Revistas
Revista:
CLINICAL CANCER RESEARCH
ISSN:
1078-0432
Año:
2023
Vol.:
29
N°:
6
Págs.:
1137 - 1154
Purpose: The identification of pancreatic ductal adenocarcino-ma (PDAC) dysregulated genes may unveil novel molecular targets entering inhibitory strategies. Laminins are emerging as potential targets in PDAC given their role as diagnostic and prognostic markers. Here, we investigated the cellular, functional, and clinical relevance of LAMC2 and its regulated network, with the ultimate goal of identifying potential therapies. Experimental Design: LAMC2 expression was analyzed in PDAC tissues, a panel of human and mouse cell lines, and a genetically engineered mouse model. Genetic perturbation in 2D, 3D, and in vivo allograft and xenograft models was done. Expression profiling of a LAMC2 network was performed by RNA-sequencing, and publicly available gene expression datasets from experimental and clinical studies examined to query its human relevance. Dual inhibition of pharmacologically targetable LAMC2-regulated effec-tors was investigated. Results: LAMC2 was consistently upregulated in human and mouse experimental models as well as in human PDAC specimens, and associated with tumor grade and survival. LAMC2 inhibition impaired cell cycle, induced apoptosis, and sensitized PDAC to MEK1/2 inhibitors (MEK1/2i). A LAMC2-regulated network was featured in PDAC, including both classical and quasi-mesenchymal subtypes, and contained downstream effectors transcriptionally shared by the KRAS signaling pathway. LAMC2 regulated a func-tional FOSL1-AXL axis via AKT phosphorylation. Furthermore, genetic LAMC2 or pharmacological AXL inhibition elicited a synergistic antiproliferative effect in combination with MEK1/2is that was consistent across 2D and 3D human and mouse PDAC models, including primary patient-derived organoids. Conclusions: LAMC2 is a molecular target in PDAC that regulates a transcriptional network that unveils a dual drug com-bination for cancer treatment.
Revista:
NATURE MEDICINE
ISSN:
1078-8956
Año:
2023
Vol.:
29
N°:
3
Págs.:
632 - 645
The historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-kappa B, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of similar to 500 mice and similar to 1,000 patients revealed a common MAPK-MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time to progression conditioned immune evasion mechanisms that remodeled the BM microenvironment differently. Rapid MYC-driven progressors exhibited a high number of activated/exhausted CD8(+) T cells with reduced immunosuppressive regulatory T (T-reg) cells, while late MYC acquisition in slow progressors was associated with lower CD8(+) T cell infiltration and more abundant T-reg cells. Single-cell transcriptomics and functional assays defined a high ratio of CD8(+) T cells versus T-reg cells as a predictor of response to immune checkpoint blockade (ICB). In clinical series, high CD8(+) T/T-reg cell ratios underlie early progression in untreated smoldering MM, and correlated with early relapse in newly diagnosed patients with MM under Len/Dex therapy. In ICB-refractory MM models, increasing CD8(+) T cell cytotoxicity or depleting T-reg cells reversed immunotherapy resistance and yielded prolonged MM control. Our experimental models enable the correlation of MM genetic and immunological traits with preclinical therapy responses, which may inform the next-generation immunotherapy trials.
New experimental models provide much-needed tools for understanding how genetically diverse multiple myeloma progresses and evolves in response to therapy.
Revista:
MOLECULAR CANCER
ISSN:
1476-4598
Año:
2023
Vol.:
22
N°:
1
Págs.:
86
BackgroundThe discovery of functionally relevant KRAS effectors in lung and pancreatic ductal adenocarcinoma (LUAD and PDAC) may yield novel molecular targets or mechanisms amenable to inhibition strategies. Phospholipids availability has been appreciated as a mechanism to modulate KRAS oncogenic potential. Thus, phospholipid transporters may play a functional role in KRAS-driven oncogenesis. Here, we identified and systematically studied the phospholipid transporter PITPNC1 and its controlled network in LUAD and PDAC.MethodsGenetic modulation of KRAS expression as well as pharmacological inhibition of canonical effectors was completed. PITPNC1 genetic depletion was performed in in vitro and in vivo LUAD and PDAC models. PITPNC1-deficient cells were RNA sequenced, and Gene Ontology and enrichment analyses were applied to the output data. Protein-based biochemical and subcellular localization assays were run to investigate PITPNC1-regulated pathways. A drug repurposing approach was used to predict surrogate PITPNC1 inhibitors that were tested in combination with KRASG12C inhibitors in 2D, 3D, and in vivo models.ResultsPITPNC1 was increased in human LUAD and PDAC, and associated with poor patients' survival. PITPNC1 was regulated by KRAS through MEK1/2 and JNK1/2. Functional experiments showed PITPNC1 requirement for cell proliferation, cell cycle progression and tumour growth. Furthermore, PITPNC1 overexpression enhanced lung colonization and liver metastasis. PITPNC1 regulated a transcriptional signature which highly overlapped with that of KRAS, and controlled mTOR localization via enhanced MYC protein stability to prevent autophagy. JAK2 inhibitors were predicted as putative PITPNC1 inhibitors with antiproliferative effect and their combination with KRASG12C inhibitors elicited a substantial anti-tumour effect in LUAD and PDAC.ConclusionsOur data highlight the functional and clinical relevance of PITPNC1 in LUAD and PDAC. Moreover, PITPNC1 constitutes a new mechanism linking KRAS to MYC, and controls a druggable transcriptional network for combinatorial treatments.
Revista:
CANCER LETTERS
ISSN:
0304-3835
Año:
2022
Vol.:
529
Págs.:
70 - 84
Myeloid-derived suppressor cells (MDSCs) play a major role in cancer progression. In this study, we investigated the mechanisms by which complement C5a increases the capacity of polymorphonuclear MDSCs (PMN-MDSCs) to promote tumor growth and metastatic spread. Stimulation of PMN-MDSCs with C5a favored the invasion of cancer cells via a process dependent on the formation of neutrophil extracellular traps (NETs). NETosis was dependent on the production of high mobility group box 1 (HMGB1) by cancer cells. Moreover, C5a induced the surface expression of the HMGB1 receptors TLR4 and RAGE in PMN-MDSCs. In a mouse lung metastasis model, inhibition of C5a, C5a receptor-1 (C5aR1) or NETosis reduced the number of circulating-tumor cells (CTCs) and the metastatic burden. In support of the translational relevance of these findings, C5a was able to stimulate migration and NETosis in PMN-MDSCs obtained from lung cancer patients. Furthermore, myeloperoxidase (MPO)-DNA complexes, as markers of NETosis, were elevated in lung cancer patients and significantly correlated with C5a levels. In conclusion, C5a induces the formation of NETs from PMN-MDSCs in the presence of cancer cells, which may facilitate cancer cell dissemination and metastasis.
