Revistas
Revista:
JOURNAL OF PHYSIOLOGY AND BIOCHEMISTRY
ISSN:
1138-7548
Año:
2023
Vol.:
79
N°:
4
Págs.:
901 - 924
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial condition with a complex etiology. Its incidence is increasing globally in parallel with the obesity epidemic, and it is now considered the most common liver disease in Western countries. The precise mechanisms underlying the development and progression of NAFLD are complex and still poorly understood. The dysregulation of epigenetic and epitranscriptomic mechanisms is increasingly recognized to play pathogenic roles in multiple conditions, including chronic liver diseases. Here, we have performed a comprehensive analysis of the expression of epigenetic and epitranscriptomic genes in a total of 903 liver tissue samples corresponding to patients with normal liver, obese patients, and patients with non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH), advancing stages in NAFLD progression. We integrated ten transcriptomic datasets in an unbiased manner, enabling their robust analysis and comparison. We describe the complete landscape of epigenetic and epitranscriptomic genes' expression along the course of the disease. We identify signatures of genes significantly dysregulated in association with disease progression, particularly with liver fibrosis development. Most of these epigenetic and epitranscriptomic effectors have not been previously described in human NAFLD, and their altered expression may have pathogenic implications. We also performed a comprehensive analysis of the expression of enzymes involved in the metabolism of the substrates and cofactors of epigenetic and epitranscriptomic effectors. This study provides novel information on NAFLD pathogenesis and may also guide the identification of drug targets to treat this condition and its progression towards hepatocellular carcinoma.
Autores:
Aguilar-Bravo, B.; Arino, S.; Blaya, D.; et al.
Revista:
JOURNAL OF HEPATOLOGY (ONLINE)
ISSN:
0168-8278
Año:
2023
Vol.:
79
N°:
3
Págs.:
728 - 740
Background & aims: Loss of hepatocyte identity is associated with impaired liver function in alcohol-related hepatitis (AH). In this context, hepatocyte dedifferentiation gives rise to cells with a hepatobiliary (HB) phenotype expressing biliary and hepatocyte markers and showing immature features. However, the mechanisms and impact of hepatocyte dedifferentiation in liver disease are poorly understood.
Methods: HB cells and ductular reaction (DR) cells were quantified and microdissected from liver biopsies from patients with alcohol-related liver disease (ArLD). Hepatocyte-specific overexpression or deletion of C-X-C motif chemokine receptor 4 (CXCR4), and CXCR4 pharmacological inhibition were assessed in mouse liver injury. Patient-derived and mouse organoids were generated to assess plasticity.
Results: Here, we show that HB and DR cells are increased in patients with decompensated cirrhosis and AH, but only HB cells correlate with poor liver function and patients' outcome. Transcriptomic profiling of HB cells revealed the expression of biliary-specific genes and a mild reduction of hepatocyte metabolism. Functional analysis identified pathways involved in hepatocyte reprogramming, inflammation, stemness, and cancer gene programs. The CXCR4 pathway was highly enriched in HB cells and correlated with disease severity and hepatocyte dedifferentiation. In vitro, CXCR4 was associated with a biliary phenotype and loss of hepatocyte features. Liver overexpression of CXCR4 in chronic liver injury decreased the hepatocyte-specific gene expression profile and promoted liver injury. CXCR4 deletion or its pharmacological inhibition ameliorated hepatocyte dedifferentiation and reduced DR and fibrosis progression.
Conclusions: This study shows the association of hepatocyte dedifferentiation with disease progression and poor outcome in AH. Moreover, the transcriptomic profiling of HB cells revealed CXCR4 as a new driver of hepatocyte-to-biliary reprogramming and as a potential therapeutic target to halt hepatocyte dedifferentiation in AH.
Impact and implications: Here, we show that hepatocyte dedifferentiation is associated with disease severity and a reduced synthetic capacity of the liver. Moreover, we identify the CXCR4 pathway as a driver of hepatocyte dedifferentiation and as a therapeutic target in alcohol-related hepatitis. Therefore, this study reveals the importance of preserving strict control over hepatocyte plasticity in order to preserve liver function and promote tissue repair.
Revista:
JOURNAL OF HEPATOLOGY
ISSN:
1600-0641
Año:
2023
Vol.:
79
N°:
4
Págs.:
989 - 1005
BACKGROUND & AIMS: Hepatoblastoma (HB) is the most frequent childhood liver cancer. Patients with aggressive tumors have limited therapeutic options; therefore, a better understanding of HB pathogenesis is needed to improve treatment. HBs have a very low mutational burden; however, epigenetic alterations are increasingly recognized. We aimed to identify epigenetic regulators consistently dysregulated in HB and to evaluate the therapeutic efficacy of their targeting in clinically relevant models.
METHODS: We performed a comprehensive transcriptomic analysis of 180 epigenetic genes. Data from fetal, pediatric, adult, peritumoral (n= 72) and tumoral (n= 91) tissues were integrated. Selected epigenetic drugs were tested in HB cells. The most relevant epigenetic target identified was validated in primary HB cells, HB organoids, a patient-derived xenograft model, and a genetic mouse model. Transcriptomic, proteomic and metabolomic mechanistic analyses were performed.
RESULTS: Altered expression of genes regulating DNA methylation and histone modifications was consistently observed in association with molecular and clinical features of poor prognosis. The histone methyltransferase G9a was markedly upregulated in tumors with epigenetic and transcriptomic traits of increased malignancy. Pharmacological targeting of G9a significantly inhibited growth of HB cells, organoids and patient-derived xenografts. Development of HB induced by oncogenic forms of beta-catenin and YAP1 was ablated in mice with hepatocyte-specific deletion of G9a. We observed that HBs undergo significant transcriptional rewiring in genes involved in amino acid metabolism and ribosomal biogenesis. G9a inhibition counteracted these pro-tumorigenic adaptations. Mechanistically, G9a targeting potently repressed the expression of c-MYC and ATF4, master regulators of HB metabolic reprogramming.
CONCLUSIONS: HBs display a profound dysregulation of the epigenetic machinery. Pharmacological targeting of key epigenetic effectors exposes metabolic vulnerabilities that can be leveraged to improve the treatment of these patients.
IMPACT AND IMPLICATIONS: In spite of recent advances in the management of hepatoblastoma (HB), treatment resistance and drug toxicity are still major concerns. This systematic study reveals the remarkable dysregulation in the expression of epigenetic genes in HB tissues. Through pharmacological and genetic experimental approaches, we demonstrate that the histone-lysine-methyltransferase G9a is an excellent drug target in HB, which can also be harnessed to enhance the efficacy of chemotherapy. Furthermore, our study highlights the profound pro-tumorigenic metabolic rewiring of HB cells orchestrated by G9a in coordination with the c-MYC oncogene. From a broader perspective, our findings suggest that anti-G9a therapies may also be effective in other c-MYC-dependent tumors.
Autores:
Chen, C. B.; Wu, H. H.; Ye, H.; et al.
Revista:
CANCERS
ISSN:
2072-6694
Año:
2022
Vol.:
14
N°:
1
Págs.:
78
Polycystic liver disease (PLD) is a group of rare disorders that result from structural changes in the biliary tree development in the liver. In the present work, we studied alterations in molecular mechanisms and signaling pathways that might be responsible for these pathologies. We found that activation of the unfolded protein response, a process that occurs in response to an accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum, as well as the scarring of the liver tissue, contribute to the pathogenesis of PLD and the development of cancer. As a preclinical animal model we have used mutant mice of a specific signaling pathway, the c-Jun N-terminal kinase 1/2 (Jnk1/2). These mice resemble a perfect model for the study of PLD and early cancer development.
