Revistas
Autores:
Mitra, S.; Muralidharan, S. V.; Di Marco, M.; et al.
Revista:
CANCER RESEARCH
ISSN:
0008-5472
Año:
2021
Vol.:
81
N°:
6
Págs.:
1457 - 1471
Neuroblastoma has a low mutation rate for the p53 gene. Alternative ways of p53 inactivation have been proposed in neuroblastoma, such as abnormal cytoplasmic accumulation of wildtype p53. However, mechanisms leading to p53 inactivation via cytoplasmic accumulation are not well investigated. Here we show that the neuroblastoma risk-associated locus 6p22.3-derived tumor suppressor NBAT1 is a p53-responsive lncRNA that regulates p53 subcellular levels. Low expression of NBAT1 provided resistance to genotoxic drugs by promoting p53 accumulation in cytoplasm and loss from mitochondrial and nuclear compartments. Depletion of NBAT1 altered CRM1 function and contributed to the loss of p53-dependent nuclear gene expression during genotoxic drug treatment. CRM1 inhibition rescued p53-dependent nuclear functions and sensitized NBAT1-depleted cells to genotoxic drugs. Combined inhibition of CRM1 and MDM2 was even more effective in sensitizing aggressive neuroblastoma cells with p53 cytoplasmic accumulation. Thus, our mechanistic studies uncover an NBAT1-dependent CRM1/MDM2-based potential combination therapy for patients with high-risk neuroblastoma. Significance: This study shows how a p53-responsive lncRNA mediates chemotherapeutic response by modulating nuclear p53 pathways and identifies a potential treatment strategy for patients with high-risk neuroblastoma.
Revista:
NATURE COMMUNICATIONS
ISSN:
2041-1723
LncRNAs have been shown to be direct players in chromatin regulation, but little is known about their role at active genomic loci. We investigate the role of lncRNAs in gene activation by profiling the RNA interactome of SMARCB1-containing SWI/SNF complexes in proliferating and senescent conditions. The isolation of SMARCB1-associated transcripts, together with chromatin profiling, shows prevalent association to active regions where SMARCB1 differentially binds locally transcribed RNAs. We identify SWINGN, a IncRNA interacting with SMARCB1 exclusively in proliferating conditions, exerting a pro-oncogenic role in some tumor types. SWINGN is transcribed from an enhancer and modulates the activation of GAS6 oncogene as part of a topologically organized region, as well as a larger network of pro-oncogenic genes by favoring SMARCB1 binding. Our results indicate that SWINGN influences the ability of the SWI/SNF complexes to drive epigenetic activation of specific promoters, suggesting a SWI/SNF-RNA cooperation to achieve optimal transcriptional activation.
Revista:
JOURNAL OF CELL BIOLOGY
ISSN:
0021-9525
Año:
2020
Vol.:
219
N°:
9
Cancer is characterized by genomic instability leading to deletion or amplification of oncogenes or tumor suppressors. However, most of the altered regions are devoid of known cancer drivers. Here, we identify lncRNAs frequently lost or amplified in cancer. Among them, we found amplified IncRNA associated with lung cancer-1 (ALAL-1) as frequently amplified in lung adenocarcinomas. ALAL-1 is also overexpressed in additional tumor types, such as lung squamous carcinoma. The RNA product of ALAL-1 is able to promote the proliferation and tumorigenicity of lung cancer cells. ALAL-1 is a TNF alpha- and NF-kappa B-induced cytoplasmic lncRNA that specifically interacts with SART3, regulating the subcellular localization of the protein deubiquitinase USP4 and, in turn, its function in the cell. Interestingly, ALAL-1 expression inversely correlates with the immune infiltration of lung squamous tumors, while tumors with ALAL-1 amplification show lower infiltration of several types of immune cells. We have thus unveiled a pro-oncogenic lncRNA that mediates cancer immune evasion, pointing to a new target for immune potentiation.
Revista:
EMBO REPORTS
ISSN:
1469-221X
lncRNAs actively regulate gene expression. They contribute to chromosomal interactions at close or distant genomic regions, which, in turn, regulate transcription [1]. Ariel et al [2] reveal in a recent study a new molecular mechanism of the Arabidopsis lncRNA APOLO. The authors extend previously reported functions of APOLO in cis-regulation of chromosomal looping and transcription of its neighbor gene to a set of distant genes involved in auxin-induced molecular pathways controlling lateral root development. Noteworthy, APOLO recognition of multiple trans-modulated targets occurs through a novel mechanism involving R-loop formation.