Autores:
Murthy, P. K. L. (Autor de correspondencia); Xi, R.; Arguijo, D.; et al.
Revista:
DEVELOPMENTAL CELL
ISSN:
1534-5807
Año:
2022
Vol.:
57
N°:
3
Págs.:
310 - +
Oncogenic Kras induces a hyper-proliferative state that permits cells to progress to neoplasms in diverse epithelial tissues. Depending on the cell of origin, this also involves lineage transformation. Although a multitude of downstream factors have been implicated in these processes, the precise chronology of molecular events controlling them remains elusive. Using mouse models, primary human tissues, and cell lines, we show that, in Kras-mutant alveolar type II cells (AEC2), FOSL1-based AP-1 factor guides the mSWI/SNF complex to increase chromatin accessibility at genomic loci controlling the expression of genes necessary for neoplastic transformation. We identified two orthogonal processes in Kras-mutant distal airway club cells. The first promoted their transdifferentiation into an AEC2-like state through NKX2.1, and the second controlled oncogenic transformation through the AP-1 complex. Our results suggest that neoplasms retain an epigenetic memory of their cell of origin through cell-type-specific transcription factors. Our analysis showed that a cross tissue-conserved AP-1-dependent chromatin remodeling program regulates carcinogenesis.
Revista:
JOURNAL OF EXPERIMENTAL AND CLINICAL CANCER RESEARCH
ISSN:
1756-9966
Año:
2022
Vol.:
41
N°:
1
Págs.:
183
Background Cholangiocarcinoma (CCA) is still a deadly tumour. Histological and molecular aspects of thioacetamide (TAA)-induced intrahepatic CCA (iCCA) in rats mimic those of human iCCA. Carcinogenic changes and therapeutic vulnerabilities in CCA may be captured by molecular investigations in bile, where we performed bile proteomic and metabolomic analyses that help discovery yet unknown pathways relevant to human iCCA. Methods Cholangiocarcinogenesis was induced in rats (TAA) and mice (Jnk(Delta hepa) + CCl4 + DEN model). We performed proteomic and metabolomic analyses in bile from control and CCA-bearing rats. Differential expression was validated in rat and human CCAs. Mechanisms were addressed in human CCA cells, including Huh28-KRAS(G12D) cells. Cell signaling, growth, gene regulation and [U-C-13]-D-glucose-serine fluxomics analyses were performed. In vivo studies were performed in the clinically-relevant iCCA mouse model. Results Pathways related to inflammation, oxidative stress and glucose metabolism were identified by proteomic analysis. Oxidative stress and high amounts of the oncogenesis-supporting amino acids serine and glycine were discovered by metabolomic studies. Most relevant hits were confirmed in rat and human CCAs (TCGA). Activation of interleukin-6 (IL6) and epidermal growth factor receptor (EGFR) pathways, and key genes in cancer-related glucose metabolic reprogramming, were validated in TAA-CCAs. In TAA-CCAs, G9a, an epigenetic pro-tumorigenic writer, was also increased. We show that EGFR signaling and mutant KRAS(G12D) can both activate IL6 production in CCA cells. Furthermore, phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in serine-glycine pathway, was upregulated in human iCCA correlating with G9a expression. In a G9a activity-dependent manner, KRAS(G12D) promoted PHGDH expression, glucose flow towards serine synthesis, and increased CCA cell viability. KRAS(G12D) CAA cells were more sensitive to PHGDH and G9a inhibition than controls. In mouse iCCA, G9a pharmacological targeting reduced PHGDH expression. Conclusions In CCA, we identified new pro-tumorigenic mechanisms: Activation of EGFR signaling or KRAS mutation drives IL6 expression in tumour cells; Glucose metabolism reprogramming in iCCA includes activation of the serine-glycine pathway; Mutant KRAS drives PHGDH expression in a G9a-dependent manner; PHGDH and G9a emerge as therapeutic targets in iCCA.
Autores:
Lasheras-Otero, I.; Feliu, I.; Maillo, A.; et al.
Revista:
JOURNAL OF INVESTIGATIVE DERMATOLOGY
ISSN:
0022-202X
Año:
2022
Vol.:
143
N°:
2
Págs.:
305 - 316.e5
Circulating tumor cells are the key link between a primary tumor and distant metastases, but once in the bloodstream, loss of adhesion induces cell death. To identify the mechanisms relevant for melanoma circulating tumor cell survival, we performed RNA sequencing and discovered that detached melanoma cells and isolated melanoma circulating tumor cells rewire lipid metabolism by upregulating fatty acid (FA) transport and FA beta-oxidation-related genes. In patients with melanoma, high expression of FA transporters and FA beta-oxidation enzymes significantly correlates with reduced progression-free and overall survival. Among the highest expressed regulators in melanoma circulating tumor cells were the carnitine transferases carnitine O-octanoyl-transferase and carnitine acetyltransferase, which control the shuttle of peroxisome-derived medium-chain FAs toward mitochondria to fuel mitochondrial FA beta-oxidation. Knockdown of carnitine O-octanoyltransferase or carnitine acetyltransferase and short-term treatment with peroxisomal or mitochondrial FA beta-oxidation in-hibitors thioridazine or ranolazine suppressed melanoma metastasis in mice. Carnitine O-octanoyltransferase and carnitine acetyltransferase depletion could be rescued by medium-chain FA supplementation, indicating that the peroxisomal supply of FAs is crucial for the survival of nonadherent melanoma cells. Our study identifies targeting the FA-based cross-talk between peroxisomes and mitochondria as a potential therapeutic opportunity to challenge melanoma progression. Moreover, the discovery of the antimetastatic activity of the Food and Drug Administration-approved drug ranolazine carries translational potential.