Revista:
JOURNAL OF EXPERIMENTAL AND CLINICAL CANCER RESEARCH
ISSN:
1756-9966
Año:
2022
Vol.:
41
N°:
1
Págs.:
183
Background Cholangiocarcinoma (CCA) is still a deadly tumour. Histological and molecular aspects of thioacetamide (TAA)-induced intrahepatic CCA (iCCA) in rats mimic those of human iCCA. Carcinogenic changes and therapeutic vulnerabilities in CCA may be captured by molecular investigations in bile, where we performed bile proteomic and metabolomic analyses that help discovery yet unknown pathways relevant to human iCCA. Methods Cholangiocarcinogenesis was induced in rats (TAA) and mice (Jnk(Delta hepa) + CCl4 + DEN model). We performed proteomic and metabolomic analyses in bile from control and CCA-bearing rats. Differential expression was validated in rat and human CCAs. Mechanisms were addressed in human CCA cells, including Huh28-KRAS(G12D) cells. Cell signaling, growth, gene regulation and [U-C-13]-D-glucose-serine fluxomics analyses were performed. In vivo studies were performed in the clinically-relevant iCCA mouse model. Results Pathways related to inflammation, oxidative stress and glucose metabolism were identified by proteomic analysis. Oxidative stress and high amounts of the oncogenesis-supporting amino acids serine and glycine were discovered by metabolomic studies. Most relevant hits were confirmed in rat and human CCAs (TCGA). Activation of interleukin-6 (IL6) and epidermal growth factor receptor (EGFR) pathways, and key genes in cancer-related glucose metabolic reprogramming, were validated in TAA-CCAs. In TAA-CCAs, G9a, an epigenetic pro-tumorigenic writer, was also increased. We show that EGFR signaling and mutant KRAS(G12D) can both activate IL6 production in CCA cells. Furthermore, phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in serine-glycine pathway, was upregulated in human iCCA correlating with G9a expression. In a G9a activity-dependent manner, KRAS(G12D) promoted PHGDH expression, glucose flow towards serine synthesis, and increased CCA cell viability. KRAS(G12D) CAA cells were more sensitive to PHGDH and G9a inhibition than controls. In mouse iCCA, G9a pharmacological targeting reduced PHGDH expression. Conclusions In CCA, we identified new pro-tumorigenic mechanisms: Activation of EGFR signaling or KRAS mutation drives IL6 expression in tumour cells; Glucose metabolism reprogramming in iCCA includes activation of the serine-glycine pathway; Mutant KRAS drives PHGDH expression in a G9a-dependent manner; PHGDH and G9a emerge as therapeutic targets in iCCA.
Revista:
GUT
ISSN:
0017-5749
Año:
2022
Vol.:
71
N°:
6
Págs.:
1141 - 1151
Objective Despite significant progresses in imaging and pathological evaluation, early differentiation between benign and malignant biliary strictures remains challenging. Endoscopic retrograde cholangiopancreatography (ERCP) is used to investigate biliary strictures, enabling the collection of bile. We tested the diagnostic potential of next-generation sequencing (NGS) mutational analysis of bile cell-free DNA (cfDNA). Design A prospective cohort of patients with suspicious biliary strictures (n=68) was studied. The performance of initial pathological diagnosis was compared with that of the mutational analysis of bile cfDNA collected at the time of first ERCP using an NGS panel open to clinical laboratory implementation, the Oncomine Pan-Cancer Cell-Free assay. Results An initial pathological diagnosis classified these strictures as of benign (n=26), indeterminate (n=9) or malignant (n=33) origin. Sensitivity and specificity of this diagnosis were 60% and 100%, respectively, as on follow-up 14 of the 26 and eight of the nine initially benign or indeterminate strictures resulted malignant. Sensitivity and specificity for malignancy of our NGS assay, herein named Bilemut, were 96.4% and 69.2%, respectively. Importantly, one of the four Bilemut false positives developed pancreatic cancer after extended follow-up. Remarkably, the sensitivity for malignancy of Bilemut was 100% in patients with an initial diagnosis of benign or indeterminate strictures. Analysis of 30 paired bile and tissue samples also demonstrated the superior performance of Bilemut. Conclusion Implementation of Bilemut at the initial diagnostic stage for biliary strictures can significantly improve detection of malignancy, reduce delays in the clinical management of patients and assist in selecting patients for targeted therapies.
Autores:
González-Recio, I.; Simón, J.; Goikoetxea-Usandizaga, N.; et al.
Revista:
NATURE COMMUNICATIONS
ISSN:
2041-1723
Año:
2022
Vol.:
13
N°:
1
Págs.:
6816 -*
Drug induced liver injury (DILI) is an important cause acute liver failure. Here the authors report that serum Mg2+ serum levels decrease in patients with DILI as well as in preclinical animal models treated with acetaminophen overdose, and that early intervention targeting the Mg2+ transporter Cyclin M4 may be beneficial for acetaminophen overdose in preclinical models. Acetaminophen overdose is one of the leading causes of acute liver failure and liver transplantation in the Western world. Magnesium is essential in several cellular processess. The Cyclin M family is involved in magnesium transport across cell membranes. Herein, we identify that among all magnesium transporters, only Cyclin M4 expression is upregulated in the liver of patients with acetaminophen overdose, with disturbances in magnesium serum levels. In the liver, acetaminophen interferes with the mitochondrial magnesium reservoir via Cyclin M4, affecting ATP production and reactive oxygen species generation, further boosting endoplasmic reticulum stress. Importantly, Cyclin M4 mutant T495I, which impairs magnesium flux, shows no effect. Finally, an accumulation of Cyclin M4 in endoplasmic reticulum is shown under hepatoxicity. Based on our studies in mice, silencing hepatic Cyclin M4 within the window of 6 to 24 h following acetaminophen overdose ingestion may represent a therapeutic target for acetaminophen overdose induced liver injury.
Revista:
HEPATOLOGY
ISSN:
0270-9139
Año:
2021
Vol.:
73
N°:
6
Págs.:
2380 - 2396
Background and Aims Cholangiocarcinoma (CCA) is a devastating disease often detected at advanced stages when surgery cannot be performed. Conventional and targeted systemic therapies perform poorly, and therefore effective drugs are urgently needed. Different epigenetic modifications occur in CCA and contribute to malignancy. Targeting epigenetic mechanisms may thus open therapeutic opportunities. However, modifications such as DNA and histone methylation often coexist and cooperate in carcinogenesis. We tested the therapeutic efficacy and mechanism of action of a class of dual G9a histone-methyltransferase and DNA-methyltransferase 1 (DNMT1) inhibitors. Approach and Results Expression of G9a, DNMT1, and their molecular adaptor, ubiquitin-like with PHD and RING finger domains-1 (UHRF1), was determined in human CCA. We evaluated the effect of individual and combined pharmacological inhibition of G9a and DNMT1 on CCA cell growth. Our lead G9a/DNMT1 inhibitor, CM272, was tested in human CCA cells, patient-derived tumoroids and xenograft, and a mouse model of cholangiocarcinogenesis with hepatocellular deletion of c-Jun-N-terminal-kinase (Jnk)-1/2 and diethyl-nitrosamine (DEN) plus CCl4 treatment (Jnk(Delta hepa) + DEN + CCl4 mice). We found an increased and correlative expression of G9a, DNMT1, and UHRF1 in CCAs. Cotreatment with independent pharmacological inhibitors G9a and DNMT1 synergistically inhibited CCA cell growth. CM272 markedly reduced CCA cell proliferation and synergized with Cisplatin and the ERBB-targeted inhibitor, Lapatinib. CM272 inhibited CCA tumoroids and xenograft growth and significantly antagonized CCA progression in Jnk(Delta hepa) + DEN + CCl4 mice without apparent toxicity. Mechanistically, CM272 reprogrammed the tumoral metabolic transcriptome and phenotype toward a differentiated and quiescent status. Conclusions Dual targeting of G9a and DNMT1 with epigenetic small molecule inhibitors such as CM272 is a potential strategy to treat CCA and/or enhance the efficacy of other systemic therapies.
