treatment could be reduced due to particle phagocytosis. The aim of the present study was to decrease particle phagocytosis and consequently improve protein delivery using stealth technology. PEGylated microparticles were prepared by the double emulsion solvent evaporation method using TROMS (Total Recirculation One Machine System). Before the uptake studies in monocyte-macrophage cells lines (J774 and Raw 264.7), the characterization of the microparticles developed was carried out in terms of particle size, encapsulation efficiency, protein stability, residual poly(vinyl alcohol) (PVA) and in vitro release. Microparticles of suitable size for intramyocardial injection (5 mu m) were obtained by TROMS by varying the composition of the formulation and TROMS conditions with high encapsulation efficiency (70-90%) and minimal residual PVA content (0.5%). Importantly, the bioactivity of the protein was fully preserved. Moreover, PEGylated microparticles released in phosphate buffer 50% of the entrapped protein within 4 h, reaching a plateau within the first day of the in vitro study. Finally, the use of PLGA microparticles coated with PEG resulted in significantly decreased uptake of the carriers by macrophages, compared with non PEGylated microparticles, as shown by flow cytometry and fluorescence microscopy. On the basis of these results, we concluded that PEGylated microparticles loaded with VEGF could be used for delivering growth factors in the myocardium. (C) 2012 Elsevier B.V. All rights reserved.
Revista:
ACTA BIOMATERIALIA
ISSN:
1742-7061
Año:
2013
Vol.:
9
N°:
4
Págs.:
6075 - 6083
The use of scaffolds composed of natural biodegradable matrices represents an attractive strategy to circumvent the lack of cell engraftment, a major limitation of stem cell therapy in cardiovascular diseases. Bovine-derived non-porous collagen scaffolds with different degrees of cross-linking (C0, C2, C5 and C10) were produced and tested for their mechanical behavior, in vitro biocompatibility with adipose-derived stem cells (ADSCs) and tissue adhesion and inflammatory reaction. Uniaxial tensile tests revealed an anisotropic behavior of collagen scaffolds (2 x 0.5 cm) and statistically significant differences in the mechanical behavior between cross-linked and non-cross-linked scaffolds (n = 5). In vitro, ADSCs adhered homogenously and showed a similar degree of proliferation on all four types of scaffolds (cells x 10(3) cm(-2) at day 7: C0: 94.7 +/- 37.1; C2: 91.7 +/- 25.6; C5: 88.2 +/- 6.8; C10: 72.8 +/- 10.7; P = n.s.; n = 3). In order to test the in vivo biocompatibility, a chronic myocardial infarction model was performed in rats and 1.2 x 1.2 cm size collagen scaffolds implanted onto the heart I month post-infarction. Six animals per group were killed 2, 7 and 30 days after transplant. Complete and long-lasting adhesion to the heart was only observed with the non-cross-linked scaffolds with almost total degradation 1 month post-transplantation. After 7 and 30 days post-implantation, the degree of inflammation was significantly lower in the hearts treated with non-cross-linked scaffolds (day 7: C0: 10.2 +/- 2.1%; C2: 163 +/- 2.9%; C5: 15.9 +/- 4.8%; C10: 17.4 +/- 4.1%; P < 0.05 vs. C0; day 30: C0: 1.3 +/- 1.3%; C2: 9.4 +/- 3.0%; C5: 7.0 +/- 2.1%; C10: 9.8 +/- 2.5%; P < 0.01 vs. C0). In view of the results, the non-cross-linked scaffold (C0) was chosen as an ADSC-carrier sheet and tested in vivo. One week post-implantation, 25.3 +/- 7.0% of the cells transplanted were detected in those animals receiving the cell-carrier sheet whereas no cells were found in animals receiving cells alone (n = 3 animals/group). We conclude that the biocompatibility and mechanical properties of the non-cross-linked collagen scaffolds make them a useful cell carrier that greatly favors tissue cell engraftment and may be exploited for cell transplantation in models of cardiac disease. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Revista:
CELL TRANSPLANTATION
ISSN:
0963-6897
Año:
2012
Vol.:
21
N°:
5
Págs.:
1023 - 1037
Fresh adipose-derived cells have been shown to be effective in the treatment of acute myocardial infarction (MI), but their role in the chronic setting is unknown. We sought to determine the long-term effect of the adipose derived-stromal vascular fraction (SVF) cell transplantation in a rat model of chronic MI. MI was induced in 82 rats by permanent coronary artery ligation and 5 weeks later rats were allocated to receive an intramyocardial injection of 10(7) GFP-expressing fresh SVF cells or culture media as control. Heart function and tissue metabolism were determined by echocardiography and F-18-FDG-microPET, respectively, and histological studies were performed for up to 3 months after transplantation. SVF induced a statistically significant long-lasting (3 months) improvement in cardiac function and tissue metabolism that was associated with increased revascularization and positive heart remodeling, with a significantly smaller infarct size, thicker infarct wall, lower scar fibrosis, and lower cardiac hypertrophy. Importantly, injected cells engrafted and were detected in the treated hearts for at least 3 months, directly contributing to the vasculature and myofibroblasts and at negligible levels to cardiomyocytes. Furthermore, SVF release of angiogenic (VEGF and HGF) and proinflammatory (MCP-1) cytokines, as well as TIMP1 and TIMP4, was demonstrated in vitro and in vivo, strongly suggesting that they have a trophic effect. These results show the potential of SVF to contribute to the regeneration of ischemic tissue and to provide a long-term functional benefit in a rat model of chronic MI, by both direct and indirect mechanisms.