Revista:
CANCER DISCOVERY
ISSN:
2159-8274
Año:
2022
Vol.:
12
N°:
5
Págs.:
1356 - 1377
Locoregional failure (LRF) in breast cancer patients post-surgery and post-irradiation (IR) is linked to a dismal prognosis. In a refined new model, we identified Enpp1 (Ectonucleotide pyrophosphatase /phosphodiesterase 1/CD203a) to be closely associated with LRF. Enpp1high circulating tumor cells (CTC) contribute to relapse by a self-seeding mechanism. This process requires the infiltration of PMN-MDSC and neutrophil extracellular traps (NET) formation. Genetic and pharmacological Enpp1 inhibition or NET blockade extend relapse-free survival. Furthermore, in combination with fractionated irradiation (FD), Enpp1 abrogation obliterates LRF. Mechanistically, Enpp1-generated adenosinergic metabolites enhance Haptoglobin (Hp) expression. This inflammatory mediator elicits myeloid invasiveness and promotes NET formation. Accordingly, a significant increase in ENPP1 and NET formation is detected in relapsed human breast cancer tumors. Moreover, high ENPP1 or HP levels are associated with poor prognosis. These findings unveil the ENPP1/HP axis as an unanticipated mechanism exploited by tumor cells linking inflammation to immune remodeling favoring local relapse.
Autores:
Yuan, G.; Flores, N. M.; Hausmann, S.; et al.
Revista:
NATURE
ISSN:
0028-0836
Año:
2021
Vol.:
590
N°:
7846
Págs.:
504 - 508
Amplification of chromosomal region 8p11-12 is a common genetic alteration that has been implicated in the aetiology of lung squamous cell carcinoma (LUSC)(1-3). The FGFR1 gene is the main candidate driver of tumorigenesis within this region(4). However, clinical trials evaluating FGFR1 inhibition as a targeted therapy have been unsuccessful(5). Here we identify the histone H3 lysine 36 (H3K36) methyltransferase NSD3, the gene for which is located in the 8p11-12 amplicon, as a key regulator of LUSC tumorigenesis. In contrast to other 8p11-12 candidate LUSC drivers, increased expression of NSD3 correlated strongly with its gene amplification. Ablation of NSD3, but not of FGFR1, attenuated tumour growth and extended survival in a mouse model of LUSC. We identify an LUSC-associated variant NSD3(T1232A) that shows increased catalytic activity for dimethylation of H3K36 (H3K36me2) in vitro and in vivo. Structural dynamic analyses revealed that the T1232A substitution elicited localized mobility changes throughout the catalytic domain of NSD3 to relieve auto-inhibition and to increase accessibility of the H3 substrate. Expression of NSD3(T1232A) in vivo accelerated tumorigenesis and decreased overall survival in mouse models of LUSC. Pathological generation of H3K36me2 by NSD3(T1232A) reprograms the chromatin landscape to promote oncogenic gene expression signatures. Furthermore, NSD3, in a manner dependent on its catalytic activity, promoted transformation in human tracheobronchial cells and growth of xenografted human LUSC cell lines with amplification of 8p11-12. Depletion of NSD3 in patient-derived xenografts from primary LUSCs containing NSD3 amplification or the NSD3(T1232A)-encoding variant attenuated neoplastic growth in mice. Finally, NSD3-regulated LUSC-derived xenografts were hypersensitive to bromodomain inhibition. Thus, our work identifies NSD3 as a principal 8p11-12 amplicon-associated oncogenic driver in LUSC, and suggests that NSD3-dependency renders LUSC therapeutically vulnerable to bromodomain inhibition.
Revista:
JOURNAL OF HEPATOLOGY
ISSN:
1600-0641
Año:
2021
Vol.:
75
N°:
2
Págs.:
363 - 376
Background & aims: Cholangiocarcinoma (CCA) is a neoplasia of the biliary tract driven by genetic, epigenetic and transcriptional mechanisms. Herein, we investigated the role of the transcription factor FOSL1, as well as its downstream transcriptional effectors, in the development and progression of CCA.
Methods: FOSL1 was investigated in human CCA clinical samples. Genetic inhibition of FOSL1 in human and mouse CCA cell lines was performed in in vitro and in vivo models using constitutive and inducible short-hairpin RNAs. Conditional FOSL1 ablation was done using a genetically engineered mouse (GEM) model of CCA (mutant KRAS and Trp53 knockout). Follow-up RNA and chromatin immunoprecipitation (ChIP) sequencing analyses were carried out and downstream targets were validated using genetic and pharmacological inhibition.
Results: An inter-species analysis of FOSL1 in CCA was conducted. First, FOSL1 was found to be highly upregulated in human and mouse CCA, and associated with poor patient survival. Pharmacological inhibition of different signalling pathways in CCA cells converged on the regulation of FOSL1 expression. Functional experiments showed that FOSL1 is required for cell proliferation and cell cycle progression in vitro, and for tumour growth and tumour maintenance in both orthotopic and subcutaneous xenograft models. Likewise, FOSL1 genetic abrogation in a GEM model of CCA extended mouse survival by decreasing the oncogenic potential of transformed cholangiocytes. RNA and ChIP sequencing studies identified direct and indirect transcriptional effectors such as HMGCS1 and AURKA, whose genetic and pharmacological inhibition phenocopied FOSL1 loss.
Conclusions: Our data illustrate the functional and clinical relevance of FOSL1 in CCA and unveil potential targets amenable to pharmacological inhibition that could enable the implementation of novel therapeutic strategies.
Lay summary: Understanding the molecular mechanisms involved in cholangiocarcinoma (bile duct cancer) development and progression stands as a critical step for the development of novel therapies. Through an inter-species approach, this study provides evidence of the clinical and functional role of the transcription factor FOSL1 in cholangiocarcinoma. Moreover, we report that downstream effectors of FOSL1 are susceptible to pharmacological inhibition, thus providing new opportunities for therapeutic intervention.
Autores:
Bilal, F.; Arenas, E. J.; Pedersen, K.; et al.