Revista:
GUT
ISSN:
0017-5749
Año:
2021
Vol.:
70
N°:
2
Págs.:
388 - 400
Objective Hepatic stellate cells (HSC) transdifferentiation into myofibroblasts is central to fibrogenesis. Epigenetic mechanisms, including histone and DNA methylation, play a key role in this process. Concerted action between histone and DNA-mehyltransferases like G9a and DNMT1 is a common theme in gene expression regulation. We aimed to study the efficacy of CM272, a first-in-class dual and reversible G9a/DNMT1 inhibitor, in halting fibrogenesis. Design G9a and DNMT1 were analysed in cirrhotic human livers, mouse models of liver fibrosis and cultured mouse HSC. G9a and DNMT1 expression was knocked down or inhibited with CM272 in human HSC (hHSC), and transcriptomic responses to transforming growth factor-beta 1 (TGF beta 1) were examined. Glycolytic metabolism and mitochondrial function were analysed with Seahorse-XF technology. Gene expression regulation was analysed by chromatin immunoprecipitation and methylation-specific PCR. Antifibrogenic activity and safety of CM272 were studied in mouse chronic CCl4 administration and bile duct ligation (BDL), and in human precision-cut liver slices (PCLSs) in a new bioreactor technology. Results G9a and DNMT1 were detected in stromal cells in areas of active fibrosis in human and mouse livers. G9a and DNMT1 expression was induced during mouse HSC activation, and TGF beta 1 triggered their chromatin recruitment in hHSC. G9a/DNMT1 knockdown and CM272 inhibited TGF beta 1 fibrogenic responses in hHSC. TGF beta 1-mediated profibrogenic metabolic reprogramming was abrogated by CM272, which restored gluconeogenic gene expression and mitochondrial function through on-target epigenetic effects. CM272 inhibited fibrogenesis in mice and PCLSs without toxicity. Conclusions Dual G9a/DNMT1 inhibition by compounds like CM272 may be a novel therapeutic strategy for treating liver fibrosis.
Autores:
Carotti, S.; Zingariello, M.; Francesconi, M.; et al.
Revista:
ONCOGENE
ISSN:
0950-9232
Año:
2021
Vol.:
40
N°:
23
Págs.:
4033 - 4049
Intrahepatic cholangiocarcinoma (iCCA) is a rare malignancy of the intrahepatic biliary tract with a very poor prognosis. Although some clinicopathological parameters can be prognostic factors for iCCA, the molecular prognostic markers and potential mechanisms of iCCA have not been well investigated. Here, we report that the Fragile X mental retardation protein (FMRP), a RNA binding protein functionally absent in patients with the Fragile X syndrome (FXS) and also involved in several types of cancers, is overexpressed in human iCCA and its expression is significantly increased in iCCA metastatic tissues. The silencing of FMRP in metastatic iCCA cell lines affects cell migration and invasion, suggesting a role of FMRP in iCCA progression. Moreover, we show evidence that FMRP is localized at the invasive front of human iCCA neoplastic nests and in pseudopodia and invadopodia protrusions of migrating and invading iCCA cancer cells. Here FMRP binds several mRNAs encoding key proteins involved in the formation and/or function of these protrusions. In particular, we find that FMRP binds to and regulates the expression of Cortactin, a critical regulator of invadopodia formation. Altogether, our findings suggest that FMRP could promote cell invasiveness modulating membrane plasticity and invadopodia formation at the leading edges of invading iCCA cells.
Revista:
HEPATOLOGY
ISSN:
0270-9139
Año:
2021
Vol.:
74
N°:
5
Págs.:
2791 - 2807
Background and Aims Hepatocellular dedifferentiation is emerging as an important determinant in liver disease progression. Preservation of mature hepatocyte identity relies on a set of key genes, predominantly the transcription factor hepatocyte nuclear factor 4 alpha (HNF4 alpha) but also splicing factors like SLU7. How these factors interact and become dysregulated and the impact of their impairment in driving liver disease are not fully understood. Approach and Results Expression of SLU7 and that of the adult and oncofetal isoforms of HNF4 alpha, driven by its promoter 1 (P1) and P2, respectively, was studied in diseased human and mouse livers. Hepatic function and damage response were analyzed in wild-type and Slu7-haploinsufficient/heterozygous (Slu7(+/-)) mice undergoing chronic (CCl4) and acute (acetaminophen) injury. SLU7 expression was restored in CCl4-injured mice using SLU7-expressing adeno-associated viruses (AAV-SLU7). The hepatocellular SLU7 interactome was characterized by mass spectrometry. Reduced SLU7 expression in human and mouse diseased livers correlated with a switch in HNF4 alpha P1 to P2 usage. This response was reproduced in Slu7(+/-) mice, which displayed increased sensitivity to chronic and acute liver injury, enhanced oxidative stress, and marked impairment of hepatic functions. AAV-SLU7 infection prevented liver injury and hepatocellular dedifferentiation. Mechanistically we demonstrate a unique role for SLU7 in the preservation of HNF4 alpha 1 protein stability through its capacity to protect the liver against oxidative stress. SLU7 is herein identified as a key component of the stress granule proteome, an essential part of the cell's antioxidant machinery. Conclusions Our results place SLU7 at the highest level of hepatocellular identity control, identifying SLU7 as a link between stress-protective mechanisms and liver differentiation. These findings emphasize the importance of the preservation of hepatic functions in the protection from liver injury.
Revista:
NUCLEIC ACIDS RESEARCH
ISSN:
0305-1048
Año:
2021
Vol.:
49
N°:
15
Págs.:
8592 - 8609
Gene expression is finely and dynamically controlled through the tightly coordinated and interconnected activity of epigenetic modulators, transcription and splicing factors and post-translational modifiers. We have recently identified the splicing factor SLU7 as essential for maintaining liver cell identity and genome integrity and for securing cell division both trough transcriptional and splicing mechanisms. Now we uncover a new function of SLU7 controlling gene expression at the epigenetic level. We show that SLU7 is required to secure DNMT1 protein stability and a correct DNA methylation. We demonstrate that SLU7 is part in the chromatome of the protein complex implicated in DNA methylation maintenance interacting with and controlling the integrity of DNMT1, its adaptor protein UHRF1 and the histone methyl-transferase G9a at the chromatin level. Mechanistically, we found that SLU7 assures DNMT1 stability preventing its acetylation and degradation by facilitating its interaction with HDAC1 and the desubiquitinase USP7. Importantly, we demonstrate that this DNMT1 dependency on SLU7 occurs in a large panel of proliferating cell lines of different origins and in in vivo models of liver proliferation. Overall, our results uncover a novel and non-redundant role of SLU7 in DNA methylation and present SLU7 as a holistic regulator of gene expression.
Revista:
CANCERS
ISSN:
2072-6694
Año:
2020
Vol.:
12
N°:
12
Págs.:
3748
Simple Summary Chronic liver injury and inflammation leads to excessive deposition of extracellular matrix, known as liver fibrosis, and the distortion of the hepatic parenchyma. Liver fibrosis may progress to cirrhosis, a condition in which hepatic function is impaired and most cases of liver tumors occur. Currently, there are no effective therapies to inhibit and reverse the progression of liver fibrosis, and therefore, chronic liver disease remains a global health problem. In this study we have tested the efficacy of a new class of molecules that simultaneously target two molecular pathways known to be involved in the pathogenesis of hepatic fibrosis. In a clinically relevant mouse model of liver injury and inflammation we show that the combined inhibition of histones deacetylases and the cyclic guanosine monophosphate (cGMP) phosphodiesterase phosphodiesterase 5 (PDE5) results in potent anti-inflammatory and anti-fibrotic effects. Our findings open new avenues for the treatment of liver fibrosis and therefore, the prevention of hepatic carcinogenesis. Liver fibrosis, a common hallmark of chronic liver disease (CLD), is characterized by the accumulation of extracellular matrix secreted by activated hepatic fibroblasts and stellate cells (HSC). Fibrogenesis involves multiple cellular and molecular processes and is intimately linked to chronic hepatic inflammation. Importantly, it has been shown to promote the loss of liver function and liver carcinogenesis. No effective therapies for liver fibrosis are currently available. We examined the anti-fibrogenic potential of a new drug (CM414) that simultaneously inhibits histone deacetylases (HDACs), more precisely HDAC1, 2, and 3 (Class I) and HDAC6 (Class II) and stimulates the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway activity through phosphodiesterase 5 (PDE5) inhibition, two mechanisms independently involved in liver fibrosis. To this end, we treated Mdr2-KO mice, a clinically relevant model of liver inflammation and fibrosis, with our dual HDAC/PDE5 inhibitor CM414. We observed a decrease in the expression of fibrogenic markers and collagen deposition, together with a marked reduction in inflammation. No signs of hepatic or systemic toxicity were recorded. Mechanistic studies in cultured human HSC and cholangiocytes (LX2 and H69 cell lines, respectively) demonstrated that CM414 inhibited pro-fibrogenic and inflammatory responses, including those triggered by transforming growth factor beta (TGF beta). Our study supports the notion that simultaneous targeting of pro-inflammatory and fibrogenic mechanisms controlled by HDACs and PDE5 with a single molecule, such as CM414, can be a new disease-modifying strategy.