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2012
Vol.:
7
N°:
7
Págs.:
e41691
Background: The aim of this article is to present an optimized acquisition and analysis protocol for the echocardiographic evaluation of left ventricle (LV) remodeling in a mouse model of myocardial infarction (MI). Methodology: 13 female DBA/2J mice underwent permanent occlusion of the left anterior descending (LAD) coronary artery leading to MI. Mice echocardiography was performed using a Vevo 770 (Visualsonics, Canada) before infarction, and 7, 14, 30, 60, 90 and 120 days after LAD ligation. LV systolic function was evaluated using different parameters, including the fractional area change (FAC%) computed in four high-temporal resolution B-mode short axis images taken at different ventricular levels, and in one parasternal long axis. Pulsed wave and tissue Doppler modes were used to evaluate the diastolic function and Tei Index for global cardiac function. The echocardiographic measurements of infarct size were validated histologically using collagen deposition labeled by Sirius red staining. All data was analyzed using Shapiro-Wilk and Student's t-tests. Principal Findings: Our results reveal LV dilation resulting in marked remodeling an severe systolic dysfunction, starting seven days after MI (LV internal apical diameter, basal = 2.82 +/- 0.24, 7d = 3.49 +/- 0.42; p < 0.001. End-diastolic area, basal = 18.98 +/- 1.81, 7d = 22.04 +/- 2.11; p < 0.001). A strong statistically significant negative correlation exists between the infarct size and long-axis FAC% (r = -0.946; R-2 = 0.90; p < 0.05). Moreover, the measured Tei Index values confirmed significant post-infarction impairment of the global cardiac function (basal = 0.46 +/- 0.07, 7d = 0.55 +/- 0.08, 14 d = 0.57 +/- 0.06, 30 d = 0.54 +/- 0.06, 60 d = 0.54 +/- 0.07, 90 d = 0.57 +/- 0.08; p < 0.01). Conclusions/Significance: In summary, we have performed a complete characterization of LV post-infarction remodeling in a DBA/2J mouse model of MI, using parameters adapted to the particular characteristics of the model In the future, this well characterized model will be used in both investigative and pharmacological studies that require accurate quantitative monitoring of cardiac recovery after myocardial infarction.
Revista:
JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH
ISSN:
1937-5387
Año:
2011
Vol.:
4
N°:
2
Págs.:
145 - 153
In recent years, stem cell treatment of myocardial infarction has elicited great enthusiasm upon scientists and physicians alike, thus making the finding of a suitable cell a compulsory subject for modern medicine. Due to its potential, accessibility and efficiency of harvesting, adipose tissue has become one of the most attractive sources of stem cells for regenerative therapies. The differentiation capacity and the paracrine activity of these cells has made them an optimal candidate for the treatment of a diverse range of diseases from immunological disorders as graft versus host disease to cardiovascular pathologies like peripheral ischemia. In this review, we will focus on the use of stem cells derived from adipose tissue for treatment of myocardial infarction, with special attention to their putative in vivo mechanisms of action.