Revista:
CANCER RESEARCH
ISSN:
0008-5472
Año:
2021
Vol.:
81
N°:
14
Págs.:
3849 - 3861
Activating mutations in some isoforms of RAS or RAF are drivers of a substantial proportion of cancers. The main Raf effector, MEK1/2, can be targeted with several highly specific inhibitors. The clinical activity of these inhibitors seems to be mixed, showing efficacy against mutant BRAF-driven tumors but not KRAS-driven tumors, such as pancreatic adenocarcinomas. To improve our understanding of this context- dependent efficacy, we generated pancreatic cancer cells resistant to MEK1/2 inhibition, which were also resistant to KRAS and ERK1/2 inhibitors. Compared with parental cells, inhibitor-resistant cells showed several phenotypic changes including increased metastatic ability in vivo. The transcription factor SLUG, which is known to induce epithelial-to-mesenchymal transition, was identified as the key factor responsible for both resistance to MEK1/2 inhibition and increased metastasis. Slug, but not similar transcription factors, predicted poor prognosis of pancreatic cancer patients and induced the transition to a cellular phenotype in which cell-cycle progression becomes independent of the KRASRAF-MEK1/2-ERK1/2 pathway. SLUG was targeted using two independent strategies: (i) inhibition of the MEK5-ERK5 pathway, which is responsible for upregulation of SLUG upon MEK1/2 inhibition, and (ii) direct PROTAC-mediated degradation. Both strategies were efficacious in preclinical pancreatic cancer models, paving the path for the development of more effective therapies against pancreatic cancer. Significance: This study demonstrates that SLUG confers resistance to MEK1/2 inhibitors in pancreatic cancer by uncoupling tumor progression from KRAS-RAF-MEK1/2-ERK1/2 signaling, providing new therapeutic opportunities.
Revista:
EBIOMEDICINE
ISSN:
2352-3964
Background: Fibroblast growth factor receptor (FGFR)1 and FGFR4 have been associated with tumorigenesis in a variety of tumour types. As a therapeutic approach, their inhibition has been attempted in different types of malignancies, including lung cancer, and was initially focused on FGFR1-amplified tumours, though with limited success. Methods: In vitro and in vivo functional assessments of the oncogenic potential of downregulated/overexpressed genes in isogenic cell lines were performed, as well as inhibitor efficacy tests in vitro and in vivo in patient-derived xenografts (PDXs). mRNA was extracted from FFPE non-small cell lung cancer samples to determine the prognostic potential of the genes under study. Findings: We provide in vitro and in vivo evidence showing that expression of the adhesion molecule N-cadherin is key for the oncogenic role of FGFR1/4 in non-small cell lung cancer. According to this, assessment of the expression of genes in different lung cancer patient cohorts showed that FGFR1 or FGFR4 expression alone showed no prognostic potential, and that only co-expression of FGFR1 and/or FGFR4 with N-cadherin inferred a poorer outcome. Treatment of high-FGFR1 and/or FGFR4-expressing lung cancer cell lines and patient-derived xenografts with selective FGFR inhibitors showed high efficacy, but only in models with high FGFR1/4 and N-cadherin expression. Interpretation: Our data show that the determination of the expression of FGFR1 or FGFR4 alone is not sufficient to predict anti-FGFR therapy efficacy; complementary determination of N-cadherin expression may further optimise patient selection for this therapeutic strategy. (c) 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Revista:
CANCERS
ISSN:
2072-6694
Año:
2020
Vol.:
12
N°:
11
Págs.:
31-69
Revista:
JOURNAL OF THORACIC ONCOLOGY
ISSN:
1556-0864
Año:
2020
Vol.:
15
N°:
3
Págs.:
311 - 313
Revista:
NATURE CANCER
ISSN:
2662-1347
Año:
2020
Vol.:
1
Págs.:
75 - 85
Harnessing the immune system by blocking the programmed cell death protein 1 (PD-1) pathway has been a major breakthrough in non-small-cell lung cancer treatment. Nonetheless, many patients fail to respond to PD-1 inhibition. Using three syngeneic models, we demonstrate that short-term starvation synergizes with PD-1 blockade to inhibit lung cancer progression and metastasis. This antitumor activity was linked to a reduction in circulating insulin-like growth factor 1 (IGF-1) and a downregulation of IGF-1 receptor (IGF-1R) signaling in tumor cells. A combined inhibition of IGF-1R and PD-1 synergistically reduced tumor growth in mice. This effect required CD8 cells, boosted the intratumoral CD8/Treg ratio and led to the development of tumor-specific immunity. In patients with non-small-cell lung cancer, high plasma levels of IGF-1 or high IGF-1R expression in tumors was associated with resistance to anti-PD-1¿programmed death-ligand 1 immunotherapy. In conclusion, our data strongly support the clinical evaluation of IGF-1 modulators in combination with PD-1 blockade.
Revista:
JOURNAL OF CLINICAL INVESTIGATION
ISSN:
0021-9738
Año:
2020
Vol.:
130
N°:
4
Págs.:
1879 - 1895
Few therapies are currently available for patients with KRAS-driven cancers, highlighting the need to identify new molecular targets that modulate central downstream effector pathways. Here we found the miRNA cluster mir181ab1 as a key modulator of KRAS-driven oncogenesis. Ablation of Mir181ab1 in genetically-engineered mouse models of Kras-driven lung and pancreatic cancer was deleterious to tumor initiation and progression. Expression of both resident miRNAs in the Mir181ab1 cluster, miR181a1 and miR181b1, was necessary to rescue the Mir181ab1-loss phenotype underscoring their non-redundant role. In human cancer cells, depletion of miR181ab1 impaired proliferation and 3D growth, whereas overexpression provided a proliferative advantage. Lastly, we unveiled miR181ab1-regulated genes responsible for this phenotype. These studies identified what we believe to be a previously unknown role for miR181ab1 as a potential therapeutic target in two highly aggressive and difficult to treat KRAS-mutated cancers.
Autores:
Kim, J. W.; Marquez, C. P.; Kostyrko, K.; et al.