Revista:
CANCERS
ISSN:
2072-6694
Año:
2020
Vol.:
12
N°:
6
Págs.:
1644
Cholangiocarcinoma (CCA) and pancreatic adenocarcinoma (PDAC) may lead to the development of extrahepatic obstructive cholestasis. However, biliary stenoses can also be caused by benign conditions, and the identification of their etiology still remains a clinical challenge. We performed metabolomic and proteomic analyses of bile from patients with benign (n= 36) and malignant conditions, CCA (n= 36) or PDAC (n= 57), undergoing endoscopic retrograde cholangiopancreatography with the aim of characterizing bile composition in biliopancreatic disease and identifying biomarkers for the differential diagnosis of biliary strictures. Comprehensive analyses of lipids, bile acids and small molecules were carried out using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (H-1-NMR) in all patients. MS analysis of bile proteome was performed in five patients per group. We implemented artificial intelligence tools for the selection of biomarkers and algorithms with predictive capacity. Our machine-learning pipeline included the generation of synthetic data with properties of real data, the selection of potential biomarkers (metabolites or proteins) and their analysis with neural networks (NN). Selected biomarkers were then validated with real data. We identified panels of lipids (n= 10) and proteins (n= 5) that when analyzed with NN algorithms discriminated between patients with and without cancer with an unprecedented accuracy.
Revista:
NATURE COMMUNICATIONS
ISSN:
2041-1723
Año:
2019
Vol.:
10
N°:
3126
Alcoholic hepatitis (AH) is a life-threatening condition characterized by profound hepatocellular dysfunction for which targeted treatments are urgently needed. Identification of molecular drivers is hampered by the lack of suitable animal models. By performing RNA sequencing in livers from patients with different phenotypes of alcohol-related liver disease (ALD), we show that development of AH is characterized by defective activity of liver-enriched transcription factors (LETFs). TGF beta 1 is a key upstream transcriptome regulator in AH and induces the use of HNF4 alpha P2 promoter in hepatocytes, which results in defective metabolic and synthetic functions. Gene polymorphisms in LETFs including HNF4 alpha are not associated with the development of AH. In contrast, epigenetic studies show that AH livers have profound changes in DNA methylation state and chromatin remodeling, affecting HNF4 alpha-dependent gene expression. We conclude that targeting TGF beta 1 and epigenetic drivers that modulate HNF4 alpha-dependent gene expression could be beneficial to improve hepatocellular function in patients with AH.
Revista:
HEPATOLOGY
ISSN:
0270-9139
Año:
2019
Vol.:
69
N°:
2
Págs.:
587 - 603
Epigenetic modifications such as DNA and histone methylation functionally cooperate in fostering tumor growth, including that of hepatocellular carcinoma (HCC). Pharmacological targeting of these mechanisms may open new therapeutic avenues. We aimed to determine the therapeutic efficacy and potential mechanism of action of our dual G9a histone-methyltransferase and DNA-methyltransferase 1 (DNMT1) inhibitor in human HCC cells and their crosstalk with fibrogenic cells. The expression of G9a and DNMT1, along with that of their molecular adaptor ubiquitin-like with PHD and RING finger domains-1 (UHRF1), was measured in human HCCs (n = 268), peritumoral tissues (n = 154), and HCC cell lines (n = 32). We evaluated the effect of individual and combined inhibition of G9a and DNMT1 on HCC cell growth by pharmacological and genetic approaches. The activity of our lead compound, CM-272, was examined in HCC cells under normoxia and hypoxia, human hepatic stellate cells and LX2 cells, and xenograft tumors formed by HCC or combined HCC+LX2 cells. We found a significant and correlative overexpression of G9a, DNMT1, and UHRF1 in HCCs in association with poor prognosis. Independent G9a and DNMT1 pharmacological targeting synergistically inhibited HCC cell growth. CM-272 potently reduced HCC and LX2 cells proliferation and quelled tumor growth, particularly in HCC+LX2 xenografts. Mechanistically, CM-272 inhibited the metabolic adaptation of HCC cells to hypoxia and induced a differentiated phenotype in HCC and fibrogenic cells. The expression of the metabolic tumor suppressor gene fructose-1,6-bisphosphatase (FBP1), epigenetically repressed in HCC, was restored by CM-272. Conclusion: Combined targeting of G9a/DNMT1 with compounds such as CM-272 is a promising strategy for HCC treatment. Our findings also underscore the potential of differentiation therapy in HCC.
Revista:
NUCLEIC ACIDS RESEARCH
ISSN:
0305-1048
Año:
2019
Vol.:
47
N°:
7
Págs.:
3450 - 3466
Genome instability is related to disease development and carcinogenesis. DNA lesions are caused by genotoxic compounds but also by the dysregulation of fundamental processes like transcription, DNA replication and mitosis. Recent evidence indicates that impaired expression of RNA-binding proteins results in mitotic aberrations and the formation of transcription-associated RNA-DNA hybrids (R-loops), events strongly associated with DNA injury. We identify the splicing regulator SLU7 as a key mediator of genome stability. SLU7 knockdown results in R-loops formation, DNA damage, cell-cycle arrest and severe mitotic derangements with loss of sister chromatid cohesion (SCC). We define a molecular pathway through which SLU7 keeps in check the generation of truncated forms of the splicing factor SRSF3 (SRp20) (SRSF3-TR). Behaving as dominant negative, or by gain-of-function, SRSF3-TR impair the correct splicing and expression of the splicing regulator SRSF1 (ASF/SF2) and the crucial SCC protein sororin. This unique function of SLU7 was found in cancer cells of different tissue origin and also in the normal mouse liver, demonstrating a conserved and fundamental role of SLU7 in the preservation of genome integrity. Therefore, the dowregulation of SLU7 and the alterations of this pathway that we observe in the cirrhotic liver could be involved in the process of hepatocarcinogenesis.
Revista:
HEPATOLOGY
ISSN:
0270-9139
Año:
2019
Vol.:
69
N°:
4
Págs.:
1632 - 1647
Intrahepatic accumulation of bile acids (BAs) causes hepatocellular injury. Upon liver damage, a potent protective response is mounted to restore the organ's function. Epidermal growth factor receptor (EGFR) signaling is essential for regeneration after most types of liver damage, including cholestatic injury. However, EGFR can be activated by a family of growth factors induced during liver injury and regeneration. We evaluated the role of the EGFR ligand, amphiregulin (AREG), during cholestatic liver injury and regulation of AREG expression by BAs. First, we demonstrated increased AREG levels in livers from patients with primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). In two murine models of cholestatic liver injury, bile duct ligation (BDL) and alpha-naphthyl-isothiocyanate (ANIT) gavage, hepatic AREG expression was markedly up-regulated. Importantly, Areg(-/-) mice showed aggravated liver injury after BDL and ANIT administration compared to Areg(+/+) mice. Recombinant AREG protected from ANIT and BDL-induced liver injury and reduced BA-triggered apoptosis in liver cells. Oral BA administration induced ileal and hepatic Areg expression, and, interestingly, cholestyramine feeding reduced postprandial Areg up-regulation in both tissues. Most interestingly, Areg(-/-) mice displayed high hepatic cholesterol 7 alpha-hydroxylase (CYP7A1) expression, reduced serum cholesterol, and high BA levels. Postprandial repression of Cyp7a1 was impaired in Areg(-/-) mice, and recombinant AREG down-regulated Cyp7a1 mRNA in hepatocytes. On the other hand, BAs promoted AREG gene expression and protein shedding in hepatocytes. This effect was mediated through the farnesoid X receptor (FXR), as demonstrated in Fxr(-/-) mice, and involved EGFR transactivation. Finally, we show that hepatic EGFR expression is indirectly induced by BA-FXR through activation of suppressor of cytokine signaling-3 (SOC3). Conclusion: AREG-EGFR signaling protects from cholestatic injury and participates in the physiological regulation of BA synthesis.