Revista:
JOURNAL OF EXPERIMENTAL AND CLINICAL CANCER RESEARCH
ISSN:
1756-9966
BackgroundThousands of long noncoding RNAs (lncRNAs) are aberrantly expressed in various types of cancers, however our understanding of their role in the disease is still very limited.MethodsWe applied RNAseq analysis from patient-derived data with validation in independent cohort of patients. We followed these studies with gene regulation analysis as well as experimental dissection of the role of the identified lncRNA by multiple in vitro and in vivo methods.ResultsWe analyzed RNA-seq data from tumors of 456 CRC patients compared to normal samples, and identified SNHG15 as a potentially oncogenic lncRNA that encodes a snoRNA in one of its introns. The processed SNHG15 is overexpressed in CRC tumors and its expression is highly correlated with poor survival of patients. Interestingly, SNHG15 is more highly expressed in tumors with high levels of MYC expression, while MYC protein binds to two E-box motifs on SNHG15 sequence, indicating that SNHG15 transcription is directly regulated by the oncogene MYC.The depletion of SNHG15 by siRNA or CRISPR-Cas9 inhibits cell proliferation and invasion, decreases colony formation as well as the tumorigenic capacity of CRC cells, whereas its overexpression leads to opposite effects. Gene expression analysis performed upon SNHG15 inhibition showed changes in multiple relevant genes implicated in cancer progression, including MYC, NRAS, BAG3 or ERBB3. Several of these genes are functionally related to AIF, a protein that we found to specifically interact with SNHG15, suggesting that the SNHG15 acts, at least in part, by regulating the activity of AIF. Interestingly, ROS levels, which are directly regulated by AIF, show a significant reduction in SNHG15-depleted cells. Moreover, knockdown of SNHG15 increases the sensitiveness of the cells to 5-FU, while its overexpression renders them more resistant to the chemotherapeutic drug.ConclusionAltogether, these results describe an important role of SNHG15 in promoting colon cancer and mediating drug resistance, suggesting its potential as prognostic marker and target for RNA-based therapies.
Revista:
JOURNAL OF EXPERIMENTAL AND CLINICAL CANCER RESEARCH
ISSN:
1756-9966
Año:
2019
Vol.:
38
N°:
1
Págs.:
441
In the original publication of this article,[1] the Funding section needs to be revised, and the corrected Funding section appears below.
Autores:
Pazo, A.; Perez-Gonzalez, A.; Oliveros, J. C. ; et al.
Revista:
FRONTIERS IN PHYSIOLOGY
ISSN:
1664-042X
Año:
2019
Vol.:
10
N°:
92
hCLE/C14orf166/RTRAF, DDX1, and HSPC117 are components of cytoplasmic mRNA-transporting granules kinesin-associated in dendrites. They have also been found in cytoplasmic ribosome-containing RNA granules that transport specific mRNAs halted for translation until specific neuronal signals renders them accessible to the translation machinery. hCLE associates to DDX1, HSPC117, and FAM98B in HEK293T cells and all four proteins bind to cap analog-containing resins. Competition and elution experiments indicate that binding of hCLE complex to cap resins is independent of elF4E; the cap-binding factor needed for translation. Purified hCLE free of its associated proteins binds cap with low affinity suggesting that its interacting proteins modulate its cap association. hCLE silencing reduces hCLE accumulation and that of its interacting proteins and decreases mRNA translation. hCLE-associated RNAs have been isolated and sequenced; RNAs involved in mRNA translation are specifically associated. The data suggest that RNA granules may co-transport RNAs encoding proteins involved in specific functions together with RNAs that encode proteins needed for the translation of these specific RNAs and indicate an important role for hCLE modulating mRNA translation.
Revista:
CELL
ISSN:
0092-8674
Año:
2018
Vol.:
173
N°:
6
Págs.:
1318 - 1319
The role of the noncoding genome in cancer biology is continually expanding. Cho et al. reveal a new and unexpected mechanism for the regulation of MYC expression mediated by the promoter sequence of its neighbor gene PVT1. This DNA element acts as a promoter-enhancer competitor and a candidate tumor suppressor.'
Revista:
NATURE CELL BIOLOGY
ISSN:
1465-7392
Año:
2018
Vol.:
20
N°:
4
Págs.:
371 - 372
Autores:
Torres-Bayona, S.; Aldaz, P.; Auzmendi-Iriarte, J.; et al.