Revista:
NATURE MEDICINE
ISSN:
1078-8956
Año:
2019
Vol.:
25
N°:
11
Págs.:
1783 - 1795
Proinflammatory cytokines in the tumor microenvironment can promote tumor growth, yet their value as therapeutic targets remains underexploited. We validated the functional significance of the cardiotrophin-like cytokine factor 1 (CLCF1)-ciliary neurotrophic factor receptor (CNTFR) signaling axis in lung adenocarcinoma (LUAD) and generated a high-affinity soluble receptor (eCNTFR-Fc) that sequesters CLCF1, thereby inhibiting its oncogenic effects. eCNTFR-Fc inhibits tumor growth in multiple xenograft models and in an autochthonous, highly aggressive genetically engineered mouse model of LUAD, driven by activation of oncogenic Kras and loss of Trp53. Abrogation of CLCF1 through eCNTFR-Fc appears most effective in tumors driven by oncogenic KRAS. We observed a correlation between the effectiveness of eCNTFR-Fc and the presence of KRAS mutations that retain the intrinsic capacity to hydrolyze guanosine triphosphate, suggesting that the mechanism of action may be related to altered guanosine triphosphate loading. Overall, we nominate blockade of CLCF1-CNTFR signaling as a novel therapeutic opportunity for LUAD and potentially for other tumor types in which CLCF1 is present in the tumor microenvironment.
Revista:
CANCER RESEARCH
ISSN:
0008-5472
Año:
2019
Vol.:
79
N°:
3
Págs.:
625 - 638
Because of the refractory nature of mutant KRAS lung adenocarcinoma (LUAD) to current therapies, identification of new molecular targets is essential. Genes with a prognostic role in mutant KRAS LUAD have proven to be potential molecular targets for therapeutic development. Here we determine the clinical, functional, and mechanistic role of inhibitor of differentiation-1 (Id1) in mutant KRAS LUAD. Analysis of LUAD cohorts from TCGA and SPORE showed that high expression of Id1 was a marker of poor survival in patients harboring mutant, but not wild-type KRAS. Abrogation of Id1 induced G(2)-M arrest and apoptosis in mutant KRAS LUAD cells. In vivo, loss of Id1 strongly impaired tumor growth and maintenance as well as liver metastasis, resulting in improved survival. Mechanistically, Id1 was regulated by the KRAS oncogene through JNK, and loss of Id1 resulted in down-regulation of elements of the mitotic machinery via inhibition of the transcription factor FOSL1 and of several kinases within the KRAS signaling network. Our study provides clinical, functional, and mechanistic evidence underscoring Id1 as a critical gene in mutant KRAS LUAD and warrants further studies of Id1 as a therapeutic target in patients with LUAD.
Significance: These findings highlight the prognostic significance of the transcriptional regulator Id1 in KRAS-mutant lung adenocarcinoma and provide mechanistic insight into how it controls tumor growth and metastasis.
Autores:
Giordano, F; Vaira, V; Cortinovis, D; et al.
Revista:
JOURNAL OF EXPERIMENTAL AND CLINICAL CANCER RESEARCH
ISSN:
1756-9966
Año:
2019
Vol.:
38
N°:
1
Págs.:
260
Revista:
CANCER LETTERS
ISSN:
0304-3835
Año:
2019
Vol.:
453
Págs.:
21 - 33
High mortality rates caused by NSCLC show the need for the identification of novel therapeutic targets. In this study we have investigated the biological effects and molecular mechanisms elicited by TMPRSS4 in NSCLC. Overexpression of TMPRSS4 in LKR13¿cells increased malignancy, subcutaneous tumor growth and multiorganic metastasis. In conditional knock-down (KD) experiments, abrogation of TMPRSS4 in H358 and H2170¿cells altered proliferation, clonogenicity, tumor engraftment and tumor growth. Reduction in S and G2/M phases of the cell cycle, decreased BrdU incorporation and increased apoptosis was also found. Transcriptomic analysis in KD cells revealed downregulation of genes involved in DNA replication, such as MCM6, TYMS and CDKN1A (p21). In patients, expression of a signature of MCM6/TYMS/TMPRSS4 genes was highly associated with poor prognosis. Downregulation of TMPRSS4 significantly increased sensitivity to chemotherapy agents. In experiments using cisplatin, apoptosis and expression of the DNA-damage marker ¿-H2A was higher in cells lacking TMPRSS4. Moreover, in vivo assays demonstrated that tumors with no TMPRSS4 were significantly more sensitive to cisplatin than controls. These results show that TMPRSS4 can be considered as a novel target in NSCLC, whose inhibition increases chemosensitivity.
Revista:
CLINICAL CANCER RESEARCH
ISSN:
1078-0432
Año:
2018
Vol.:
24
N°:
16
Págs.:
3787 - 3789
Although molecular subtype-based stratification and genomic signatures of increasing complexity are becoming a new strategy to guide therapeutic decisions in stage II/III colon cancer, several prognostic factors that can be easily obtained from formalin-fixed paraffin-embedded (FFPE) specimens should be considered to create combined models that better define individual patients' needs. (C) 2018 AACR.
Revista:
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE
ISSN:
1073-449X
Año:
2018
Vol.:
197
N°:
9
Págs.:
1164 - 1176
RATIONALE:
C5aR1 (CD88), a receptor for complement anaphylatoxin C5a, is a potent immune mediator. Its impact on malignant growth and dissemination of non-small cell lung cancer cells is poorly understood.
OBJECTIVES:
To investigate the contribution of the C5a/C5aR1 axis to the malignant phenotype of non-small cell lung cancer cells, particularly in skeletal colonization, a preferential lung metastasis site.
METHODS:
Association between C5aR1 expression and clinical outcome was assessed in silico and validated by immunohistochemistry. Functional significance was evaluated by lentiviral gene silencing and ligand l-aptamer inhibition in in vivo models of lung cancer bone metastasis. In vitro functional assays for signaling, migration, invasion, metalloprotease activity, and osteoclastogenesis were also performed.