Revista:
CELL DEATH AND DISEASE
ISSN:
2041-4889
Año:
2017
Vol.:
8
N°:
10
Págs.:
e3083
The liver displays a remarkable regenerative capacity triggered upon tissue injury or resection. However, liver regeneration can be overwhelmed by excessive parenchymal destruction or diminished by pre-existing conditions hampering repair. Fibroblast growth factor 19 (FGF19, rodent FGF15) is an enterokine that regulates liver bile acid and lipid metabolism, and stimulates hepatocellular protein synthesis and proliferation. FGF19/15 is also important for liver regeneration after partial hepatectomy (PH). Therefore recombinant FGF19 would be an ideal molecule to stimulate liver regeneration, but its applicability may be curtailed by its short half-life. We developed a chimaeric molecule termed Fibapo in which FGF19 is covalently coupled to apolipoprotein A-I. Fibapo retains FGF19 biological activities but has significantly increased half-life and hepatotropism. Here we evaluated the pro-regenerative activity of Fibapo in two clinically relevant models where liver regeneration may be impaired: acetaminophen (APAP) poisoning, and PH in aged mice. The only approved therapy for APAP intoxication is N-acetylcysteine (NAC) and no drugs are available to stimulate liver regeneration. We demonstrate that Fibapo reduced liver injury and boosted regeneration in APAP-intoxicated mice. Fibapo improved survival of APAP-poisoned mice when given at later time points, when NAC is ineffective. Mechanistically, Fibapo accelerated recovery of hepatic glutathione levels, potentiated cell growth-related pathways and increased functional liver mass. When Fibapo was administered to old mice prior to PH, liver regeneration was markedly increased. The exacerbated injury developing in these mice upon PH was attenuated, and the hepatic biosynthetic capacity was enhanced. Fibapo reversed metabolic and molecular alterations that impede regeneration in aged livers. It reduced liver steatosis and downregulated p21 and hepatocyte nuclear factor 4 a (Hnf4a) levels, whereas it stimulated Foxm1b gene expression. Together our findings indicate that FGF19 variants retaining the metabolic and growth-promoting effects of this enterokine may be valuable for the stimulation of liver regeneration.
Revista:
DIGESTIVE DISEASES
ISSN:
0257-2753
Año:
2017
Vol.:
35
N°:
3
Págs.:
158 - 165
Background: Advanced hepatocellular carcinoma (HCC) is a neoplastic disease with a very bad prognosis and increasing worldwide incidence. HCCs are resistant to conventional chemotherapy and the multikinase inhibitor sorafenib is the only agent that has shown some clinical efficacy. It is therefore important to identify key molecular mechanisms driving hepatocarcinogenesis for the development of more efficacious therapies. However, HCCs are heterogeneous tumors and different molecular subclasses have been characterized. This heterogeneity may underlie the poor performance of most of the targeted therapies so far tested in HCC patients. The fibroblast growth factor 15/19 (FGF15/19), FGF receptor 4 (FGFR4) and beta-Klotho (KLB) correceptor signaling system, a key regulator of bile acids (BA) synthesis and intermediary metabolism, is emerging as an important player in hepatocarcinogenesis. Key Messages: Aberrant signaling through the FGF15/19-FGFR4 pathway participates in the neoplastic behavior of HCC cells, promotes HCC development in mice and its overexpression has been characterized in a subset of HCC tumors from patients with poorer prognosis. Pharmacological interference with FGF15/19-FGFR4 signaling inhibits experimental hepatocarcinogenesis, and specific FGFR4 inhibitors are currently being tested in selected HCC patients with tumoral FGF19-FGFR4/KLB expression. Conclusions: Interference with FGF19-FGFR4 signaling represents a novel strategy in HCC therapy. Selection of candidate patients based on tumoral FGF19-FGFR4/KLB levels as biomarkers may result in increased efficacy of FGFR4-targeted drugs. Nevertheless, attention should be paid to the potential on target toxic effects of FGFR4 inhibitors due to the key role of this signaling system in BA metabolism. (C) 2017 S. Karger AG, Basel
Revista:
GUT
ISSN:
0017-5749
Año:
2017
Vol.:
66
N°:
10
Págs.:
1818 - 1828
Objective Fibroblast growth factor 15/19 (FGF15/19), an enterokine that regulates synthesis of hepatic bile acids (BA), has been proposed to influence fat metabolism. Without FGF15/19, mouse liver regeneration after partial hepatectomy (PH) is severely impaired. We studied the role of FGF15/19 in response to a high fat diet (HFD) and its regulation by saturated fatty acids. We developed a fusion molecule encompassing FGF19 and apolipoprotein A-I, termed Fibapo, and evaluated its pharmacological properties in fatty liver regeneration.
Design Fgf15¿/¿ mice were fed a HFD. Liver fat and the expression of fat metabolism and endoplasmic reticulum (ER) stress-related genes were measured. Influence of palmitic acid (PA) on FGF15/19 expression was determined in mice and in human liver cell lines. In vivo half-life and biological activity of Fibapo and FGF19 were compared. Hepatoprotective and proregenerative activities of Fibapo were evaluated in obese db/db mice undergoing PH.
Results Hepatosteatosis and ER stress were exacerbated in HFD-fed Fgf15¿/¿ mice. Hepatic expression of Ppar¿2 was elevated in Fgf15¿/¿ mice, being reversed by FGF19 treatment. PA induced FGF15/19 expression in mouse ileum and human liver cells, and FGF19 protected from PA-mediated ER stress and cytotoxicity. Fibapo reduced liver BA and lipid accumulation, inhibited ER stress and showed enhanced half-life. Fibapo provided increased db/db mice survival and improved regeneration upon PH.
Conclusions FGF15/19 is essential for hepatic metabolic adaptation to dietary fat being a physiological regulator of Ppar¿2 expression. Perioperative administration of Fibapo improves fatty liver regeneration.