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2018
Vol.:
8
N°:
12746
Long non-coding RNAs (LncRNAs) have emerged as a relevant class of genome regulators involved in a broad range of biological processes and with important roles in tumor initiation and malignant progression. We have previously identified a p53-regulated tumor suppressor signature of LncRNAs (PR-LncRNAs) in colorectal cancer. Our aim was to identify the expression and function of this signature in gliomas. We found that the expression of the four PR-LncRNAs tested was high in human low-grade glioma samples and diminished with increasing grade of disease, being the lowest in glioblastoma samples. Functional assays demonstrated that PR-LncRNA silencing increased glioma cell proliferation and oncosphere formation. Mechanistically, we found an inverse correlation between PR-LncRNA expression and SOX1, SOX2 and SOX9 stem cell factors in human glioma biopsies and in glioma cells in vitro. Moreover, knock-down of SOX activity abolished the effect of PR-LncRNA silencing in glioma cell activity. In conclusion, our results demonstrate that the expression and function of PR-LncRNAs are significantly altered in gliomagenesis and that their activity is mediated by SOX factors. These results may provide important insights into the mechanisms responsible for glioblastoma pathogenesis.
Autores:
Mondal, T.; Juvvuna, P. K.; Kirkeby, A.; et al.
Revista:
CANCER CELL
ISSN:
1535-6108
Año:
2018
Vol.:
33
N°:
3
Págs.:
417 - +
Trait-associated loci often map to genomic regions encoding long noncoding RNAs (lncRNAs), but the role of these lncRNAs in disease etiology is largely unexplored. We show that a pair of sense/antisense lncRNA (6p22lncRNAs) encoded by CASC15 and NBAT1 located at the neuroblastoma (NB) risk-associated 6p22.3 locus are tumor suppressors and show reduced expression in high-risk NBs. Loss of functional synergy between 6p22lncRNAs results in an undifferentiated state that is maintained by a gene-regulatory network, including SOX9 located on 17q, a region frequently gained in NB. 6p22lncRNAs regulate SOX9 expression by controlling CHD7 stability via modulating the cellular localization of USP36, encoded by another 17q gene. This regulatory nexus between 6p22.3 and 17q regions may lead to potential NB treatment strategies.
Revista:
NEURO-ONCOLOGY
ISSN:
1522-8517
Año:
2018
Vol.:
20
N°:
7
Págs.:
930 - 941
Background: Glioblastoma, the most aggressive primary brain tumor, is genetically heterogeneous. Alternative splicing (AS) plays a key role in numerous pathologies, including cancer. The objectives of our study were to determine whether aberrant AS could play a role in the malignant phenotype of glioma and to understand the mechanism underlying its aberrant regulation. Methods: We obtained surgical samples from patients with glioblastoma who underwent 5-aminolevulinic fluorescence-guided surgery. Biopsies were taken from the tumor center as well as from adjacent normal-appearing tissue. We used a global splicing array to identify candidate genes aberrantly spliced in these glioblastoma samples. Mechanistic and functional studies were performed to elucidate the role of our top candidate splice variant, BAF45d, in glioblastoma. Results: BAF45d is part of the switch/sucrose nonfermentable complex and plays a key role in the development of the CNS. The BAF45d/6A isoform is present in 85% of over 200 glioma samples that have been analyzed and contributes to the malignant glioma phenotype through the maintenance of an undifferentiated cellular state. We demonstrate that BAF45d splicing is mediated by polypyrimidine tract-binding protein 1 (PTBP1) and that BAF45d regulates PTBP1, uncovering a reciprocal interplay between RNA splicing regulation and transcription. Conclusions: Our data indicate that AS is a mechanism that contributes to the malignant phenotype of glioblastoma. Understanding the consequences of this biological process will uncover new therapeutic targets for this devastating disease.
Revista:
CELL CYCLE
ISSN:
1538-4101
Año:
2017
Vol.:
16
N°:
2
Págs.:
151 - 152
Autores:
Li, X.L. ; Subramanian, M. ; Jones, M. F. ; et al.