MEASUREMENTS AND MAIN RESULTS:
High levels of C5aR1 in human lung tumors were significantly associated with shorter recurrence-free survival, overall survival, and bone metastasis. Silencing of C5aR1 in lung cancer cells led to a substantial reduction in skeletal metastatic burden and osteolysis in in vivo models. Furthermore, metalloproteolytic, migratory, and invasive tumor cell activities were modulated in vitro by C5aR1 stimulation or gene silencing. l-Aptamer blockade or C5aR1 silencing significantly reduced the osseous metastatic activity of lung cancer cells in vivo. This effect was associated with decreased osteoclastogenic activity in vitro and was rescued by the exogenous addition of the chemokine CXCL16.
CONCLUSIONS:
Disruption of C5aR1 signaling in lung cancer cells abrogates their tumor-associated osteoclastogenic activity, impairing osseous colonization. This study unveils the role played by the C5a/C5aR1 axis in lung cancer dissemination and supports its potential use as a novel therapeutic target.
Autores:
Cortazar, A.R.; Torrano, V.; Martín-Martín, N.; et al.
Revista:
CANCER RESEARCH
ISSN:
0008-5472
Año:
2018
Vol.:
78
N°:
21
Págs.:
6320 - 6328
With the advent of OMICs technologies, both individual research groups and consortia have spear-headed the characterization of human samples of multiple pathophysiologic origins, resulting in thousands of archived genomes and transcriptomes. Although a variety of web tools are now available to extract information from OMICs data, their utility has been limited by the capacity of nonbioinformatician researchers to exploit the information. To address this problem, we have developed CANCERTOOL, a web-based interface that aims to overcome the major limitations of public transcriptomics dataset analysis for highly prevalent types of cancer (breast, prostate, lung, and colorectal). CANCERTOOL provides rapid and comprehensive visualization of gene expression data for the gene(s) of interest in well-annotated cancer datasets. This visualization is accompanied by generation of reports customized to the interest of the researcher (e.g., editable figures, detailed statistical analyses, and access to raw data for reanalysis). It also carries out gene-to-gene correlations in multiple datasets at the same time or using preset patient groups. Finally, this new tool solves the time-consuming task of performing functional enrichment analysis with gene sets of interest using up to 11 different databases at the same time. Collectively, CANCERTOOL represents a simple and freely accessible interface to interrogate well-annotated datasets and obtain publishable representations that can contribute to refinement and guidance of cancer-related investigations at all levels of hypotheses and design.Significance: In order to facilitate access of research groups without bioinformatics support to public transcriptomics data, we have developed a free online tool with an easy-to-use interface that allows researchers to obtain quality information in a readily publishable format.
Revista:
CANCER DISCOVERY
ISSN:
2159-8274
Año:
2017
Vol.:
7
N°:
7
Págs.:
694 - 703
Disruption of the programmed cell death protein 1 (PD-1) pathway with immune checkpoint inhibitors represents a major breakthrough in the treatment of non-small cell lung cancer. We hypothesized that combined inhibition of C5a/C5aR1 and PD-1 signaling may have a synergistic antitumor effect. The RMP1-14 antibody was used to block PD-1, and an L-aptamer was used to inhibit signaling of complement C5a with its receptors. Using syngeneic models of lung cancer, we demonstrate that the combination of C5a and PD-1 blockade markedly reduces tumor growth and metastasis and leads to prolonged survival. This effect is accompanied by a negative association between the frequency of CD8 T cells and myeloid-derived suppressor cells within tumors, which may result in a more complete reversal of CD8 T-cell exhaustion. Our study provides support for the clinical evaluation of anti-PD-1 and anti-C5a drugs as a novel combination therapeutic strategy for lung cancer. SIGNIFICANCE: Using a variety of preclinical models of lung cancer, we demonstrate that the blockade of C5a results in a substantial improvement in the efficacy of anti-PD-1 antibodies against lung cancer growth and metastasis. This study provides the preclinical rationale for the combined blockade of PD-1/PD-L1 and C5a to restore antitumor immune responses, inhibit tumor cell growth, and improve outcomes of patients with lung cancer. (C) 2017 AACR.
Revista:
MOLECULAR AND CELLULAR ONCOLOGY
ISSN:
2372-3556
Año:
2017
Vol.:
4
N°:
3
Págs.:
e1314239
KRAS proto-oncogene, GTPase (KRAS) remains refractory to current therapies. We devised an integrative cross-tumor approach to expose common core elements up-regulated in mutant KRAS cancers that could provide new treatment opportunities. This approach identified FOSL1 (Fos-like antigen 1) as a clinically and functionally relevant gene in mutant KRAS-driven lung and pancreatic cancers, and unveiled downstream transcriptional targets amenable to pharmacological inhibition
Revista:
NATURE COMMUNICATIONS
ISSN:
2041-1723
Año:
2017
Vol.:
21
N°:
8
Págs.:
14294
KRAS mutated tumours represent a large fraction of human cancers, but the vast majority remains refractory to current clinical therapies. Thus, a deeper understanding of the molecular mechanisms triggered by KRAS oncogene may yield alternative therapeutic strategies. Here we report the identification of a common transcriptional signature across mutant KRAS cancers of distinct tissue origin that includes the transcription factor FOSL1. High FOSL1 expression identifies mutant KRAS lung and pancreatic cancer patients with the worst survival outcome. Furthermore, FOSL1 genetic inhibition is detrimental to both KRAS-driven tumour types. Mechanistically, FOSL1 links the KRAS oncogene to components of the mitotic machinery, a pathway previously postulated to function orthogonally to oncogenic KRAS. FOSL1 targets include AURKA, whose inhibition impairs viability of mutant KRAS cells. Lastly, combination of AURKA and MEK inhibitors induces a deleterious effect on mutant KRAS cells. Our findings unveil KRAS downstream effectors that provide opportunities to treat KRAS-driven cancers.