Revista:
JOURNAL OF PROTEOME RESEARCH
ISSN:
1535-3893
Año:
2017
Vol.:
16
N°:
12
Págs.:
4506 - 4514
Primary liver cancer (HCC) is recognized as the fifth most common neoplasm and the second leading cause of cancer death worldwide. Most risk factors are known, and the molecular pathogenesis has been widely studied in the past decade; however, the underlying molecular mechanisms remain to be unveiled, as they will facilitate the definition of novel biomarkers and clinical targets for more effective patient management. We utilize the B/D-HPP popular protein strategy. We report a list of popular proteins that have been highly cocited with the expression "liver cancer". Several enzymes highlight the known metabolic remodeling of liver cancer cells, four of which participate in one-carbon metabolism. This pathway is central to the maintenance of differentiated hepatocytes, as it is considered the connection between intermediate metabolism and epigenetic regulation. We designed a targeted selective reaction monitoring (SRM) method to follow up one-carbon metabolism adaptation in mouse HCC and in regenerating liver following exposure to CCl4. This method allows systematic monitoring of one-carbon metabolism and could prove useful in the follow-up of HCC and of chronically liver-diseased patients (cirrhosis) at risk of HCC. The SRM data are available via ProteomeXchange in PASSEL (PASS01060)
Revista:
ONCOGENE
ISSN:
0950-9232
Año:
2016
Vol.:
35
N°:
36
Págs.:
4719 - 4729
Resisting death is a central hallmark of cancer cells. Tumors rely on a number of genetic mechanisms to avoid apoptosis, and alterations in mRNA alternative splicing are increasingly recognized to have a role in tumorigenesis. In this study, we identify the splicing regulator SLU7 as an essential factor for the preservation of hepatocellular carcinoma (HCC) cells viability. Compared with hepatocytes, SLU7 expression is reduced in HCC cells; however, further SLU7 depletion triggered autophagy-related cellular apoptosis in association with the overproduction of reactive oxygen species. Remarkably, these responses were not observed in primary human hepatocytes or in the well-differentiated HepaRG cell line. Mechanistically, we demonstrate that SLU7 binds the C13orf25 primary transcript in which the polycistronic oncomir miR-17-92 cluster is encompassed, and is necessary for its processing and expression. SLU7 knockdown altered the splicing of the C13orf25 primary transcript, and markedly reduced the expression of its miR-17, miR-20 and miR-92a constituents. This led to the upregulation of CDKN1A (P21) and BCL2L11 (BIM) expression, two bona fide targets of the miR-17-92 cluster and recognized mediators of its pro-survival and tumorigenic activity. Interestingly, altered splicing of miR-17-92 and downregulation of miR-17 and miR-20 were not observed upon SLU7 knockdown in non-transformed hepatocytes, but was found in other (HeLa, H358) but not in all (Caco2) non-hepatic tumor cells. The functional relevance of miR-17-92 dysregulation upon SLU7 knockdown was established when oxidative stress, autophagy and apoptosis were reversed by co-transfection of HCC cells with a miR-17 mimic. Together, these findings indicate that SLU7 is co-opted by HCC cells and other tumor cell types to maintain survival, and identify this splicing regulator as a new determinant for the expression of the oncogenic miR-17-92 cluster. This novel mechanism may be exploited for the development of antitumoral strategies in cancers displaying such SLU7-miR-17-92 crosstalk.
Revista:
INTERNATIONAL JOURNAL OF CANCER
ISSN:
0020-7136
Año:
2015
Vol.:
136
N°:
10
Págs.:
2469 - 2475
Fibroblast growth factor 15 (FGF15), FGF19 in humans, is a gut-derived hormone and a key regulator of bile acids and carbohydrate metabolism. FGF15 also participates in liver regeneration after partial hepatectomy inducing hepatocellular proliferation. FGF19 is overexpressed in a significant proportion of human hepatocellular carcinomas (HCC), and activation of its receptor FGFR4 promotes HCC cell growth. Here we addressed for the first time the role of endogenous Fgf15 in hepatocarcinogenesis. Fgf15(+/+) and Fgf15(-/-) mice were subjected to a clinically relevant model of liver inflammation and fibrosis-associated carcinogenesis. Fgf15(-/-) mice showed less and smaller tumors, and histological neoplastic lesions were also smaller than in Fgf15(+/+) animals. Importantly, ileal Fgf15 mRNA expression was enhanced in mice undergoing carcinogenesis, but at variance with human HCC it was not detected in liver or HCC tissues, while circulating FGF15 protein was clearly upregulated. Hepatocellular proliferation was also reduced in Fgf15(-/-) mice, which also expressed lower levels of the HCC marker alpha-fetoprotein (AFP). Interestingly, lack of FGF15 resulted in attenuated fibrogenesis. However, in vitro experiments showed that liver fibrogenic stellate cells were not direct targets for FGF15/FGF19. Conversely we demonstrate that FGF15/FGF19 induces the expression of the pro-fibrogenic and pro-tumorigenic connective tissue growth factor (CTGF) in hepatocytes. These findings suggest the existence of an FGF15-triggered CTGF-mediated paracrine action on stellate cells, and an amplification mechanism for the hepatocarcinogenic effects of FGF15 via CTGF production. In summary, our observations indicate that ileal FGF15 may contribute to HCC development in a context of chronic liver injury and fibrosis. What's new? Fibroblast growth factor-19 (FGF19), in rodents called FGF15, is a gut-derived hormone recently implicated as a driver gene in liver carcinogenesis. Here, the authors show that Fgf15(-/-) mice develop less hepatocellular carcinoma and less liver fibrosis as compared to Fgf15(+/+) littermates, underscoring the important role of the factor in liver damage and cancer development. Interestingly, Fgf15 expression is not detected in injured liver or carcinoma tissue, but is upregulated in the ileum and blood, pointing to a new gut-liver axis involved in hepatocarcinogenesis.
Revista:
HEPATOLOGY
ISSN:
0270-9139
Año:
2015
Vol.:
62
N°:
1
Págs.:
166 - 178
Matrix metalloproteinases (MMPs) participate in tissue repair after acute injury, but also participate in cancer by promoting a protumorigenic microenvironment. Previously, we reported on a key role for MMP10 in mouse liver regeneration. Herein, we investigated MMP10 expression and function in human hepatocellular carcinoma (HCC) and diethylnitrosamine (DEN)-induced mouse hepatocarcinogenesis. MMP10 was induced in human and murine HCC tissues and cells. MMP10-deficient mice showed less HCC incidence, smaller histological lesions, reduced tumor vascularization, and less lung metastases. Importantly, expression of the protumorigenic, C-X-C chemokine receptor-4 (CXCR4), was reduced in DEN-induced MMP10-deficient mice livers. Human HCC cells stably expressing MMP10 had increased CXCR4 expression and migratory capacity. Pharmacological inhibition of CXCR4 significantly reduced MMP10-stimulated HCC cell migration. Furthermore, MMP10 expression in HCC cells was induced by hypoxia and the CXCR4 ligand, stromal-derived factor-1 (SDF1), through the extracellular signal-regulated kinase 1/2 pathway, involving an activator protein 1 site in MMP10 gene promoter.
CONCLUSION:
MMP10 contributes to HCC development, participating in tumor angiogenesis, growth, and dissemination. We identified a new reciprocal crosstalk between MMP10 and the CXCR4/SDF1 axis contributing to HCC progression and metastasis. To our knowledge, this is the first report addressing the role of a MMP in hepatocarcinogenesis in the corresponding genetic mouse model.
Revista:
JOURNAL OF CLINICAL INVESTIGATION
ISSN:
0021-9738
Año:
2014
Vol.:
124
N°:
7
Págs.:
2909-2920
A precise equilibrium between cellular differentiation and proliferation is fundamental for tissue homeostasis. Maintaining this balance is particularly important for the liver, a highly differentiated organ with systemic metabolic functions that is endowed with unparalleled regenerative potential. Carcinogenesis in the liver develops as the result of hepatocellular de-differentiation and uncontrolled proliferation. Here, we identified SLU7, which encodes a pre-mRNA splicing regulator that is inhibited in hepatocarcinoma, as a pivotal gene for hepatocellular homeostasis. SLU7 knockdown in human liver cells and mouse liver resulted in profound changes in pre-mRNA splicing and gene expression, leading to impaired glucose and lipid metabolism, refractoriness to key metabolic hormones, and reversion to a fetal-like gene expression pattern. Additionally, loss of SLU7 also increased hepatocellular proliferation and induced a switch to a tumor-like glycolytic phenotype. Slu7 governed the splicing and/or expression of multiple genes essential for hepatocellular differentiation, including serine/arginine-rich splicing factor 3 (Srsf3) and hepatocyte nuclear factor 4¿ (Hnf4¿), and was critical for cAMP-regulated gene transcription. Together, out data indicate that SLU7 is central regulator of hepatocyte identity and quiescence.
Autores:
Uriarte, Iker; Fernandez-Barrena, M. G.; Monte, M. J.; et al.