Revista:
JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH
ISSN:
1937-5387
Año:
2011
Vol.:
4
N°:
2
Págs.:
154 - 160
Cardiovascular diseases constitute the first cause of mortality and morbidity worldwide. Alternative treatments like transplantation of (stem) cell populations derived from several adult tissue sources, like the bone marrow, skeletal muscle, or even adipose tissue, have been already employed in diverse clinical trials. Results from these studies and previous animal studies have reached to the conclusion that stem cells induce a benefit in the treated hearts, which is exerted mainly through paracrine mechanisms and not through direct differentiation as it was initially expected. However, a strong technical limitation for the stem cell therapy, which is the low level of cell survival and engraftment, diminishes their potential. Thus, new strategies like combination of the cells with bioengineering techniques have been developed and are being subject of intense research, suggesting that new strategies may improve the efficacy of these therapies. In this review, we will discuss the different therapeutic approaches, drawbacks, and future expectations of new regenerative therapies for cardiovascular diseases.
Revista:
CELL TRANSPLANTATION
ISSN:
0963-6897
Año:
2011
Vol.:
20
N°:
2
Págs.:
259 - 269
There is a need for comparative studies to determine which cell types are better candidates to remedy ischemia. Here, we compared human AC133(+) cells and multipotent adult progenitor cells (hMAPC) in a mouse model reminiscent of critical limb ischemia. hMAPC or hAC133(+) cell transplantation induced a significant improvement in tissue perfusion (measured by microPET) 15 days posttransplantation compared to controls. This improvement persisted for 30 days in hMAPC-treated but not in hAC133(+)-injected animals. While transplantation of hAC133(+) cells promoted capillary growth, hMAPC transplantation also induced collateral expansion, decreased muscle necrosis/fibrosis, and improved muscle regeneration. Incorporation of differentiated MC 133(+) or hMAPC progeny into new vessels was limited; however, a paracrine angio/arteriogenic effect was demonstrated in animals treated with hMAPC. Accordingly, hMAPC-conditioned, but not hAC133(+)-conditioned, media stimulated vascular cell proliferation and prevented myoblast, endothelial, and smooth muscle cell apoptosis in vitro. Our study suggests that although hAC133(+) cell and hMAPC transplantation both contribute to vascular regeneration in ischemic limbs, hMAPC exert a more robust effect through trophic mechanisms, which translated into collateral and muscle fiber regeneration. This, in turn, conferred tissue protection and regeneration with longer term functional improvement.
Revista:
TISSUE ENGINEERING PART A
ISSN:
1937-3341
Año:
2010
Vol.:
16
N°:
10
Págs.:
3111 - 3117
This study was to determine if bone marrow multipotent adult progenitor cells (MAPCs) underwent cardiac specification and Oct-4 expression during their cardiomyocyte differentiation in vitro. MAPCs were isolated from rat bone marrow, treated with 5-azacytidine (5-aza, 1 mu M) for 24 h, and cultured in a serum-free medium for cardiac differentiation for up to 35 days. The cells started to express early cardiac-specific genes Nkx2.5 and GATA-4 with a significant increase in their mRNA level within 24 h after 5-aza treatment. Western blotting analysis and immunofluorescence staining revealed that the cardiac-specific proteins connexin-43 and troponin I were expressed in the cells 7 days after 5-aza treatment. Flow cytometry analysis demonstrated that over 37% of the cells were positive for troponin I by 35 days of differentiation, although the cells did not display spontaneous contraction. On the other hand, the undifferentiated MAPCs expressed a significant level of the stem-cell-specific marker Oct-4 that was dramatically decreased in the cells shortly after the initiation of cardiomyocyte differentiation as evaluated using real-time (RT)-polymerase chain reaction, Western blotting, immunofluorescence staining, and flow cytometry. These data indicated that MAPCs were able to effectively differentiate into cardiomyocyte-like cells after 5-aza induction in association with downregulation of Oct-4 expression.