Revista:
JOURNAL OF HEMATOLOGY AND ONCOLOGY
ISSN:
1756-8722
Año:
2017
Vol.:
10
N°:
1
Págs.:
23
Background: Activated protein C/endothelial protein C receptor (APC/EPCR) axis is physiologically involved in anticoagulant and cytoprotective activities in endothelial cells. Emerging evidence indicates that EPCR also plays a role in breast stemness and human tumorigenesis. Yet, its contribution to breast cancer progression and metastasis has not been elucidated. Methods: Transcriptomic status of EPCR was examined in a cohort of 286 breast cancer patients. Cell growth kinetics was evaluated in control and EPCR and SPARC/osteonectin, Cwcv, and kazal-like domains proteoglycan (SPOCK1/testican 1) silenced breast cancer cells in 2D, 3D, and in co-culture conditions. Orthotopic tumor growth and lung and osseous metastases were evaluated in several human and murine xenograft breast cancer models. Tumor-stroma interactions were further studied in vivo by immunohistochemistry and flow cytometry. An EPCR-induced gene signature was identified by microarray analysis. Results: Analysis of a cohort of breast cancer patients revealed an association of high EPCR levels with adverse clinical outcome. Interestingly, EPCR knockdown did not affect cell growth kinetics in 2D but significantly reduced cell growth in 3D cultures. Using several human and murine xenograft breast cancer models, we showed that EPCR silencing reduced primary tumor growth and secondary outgrowths at metastatic sites, including the skeleton and the lungs. Interestingly, these effects were independent of APC ligand stimulation in vitro and in vivo. Transcriptomic analysis of EPCR-silenced tumors unveiled an effect mediated by matricellular secreted proteoglycan SPOCK1/testican 1. Interestingly, SPOCK1 silencing suppressed in vitro 3D growth. Moreover, SPOCK1 ablation severely decreased orthotopic tumor growth and reduced bone metastatic osteolytic tumors. High SPOCK1 levels were also associated with poor clinical outcome in a subset breast cancer patients. Our results suggest that EPCR through SPOCK1 confers a cell growth advantage in 3D promoting breast tumorigenesis and metastasis. Conclusions: EPCR represents a clinically relevant factor associated with poor outcome and a novel vulnerability to develop combination therapies for breast cancer patients.
Revista:
JOURNAL OF PATHOLOGY
ISSN:
0022-3417
Año:
2016
Vol.:
239
N°:
4
Págs.:
438-49
Osteosarcoma (OS) is the most prevalent osseous tumour in children and adolescents and, within this, lung metastases remain one of the factors associated with a dismal prognosis. At present, the genetic determinants driving pulmonary metastasis are poorly understood. We adopted a novel strategy using robust filtering analysis of transcriptomic profiling in tumour osteoblastic cell populations derived from human chemo-naive primary tumours displaying extreme phenotypes (indolent versus metastatic) to uncover predictors associated with metastasis and poor survival. We identified MGP, encoding matrix-Gla protein (MGP), a non-collagenous matrix protein previously associated with the inhibition of arterial calcification. Using different orthotopic models, we found that ectopic expression of Mgp in murine and human OS cells led to a marked increase in lung metastasis. This effect was independent of the carboxylation of glutamic acid residues required for its physiological role. Abrogation of Mgp prevented lung metastatic activity, an effect that was rescued by forced expression. Mgp levels dramatically altered endothelial adhesion, trans-endothelial migration in vitro and tumour cell extravasation ability in vivo. Furthermore, Mgp modulated metalloproteinase activities and TGFß-induced Smad2/3 phosphorylation. In the clinical setting, OS patients who developed lung metastases had high serum levels of MGP at diagnosis. Thus, MGP represents a novel adverse prognostic factor and a potential therapeutic target in OS. Microarray datasets may be found at: http://bioinfow.dep.usal.es/osteosarcoma/ Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Revista:
ONCOGENE
ISSN:
0950-9232
Año:
2016
Vol.:
35
N°:
36
Págs.:
4719 - 4729
Resisting death is a central hallmark of cancer cells. Tumors rely on a number of genetic mechanisms to avoid apoptosis, and alterations in mRNA alternative splicing are increasingly recognized to have a role in tumorigenesis. In this study, we identify the splicing regulator SLU7 as an essential factor for the preservation of hepatocellular carcinoma (HCC) cells viability. Compared with hepatocytes, SLU7 expression is reduced in HCC cells; however, further SLU7 depletion triggered autophagy-related cellular apoptosis in association with the overproduction of reactive oxygen species. Remarkably, these responses were not observed in primary human hepatocytes or in the well-differentiated HepaRG cell line. Mechanistically, we demonstrate that SLU7 binds the C13orf25 primary transcript in which the polycistronic oncomir miR-17-92 cluster is encompassed, and is necessary for its processing and expression. SLU7 knockdown altered the splicing of the C13orf25 primary transcript, and markedly reduced the expression of its miR-17, miR-20 and miR-92a constituents. This led to the upregulation of CDKN1A (P21) and BCL2L11 (BIM) expression, two bona fide targets of the miR-17-92 cluster and recognized mediators of its pro-survival and tumorigenic activity. Interestingly, altered splicing of miR-17-92 and downregulation of miR-17 and miR-20 were not observed upon SLU7 knockdown in non-transformed hepatocytes, but was found in other (HeLa, H358) but not in all (Caco2) non-hepatic tumor cells. The functional relevance of miR-17-92 dysregulation upon SLU7 knockdown was established when oxidative stress, autophagy and apoptosis were reversed by co-transfection of HCC cells with a miR-17 mimic. Together, these findings indicate that SLU7 is co-opted by HCC cells and other tumor cell types to maintain survival, and identify this splicing regulator as a new determinant for the expression of the oncogenic miR-17-92 cluster. This novel mechanism may be exploited for the development of antitumoral strategies in cancers displaying such SLU7-miR-17-92 crosstalk.
Autores:
Chen, R.; Khatri, P.; Mazur, P. K.; et al.
Revista:
CANCER RESEARCH
ISSN:
0008-5472
Año:
2014
Vol.:
74
N°:
10
Págs.:
2892 - 2902
Lung cancer remains the most common cause of cancer-related death worldwide and it continues to lack effective treatment. The increasingly large and diverse public databases of lung cancer gene expression constitute a rich source of candidate oncogenic drivers and therapeutic targets. To define novel targets for lung adenocarcinoma, we conducted a large-scale meta-analysis of genes specifically overexpressed in adenocarcinoma. We identified an 11-gene signature that was overexpressed consistently in adenocarcinoma specimens relative to normal lung tissue. Six genes in this signature were specifically overexpressed in adenocarcinoma relative to other subtypes of non-small cell lung cancer (NSCLC). Among these genes was the little studied protein tyrosine kinase PTK7. Immunohistochemical analysis confirmed that PTK7 is highly expressed in primary adenocarcinoma patient samples. RNA interference-mediated attenuation of PTK7 decreased cell viability and increased apoptosis in a subset of adenocarcinoma cell lines. Further, loss of PTK7 activated the MKK7-JNK stress response pathway and impaired tumor growth in xenotransplantation assays. Our work defines PTK7 as a highly and specifically expressed gene in adenocarcinoma and a potential therapeutic target in this subset of NSCLC.