Revista:
GUT
ISSN:
0017-5749
Año:
2013
Vol.:
62
N°:
6
Págs.:
899 - 910
Objective Cholestasis is associated with increased liver injury and morbidity after partial hepatectomy (PH), yet bile acids (BAs) are emerging as important mediators of liver regeneration. Fibroblast growth factor 15 (Fgf15, human FGF19) is a BA-induced ileum-derived enterokine that governs BA metabolism. We evaluated the relevance of Fgf15 in the preservation of BA homeostasis after PH and its potential role in the regenerative process.
Design Liver regeneration after PH was studied in Fgf15(-/-) and Fgf15(+/+) mice. The effects of the BA sequestrant cholestyramine and adenovirally delivered Fgf15 were examined in this model. The role of Fgf15 in BA-induced liver growth was tested in Fgf15-/- mice upon cholic acid (CA) feeding. The direct mitogenic effect of Fgf15 was evaluated in cultured mouse hepatocytes and cholangiocytes.
Results Fgf15(-/-) mice showed marked liver injury and mortality after PH accompanied by persistently elevated intrahepatic BA levels. Cholestyramine feeding and adenovirally delivered Fgf15 reduced BA levels and significantly prevented this lethal outcome. Fgf15 also reduced mortality after extensive hepatectomy in Fgf15(+/+) animals. Liver growth elicited by CA feeding was significantly diminished in Fgf15(-/-) mice. Proliferation of hepatocytes and cholangiocytes was also noticeably reduced in CA-fed Fgf15(-/-) mice. Fgf15 induced intracellular signalling and proliferation of cultured hepatocytes and cholangiocytes.
Conclusions Fgf15 is necessary to maintain BA homeostasis and prevent liver injury during liver regeneration. Moreover, Fgf15 is an essential mediator of the liver growth-promoting effects of BA. Preoperative administration of this enterokine to patients undergoing liver resection might be useful to reduce damage and foster regeneration.
Revista:
LIVER INTERNATIONAL
ISSN:
1478-3223
Año:
2013
Vol.:
34
N°:
7
Págs.:
e257 - e270
Background & Aims Upon tissue injury, the liver mounts a potent reparative and regenerative response. A role for proteases, including serine and matrix metalloproteinases ( MMPs), in this process is increasingly recognized. We have evaluated the expression and function of MMP10 (stromelysin-2) in liver wound healing and regeneration. Methods The hepatic expression of MMP10 was examined in two murine models: liver regeneration after two-thirds partial hepatectomy (PH) and bile duct ligation (BDL). MMP10 was detected in liver tissues by qPCR, western blotting and immunohistochemistry. The effect of growth factors and toll-like receptor 4 (TLR4) agonists on MMP10 expression was studied in cultured parenchymal and biliary epithelial cells and macrophages respectively. The role of MMP10 was evaluated by comparing the response of Mmp10+/+ and Mmp10¿/¿ mice to PH and BDL. The intrahepatic turnover of the extracellular matrix proteins fibrin (ogen) and fibronectin was examined. Results MMP10 mRNA was readily induced after PH and BDL. MMP10 protein was detected in hepatocytes, cholangiocytes and macrophages. In cultured liver epithelial cells, MMP10 expression was additively induced by transforming growth factor-ß and epidermal growth factor receptor ligands. TLR4 ligands also stimulated MMP10 expression in macrophages. Lack of MMP10 resulted in increased liver injury upon PH and BDL. Resolution of necrotic areas was impaired, and Mmp10¿/¿ mice showed increased fibrogenesis and defective turnover of fibrin (ogen) and fibronectin. Conclusions MMP10 expression is induced during mouse liver injury and participates in the hepatic wound healing response. The profibrinolytic activity of MMP10 may be essential in this novel hepatoprotective role.
Revista:
DIGESTIVE DISEASES
ISSN:
0257-2753
Año:
2012
Vol.:
30
N°:
5
Págs.:
524-531
Background/Aims: Hepatocellular carcinoma (HCC) is a chemoresistant tumor strongly associated with chronic hepatitis. Identification of molecular links connecting inflammation with cell growth/survival, and characterization of pro-tumorigenic intracellular pathways is therefore of therapeutic interest. The epidermal growth factor receptor (EGFR) signaling system stands at a crossroad between inflammatory signals and intracellular pathways associated with hepatocarcinogenesis. We investigated the regulation and activity of different components of the EGFR system, including the EGFR ligand amphiregulin (AR) and its sheddase ADAM17, and the modulation of intracellular EGFR signaling by a novel mechanism involving protein methylation. Methods: ADAM17 protein expression was examined in models of liver injury and carcinogenesis. Crosstalk between tumor necrosis factor (TNF)-alpha, AR and EGFR signaling was evaluated in human HCC cells and mouse hepatocytes. Modulation of EGFR signaling and biological responses by methylation reactions was evaluated in AML12 mouse hepatocytes. Results: ADAM17 was upregulated in liver injury and hepatocarcinogenesis. TNF-alpha triggered AR shedding and EGFR transactivation in HCC cells. AR was necessary for TNF-alpha activation of ERK1/2 and Akt signaling in hepatocytes. Inhibition of methylation reactions increased the ERK1/2 signal amplitude triggered by AR/EGFR and reduced DNA synthesis in AML12 cells. Conclusions: Increased ADAM17 in preneoplastic liver injury further supports its implication in hepatocarcinogenesis. AR release and EGFR transactivation by TNF-alpha constitutes a novel link between inflammatory signals and pro-tumorigenic mechanisms in liver cells. Finally, the identification of a new mechanism controlling growth factor signaling, and biological responses, involving methylation reactions within the RAS/RAF/MEK/ERK pathway, exposes a new target for antineoplastic intervention. Copyright (C) 2012 S. Karger AG, Basel
Revista:
JOURNAL OF HEPATOLOGY
ISSN:
0168-8278
Año:
2012
Vol.:
56
N°:
2
Págs.:
367 - 373
Background & Aims Bile acids (BA) are increasingly recognized as important modulators of liver regeneration. Increased enterohepatic BA flux has been proposed to generate specific signals that activate hepatocyte proliferation after partial hepatectomy (PH). We have investigated the role of the BA membrane transporter Mrp3 (Abcc3), which is expressed in the liver and gut, in the hepatic growth response elicited by BA and in liver regeneration after PH.
Methods Liver growth and regeneration, and the expression of growth-related genes, were studied in Mrp3+/+ and Mrp3¿/¿ mice fed a cholic acid (CA) supplemented diet and after 2/3 PH. Activation of the BA receptor FXR was measured in mice after in vivo transduction of the liver with a FXR-Luciferase reporter plasmid. BA levels were measured in portal serum and liver tissue by high performance liquid chromatography-tandem mass spectrometry.
Results Liver growth elicited by CA feeding was significantly reduced in Mrp3¿/¿ mice. These animals showed reduced FXR activation in the liver after CA administration and decreased portal serum levels of BA. Liver regeneration after PH was significantly delayed in Mrp3-deficient mice. Proliferation-related gene expression and peak DNA synthesis in Mrp3¿/¿ mice occurred later than in wild types, coinciding with a retarded elevation in intra-hepatic BA levels.
Conclusions Lack of Abcc3 expression markedly impairs liver growth in response to BA and after PH. Our data suggest that Mrp3 plays a non-redundant role in the regulation of BA flux during liver regeneration.