Revista:
CELL REPORTS
ISSN:
2211-1247
Año:
2017
Vol.:
20
N°:
10
Págs.:
2408 - 2423
Basal p53 levels are tightly suppressed under normal conditions. Disrupting this regulation results in elevated p53 levels to induce cell cycle arrest, apoptosis, and tumor suppression. Here, we report the suppression of basal p53 levels by a nuclear, p53-regulated long noncoding RNA that we termed PURPL (p53 upregulated regulator of p53 levels). Targeted depletion of PURPL in colorectal cancer cells results in elevated basal p53 levels and induces growth defects in cell culture and in mouse xenografts. PURPL associates with MYBBP1A, a protein that binds to and stabilizes p53, and inhibits the formation of the p53-MYBBP1A complex. In the absence of PURPL, MYBBP1A interacts with and stabilizes p53. Silencing MYBBP1A significantly rescues basal p53 levels and proliferation in PURPL-deficient cells, suggesting that MYBBP1A mediates the effect of PURPL in regulating p53. These results reveal a p53-PURPL auto-regulatory feedback loop and demonstrate a role for PURPL in maintaining basal p53 levels.
Revista:
NATURE MEDICINE
ISSN:
1078-8956
Año:
2017
Vol.:
23
N°:
10
Págs.:
1122 - 1123
Two recent studies show that 'silent' variants can modulate regulatory circuits, including those in noncoding RNAs, affecting cancer predisposition and drug sensitivity.
Revista:
GENOME BIOLOGY
ISSN:
1474-760X
Año:
2017
Vol.:
18
Págs.:
202
BACKGROUND:
It is now obvious that the majority of cellular transcripts do not code for proteins, and a significant subset of them are long non-coding RNAs (lncRNAs). Many lncRNAs show aberrant expression in cancer, and some of them have been linked to cell transformation. However, the underlying mechanisms remain poorly understood and it is unknown how the sequences of lncRNA dictate their function.
RESULTS:
Here we characterize the function of the p53-regulated human lncRNA LINC-PINT in cancer. We find that LINC-PINT is downregulated in multiple types of cancer and acts as a tumor suppressor lncRNA by reducing the invasive phenotype of cancer cells. A cross-species analysis identifies a highly conserved sequence element in LINC-PINT that is essential for its function. This sequence mediates a specific interaction with PRC2, necessary for the LINC-PINT-dependent repression of a pro-invasion signature of genes regulated by the transcription factor EGR1.
CONCLUSIONS:
Our findings support a conserved functional co-dependence between LINC-PINT and PRC2 and lead us to propose a new mechanism where the lncRNA regulates the availability of free PRC2 at the proximity of co-regulated genomic loci.
Autores:
Terradas, M.; Martin, M.; Repulles, J.; et al.
Revista:
RADIATION RESEARCH
ISSN:
0033-7587
Año:
2016
Vol.:
186
N°:
6
Págs.:
549 - 558
High-and low-dose X rays are used in medicine as therapeutic and diagnostic tools, respectively. While the cellular response to high-dose radiation is well known, studies on the effects of low-dose radiation and its ability to trigger a proper DNA damage response have had contradictory results. The functions of many signaling and effector proteins of the DNA damage response (DDR) have been described, and are attributed to well-known DDR pathways. However, there has been little known about the contribution of long noncoding RNAs (lncRNAs) to DDR, although there is recent evidence that lncRNAs may be associated with almost all biological functions, including DDR. In this work, we investigated the participation of lncRNAs in the response to different X-ray doses. By microarray analysis, we observed that in human breast epithelial cells, distinct sets of coding and noncoding transcripts are differentially regulated after moderate-and high-dose irradiation compared to those regulated after low-dose irradiation. While the modulated coding and noncoding genes at low doses relate to cell signaling pathways, those affected by moderate and high doses are mostly enriched for cell cycle regulation and apoptotic pathways. Quantification using qPCR of the lncRNAs identified by microarrays allowed the validation of 75% of those regulated at the higher doses. These results indicate that lncRNA expression is regulated by ionizing radiation and that this expression is dose dependent. (C) 2016 by Radiation Research Society
Revista:
NUCLEIC ACID THERAPEUTICS
ISSN:
2159-3337
Año:
2013
Vol.:
23
N°:
1
Págs.:
15-20
Long non-coding RNAs (lncRNAs) have emerged as one of the largest and more diverse classes of cellular transcripts. The growing evidence suggests that lncRNAs are key regulatory molecules present at virtually every level of cellular physiology, and their alterations are associated with multiple human diseases. Here we provide a general overview of the known roles of lncRNAs in different diseases, as well as their imminent application as biomarkers and therapeutic targets. We also discuss the challenges and possible strategies for these clinical applications. It is unquestionable that our knowledge of lncRNAs not only adds a new dimension to the molecular architecture of human disease, but also opens up a whole new range of opportunities for treatment.