Revista:
MOLECULAR ONCOLOGY
ISSN:
1574-7891
Año:
2014
Vol.:
8
N°:
2
Págs.:
196 - 206
Lung adenocarcinoma (ADC) is the most common lung cancer subtype and presents a high mortality rate. Clinical recurrence is often associated with the emergence of metastasis and treatment resistance. The purpose of this study was to identify genes with high prometastatic activity which could potentially account for treatment resistance. Global transcriptomic profiling was performed by robust microarray analysis in highly metastatic subpopulations. Extensive in vitro and in vivo functional studies were achieved by overexpression and by silencing gene expression. We identified the small GTPase RHOB as a gene that promotes early and late stages of metastasis in ADC. Gene silencing of RHOB prevented metastatic activity in a systemic murine model of bone metastasis. These effects were highly dependent on tumor-host interactions. Clinical analysis revealed a marked association between high RHOB levels and poor survival. Consistently, high RHOB levels promote metastasis progression, taxane-chemoresistance, and contribute to the survival advantage to ¿-irradiation. We postulate that RHOB belongs to a novel class of "genes of recurrence" that have a dual role in metastasis and treatment resistance.
Revista:
CANCER RESEARCH
ISSN:
0008-5472
Año:
2012
Vol.:
72
N°:
22
Págs.:
5744 - 5756
Cancer-associated fibroblasts (CAF) have been reported to support tumor progression by a variety of mechanisms. However, their role in the progression of non-small cell lung cancer (NSCLC) remains poorly defined. In addition, the extent to which specific proteins secreted by CAFs contribute directly to tumor growth is unclear. To study the role of CAFs in NSCLCs, a cross-species functional characterization of mouse and human lung CAFs was conducted. CAFs supported the growth of lung cancer cells in vivo by secretion of soluble factors that directly stimulate the growth of tumor cells. Gene expression analysis comparing normal mouse lung fibroblasts and mouse lung CAFs identified multiple genes that correlate with the CAF phenotype. A gene signature of secreted genes upregulated in CAFs was an independent marker of poor survival in patients with NSCLC. This secreted gene signature was upregulated in normal lung fibroblasts after long-term exposure to tumor cells, showing that lung fibroblasts are "educated" by tumor cells to acquire a CAF-like phenotype. Functional studies identified important roles for CLCF1-CNTFR and interleukin (IL)-6-IL-6R signaling in promoting growth of NSCLCs. This study identifies novel soluble factors contributing to the CAF protumorigenic phenotype in NSCLCs and suggests new avenues for the development of therapeutic strategies.
Revista:
CANCER RESEARCH
ISSN:
0008-5472
Año:
2012
Vol.:
72
N°:
12
Págs.:
3048 - 3059
Genetically engineered mouse (GEM) models of lung tumorigenesis allow careful evaluation of lung tumor initiation, progression, and response to therapy. Using GEM models of oncogene-induced lung cancer, we show the striking similarity of the earliest stages of tumorigenesis induced by KRAS(G12D) or BRAF(V600E). Cre-mediated expression of KRAS(G12D) or BRAF(V600E) in the lung epithelium of adult mice initially elicited benign lung tumors comprising cuboidal epithelial cells expressing markers of alveolar pneumocytes. Strikingly, in a head-to-head comparison, oncogenic BRAF(V600E) elicited many more such benign tumors and did so more rapidly than KRAS(G12D). However, despite differences in the efficiency of benign tumor induction, only mice with lung epithelium expression of KRAS(G12D) developed malignant non-small cell lung adenocarcinomas. Pharmacologic inhibition of mitogen-activated protein (MAP)-extracellular signal-regulated kinase (ERK) kinase (MEK)1/2 combined with in vivo imaging showed that initiation and maintenance of both BRAF(V600E)- or KRAS(G12D)-induced lung tumors was dependent on MEK¿ERK signaling. Although the tumors dramatically regressed in response to MEK1/2 inhibition, they regrew following cessation of drug treatment. Together, our findings show that RAF¿MEK¿ERK signaling is both necessary and sufficient for KRAS(G12D)-induced benign lung tumorigenesis in GEM models. The data also emphasize the ability of KRAS(G12D) to promote malignant lung cancer progression compared with oncogenic BRAF(V600E).
Autores:
Tran, P.T. (Autor de correspondencia); Shroff, E.H. ; Burns, T.F.; et al.
Revista:
PLOS GENETICS
ISSN:
1553-7390
Año:
2012
Vol.:
8
N°:
5
Págs.:
e1002650
KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with Kras(G12D) to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy.
Revista:
CLINICAL AND EXPERIMENTAL METASTASIS
ISSN:
0262-0898
Año:
2011
Vol.:
28
N°:
8
Págs.:
779 - 791
Lung cancer comprises a large variety of histological subtypes with a frequent proclivity to form bone metastasis; a condition associated with dismal prognosis. To identify common mechanisms in the development of osteolytic metastasis, we systematically screened a battery of lung cancer cell lines and developed three models of non-small cell lung cancer (NSCLC) with a common proclivity to form osseous lesions, which represented different histological subtypes. Comparative analysis revealed different incidences and latency times. These differences were correlated with cell-type-specific secretion of osteoclastogenic factors, including macrophage inflammatory protein-1¿, interleukin-8 and parathyroid hormone-related protein, some of which were exacerbated in conditions that mimicked tumor-stroma interactions. In addition, a distinct signature of matrix metalloproteinase (MMP) activity derived from reciprocal tumor-stroma interactions was detected for each tumor cell line. Thus, these results suggest subtle differences in the mechanisms of bone colonization for each lung cancer subtype, but share, although each to a different degree, dual MMP and osteoclastogenic activities that are differentially enhanced upon tumor-stromal interactions