Revista:
EUROPEAN HEART JOURNAL
ISSN:
0195-668X
Año:
2010
Vol.:
31
N°:
8
Págs.:
1013 - 1021
Aims Although transplantation of skeletal myoblast (SkM) in models of chronic myocardial infarction (MI) induces an improvement in cardiac function, the limited engraftment remains a major limitation. We analyse in a pre-clinical model whether the sequential transplantation of autologous SkM by percutaneous delivery was associated with increased cell engraftment and functional benefit. Methods and results Chronically infarcted Goettingen minipigs (n = 20) were divided in four groups that received either media control or one, two, or three doses of SkM (mean of 329.6 x 10(6) cells per dose) at intervals of 6 weeks and were followed for a total of 7 months. At the time of sacrifice, cardiac function was significantly better in animals treated with SkM in comparison with the control group. A significantly greater increase in the Delta LVEF was detected in animals that received three doses vs. a single dose of SkM. A correlation between the total number of transplanted cells and the improvement in LVEF and Delta LVEF was found (P < 0.05). Skeletal myoblast transplant was associated with an increase in tissue vasculogenesis and decreased fibrosis (collagen vascular fraction) and these effects were greater in animals receiving three doses of cells. Conclusion Repeated injection of SkM in a model of chronic MI is feasible and safe and induces a significant improvement in cardiac function.
Revista:
JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH
ISSN:
1937-5387
Año:
2010
Vol.:
3
N°:
2
Págs.:
79 - 88
Although recent advances for the treatment of myocardial infarction have dramatically increased the rate of survival after the ischemic event, this has also led to a rise in the number of chronic patients, making the finding of a suitable therapy a compulsory subject for modern medicine. Over the last decade, stem cells have been a promise for the cure of several diseases not only due to their plasticity but also to their capacity to act in a paracrine manner and influence the affected tissue, prompting the launching of several clinical trials. In spite of the knowledge already acquired, stem cell application to chronically infarcted hearts has been much less approached than its acute counterpart. Through this review, we will focus in stem cell therapy in animal models of chronic myocardial infarction: cell types employed, functional results, mechanisms analyzed, and questions raised.
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN:
0168-3659
Año:
2010
Vol.:
147
N°:
1
Págs.:
30 - 37
The use of pro-angiogenic growth factors in ischemia models has been associated with limited success in the clinical setting, in part owing to the short lived effect of the injected cytokine. The use of a microparticle system could allow localized and sustained cytokine release and consequently a prolonged biological effect with induction of tissue revascularization. To assess the potential of VEGF(165) administered as continuous release in ischemic disease, we compared the effect of delivery of poly(lactic-co-glycolic acid) (PLGA) microparticles (MP) loaded with VEGF(165) with free-VEGF or control empty microparticles in a rat model of ischemia-reperfusion. VEGF165 loaded microparticles could be detected in the myocardium of the infarcted animals for more than a month after transplant and provided sustained delivery of active protein in vitro and in vivo. One month after treatment, an increase in angiogenesis (small caliber caveolin-1 positive vessels) and arteriogenesis (alpha-SMA-positive vessels) was observed in animals treated with VEGF microparticles (p < 0.05), but not in the empty microparticles or free-VEGF groups. Correlating with this data, a positive remodeling of the heart was also detected in the VEGF-microparticle group with a significantly greater LV wall thickness (p < 0.01). In conclusion, PICA microparticle is a feasible and promising cytokine delivery system for treatment of myocardial ischemia. This strategy could be scaled up and explored in pre-clinical and clinical studies. (C) 2010 Elsevier B.V. All rights reserved.
Revista:
CELL TRANSPLANTATION
ISSN:
0963-6897
Año:
2010
Vol.:
19
N°:
3
Págs.:
313 - 328
The aim of this study is to assess the long-term effect of mesenchymal stem cells (MSC) transplantation in a rat model of chronic myocardial infarction (MI) in comparison with the effect of bone marrow mononuclear cells (BM-MNC) transplant. Five weeks after induction of MI, rats were allocated to receive intramyocardial injection of 10(6) GFP-expressing cells (BM-MNC or MSC) or medium as control. Heart function (echocardiography and (18)F-FDG-microPET) and histological studies were performed 3 months after transplantation and cell fate was analyzed along the experiment (1 and 2 weeks and 1 and 3 months). The main findings of this study were that both BM-derived populations, BM-MNC and MSC, induced a long-lasting (3 months) improvement in LVEF (BM-MNC: 26.61 +/- 2.01% to 46.61 +/- 3.7%, p <0.05; MSC: 27.5 +/- 1.28% to 38.8 +/- 3.2%, p < 0.05) but remarkably, only MSC improved tissue metabolism quantified by (18)F-FDG uptake (71.15 +/- 1.27 to 76.31 +/- 1.11, p<0.01), which was thereby associated with a smaller infarct size and scar collagen content and also with a higher revascularization degree. Altogether, results show that MSC provides a long-term superior benefit than whole BM-MNC transplantation in a rat model of chronic MI.