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2012
Vol.:
7
N°:
12
Págs.:
e52711
Hepatocellular carcinoma (HCC) is the most prevalent liver tumor and a deadly disease with limited therapeutic options. Dysregulation of cell signaling pathways is a common denominator in tumorigenesis, including hepatocarcinogenesis. The epidermal growth factor receptor (EGFR) signaling system is commonly activated in HCC, and is currently being evaluated as a therapeutic target in combination therapies. We and others have identified a central role for the EGFR ligand amphiregulin (AR) in the proliferation, survival and drug resistance of HCC cells. AR expression is frequently up-regulated in HCC tissues and cells through mechanisms not completely known. Here we identify the ß-catenin signaling pathway as a novel mechanism leading to transcriptional activation of the AR gene in human HCC cells. Activation of ß-catenin signaling, or expression of the T41A ß-catenin active mutant, led to the induction of AR expression involving three specific ß-catenin-Tcf responsive elements in its proximal promoter. We demonstrate that HCC cells expressing the T41A ß-catenin active mutant show enhanced proliferation that is dependent in part on AR expression and EGFR signaling. We also demonstrate here a novel cross-talk of the EGFR system with fibroblast growth factor 19 (FGF19). FGF19 is a recently identified driver gene in hepatocarcinogenesis and an activator of ß-catenin signaling in HCC and colon cancer cells. We show that FGF19 induced AR gene expression through the ß-catenin pathway in human HCC cells. Importantly, AR up-regulation and EGFR signaling participated in the induction of cyclin D1 and cell proliferation elicited by FGF19. Finally, we demonstrate a positive correlation between FGF19 and AR expression in human HCC tissues, therefore supporting in clinical samples our experimental observations. These findings identify the AR/EGFR system as a key mediator of FGF19 responses in HCC cells involving ß-catenin signaling, and suggest that combined targeting of FGF19 and AR/EGFR may enhance therapeutic efficacy.
Autores:
Vespasiani-Gentilucci, U; Carotti, S; Onetti-Muda, A; et al.
Revista:
MODERN PATHOLOGY
ISSN:
0893-3952
Año:
2012
Vol.:
25
N°:
4
Págs.:
576 - 589
Notwithstanding numerous evidences implicating toll-like receptor-4 (TLR4) in the pathogenesis of chronic hepatitis C virus (HCV) infection, the localization and level of TLR4 expression in the liver of patients with hepatitis C have never been investigated. We aimed to evaluate, by means of immunohistochemistry and real-time PCR (rt-PCR), hepatic TLR4 expression in patients with chronic HCV infection. Fifty patients who had undergone liver biopsy and 11 patients transplanted because of chronic HCV infection, and 12 controls free of liver disease, were included in the study. Each case was analyzed by immunohistochemistry for TLR4, se smooth muscle actin and cytokeratin-7 (CK-7), and a subgroup of patients and all controls by rt-PCR for TLR4. Immunohistochemistry for a-smooth muscle actin was used to derive a score of activation of hepatic stellate cells and portal/septal myofibroblasts, while immunohistochemistry for CK-7 was used to evaluate and count hepatic progenitor cells, interlobular bile ducts and intermediate hepatocytes. In patients, the parenchymal elements responsible for the highest TLR4 level of expression were hepatic progenitor cells and biliary epithelial cells of interlobular bile ducts. Double-labeling experiments between anti-TLR4 and anti-CK7, anti-CD133, anti-CD44, anti-neural cell adhesion molecule, anti-epithelial cell adhesion molecule and anti-sex determining region Y-box 9, confirmed these findings. TLR4-positive hepatic progenitor cells and interlobular bile ducts were significantly correlated with the stage of liver disease (P<0.001), the grade of inflammation (P<0.001), and the activity of portal/septal myofibroblasts (P<0.001). rt-PCR study confirmed an increased TLR4 expression in the 26 patients analyzed with respect to controls (P<0.001). TLR4 expression positively correlated with fibrosis (P<0.05) and inflammation (P<0.05). The present results suggest that TLR4 expression by hepatic progenitor cells and biliary epithelial cells contributes to the progression of liver damage in the course of chronic HCV-related infection.
Revista:
Hepatology
ISSN:
0270-9139
Año:
2011
Vol.:
54
N°:
6
Págs.:
2149 - 2158
The identification of molecular mechanisms involved in the maintenance of the transformed phenotype of hepatocellular carcinoma (HCC) cells is essential for the elucidation of therapeutic strategies. Here, we show that human HCC cells display an autocrine
Revista:
CANCERS
ISSN:
2072-6694
Año:
2011
Vol.:
3
N°:
2
Págs.:
2444 - 2461
Hepatocarcinogenesis is a complex multistep process in which many different molecular pathways have been implicated. Hepatocellular carcinoma (HCC) is refractory to conventional chemotherapeutic agents, and the new targeted therapies are meeting with limited success. Interreceptor crosstalk and the positive feedback between different signaling systems are emerging as mechanisms of targeted therapy resistance. The identification of such interactions is therefore of particular relevance to improve therapeutic efficacy. Among the different signaling pathways activated in hepatocarcinogenesis the epidermal growth factor receptor (EGFR) system plays a prominent role, being recognized as a ¿signaling hub¿ where different extracellular growth and survival signals converge. EGFR can be transactivated in response to multiple heterologous ligands through the physical interaction with multiple receptors, the activity of intracellular kinases or the shedding of EGFR-ligands. In this article we review the crosstalk between the EGFR and other signaling pathways that could be relevant to liver cancer development and treatment.
Revista:
WORLD JOURNAL OF GASTROENTEROLOGY
ISSN:
1007-9327
Año:
2010
Vol.:
16
N°:
25
Págs.:
3091 - 3102
Pre-mRNA splicing is an essential step in the process of gene expression in eukaryotes and consists of the removal of introns and the linking of exons to generate mature mRNAs. This is a highly regulated mechanism that allows the alternative usage of exons, the retention of intronic sequences and the generation of exonic sequences of variable length. Most human genes undergo splicing events, and disruptions of this process have been associated with a variety of diseases, including cancer. Hepatocellular carcinoma (HCC) is a molecularly heterogeneous type of tumor that usually develops in a cirrhotic liver. Alterations in pre-mRNA splicing of some genes have been observed in liver cancer, and although still scarce, the available data suggest that splicing defects may have a role in hepatocarcinogenesis. Here we briefly review the general mechanisms that regulate pre-mRNA splicing, and discuss some examples that illustrate how this process is impaired in liver tumorigenesis, and may contribute to HCC development. We believe that a more thorough examination of pre-mRNA splicing is still needed to accurately draw the molecular portrait of liver cancer. This will surely contribute to a better understanding of the disease and to the development of new effective therapies. (C) 2010 Baishideng. All rights reserved.
Revista:
PLoS One
ISSN:
1932-6203
Año:
2010
Vol.:
5
N°:
12
Págs.:
e15690
Background: Inflammation and fibrogenesis are directly related to chronic liver disease progression, including hepatocellular carcinoma (HCC) development. Currently there are few therapeutic options available to inhibit liver fibrosis. We have evaluated the hepatoprotective and anti-fibrotic potential of orally-administered 59-methylthioadenosine (MTA) in Mdr2(-/-) mice, a clinically relevant model of sclerosing cholangitis and spontaneous biliary fibrosis, followed at later stages by HCC development.
Methodology: MTA was administered daily by gavage to wild type and Mdr2(-/-) mice for three weeks. MTA anti-inflammatory and anti-fibrotic effects and potential mechanisms of action were examined in the liver of Mdr2(-/-) mice with ongoing fibrogenesis and in cultured liver fibrogenic cells (myofibroblasts).
Principal Findings: MTA treatment reduced hepatomegaly and liver injury. alpha-Smooth muscle actin immunoreactivity and collagen deposition were also significantly decreased. Inflammatory infiltrate, the expression of the cytokines IL6 and Mcp-1, pro-fibrogenic factors like TGF beta 2 and tenascin-C, as well as pro-fibrogenic intracellular signalling pathways were reduced by MTA in vivo. MTA inhibited the activation and proliferation of isolated myofibroblasts and down-regulated cyclin D1 gene expression at the transcriptional level. The expression of JunD, a key transcription factor in liver fibrogenesis, was also reduced by MTA in activated myofibroblasts.
Conclusions/Significance: Oral MTA administration was well tolerated and proved its efficacy in reducing liver inflammation and fibrosis. MTA may have multiple molecular and cellular targets. These include the inhibition of inflammatory and profibrogenic cytokines, as well as the attenuation of myofibroblast activation and proliferation. Downregulation of JunD and cyclin D1 expression in myofibroblasts may be important regarding the mechanism of action of MTA. This compound could be a good candidate to be tested for the treatment of (biliary) liver fibrosis.