Revistas
Revista:
NEUROBIOLOGY OF DISEASE
ISSN:
0969-9961
Año:
2023
Vol.:
183
Págs.:
106166
Synucleinopathies are a group of neurodegenerative diseases without effective treatment characterized by the abnormal aggregation of alpha-synuclein (aSyn) protein. Changes in levels or in the amino acid sequence of aSyn (by duplication/triplication of the aSyn gene or point mutations in the encoding region) cause familial cases of synucleinopathies. However, the specific molecular mechanisms of aSyn-dependent toxicity remain unclear. Increased aSyn protein levels or pathological mutations may favor abnormal protein-protein interactions (PPIs) that could either promote neuronal death or belong to a coping response program against neurotoxicity. Therefore, the identification and modulation of aSyn-dependent PPIs can provide new therapeutic targets for these diseases. To identify aSyn-dependent PPIs we performed a proximity biotinylation assay based on the promiscuous biotinylase BioID2. When expressed as a fusion protein, BioID2 biotinylates by proximity stable and transient interacting partners, allowing their identification by streptavidin affinity purification and mass spectrometry. The aSyn interactome was analyzed using BioID2-tagged wild-type (WT) and pathological mutant E46K aSyn versions in HEK293 cells. We found the 14-3-3 epsilon isoform as a common protein interactor for WT and E46K aSyn. 14-3-3 epsilon correlates with aSyn protein levels in brain regions of a transgenic mouse model overexpressing WT human aSyn. Using a neuronal model in which aSyn cell-autonomous toxicity is quantitatively scored by longitudinal survival analysis, we found that stabilization of 14-3-3 protein-proteins interactions with Fusicoccin-A (FC-A) decreases aSyn-dependent toxicity. Furthermore, FC-A treatment protects dopaminergic neuronal somas in the substantia nigra of a Parkinson's disease mouse model. Based on these results, we propose that the stabilization of 14-3-3 epsilon interaction with aSyn might reduce aSyn toxicity, and highlight FC-A as a potential therapeutic compound for synucleinopathies.
Revista:
ELIFE
ISSN:
2050-084X
Año:
2022
Vol.:
11
Págs.:
e75580
Endoplasmic reticulum (ER) to nucleus homeostatic signaling, known as the unfolded protein response (UPR), relies on the non-canonical splicing of XBP1 mRNA. The molecular switch that initiates splicing is the oligomerization of the ER stress sensor and UPR endonuclease IRE1 alpha (inositol-requiring enzyme 1 alpha). While IRE1 alpha can form large clusters that have been proposed to function as XBP1 processing centers on the ER, the actual oligomeric state of active IRE1 alpha complexes as well as the targeting mechanism that recruits XBP1 to IRE1 alpha oligomers remains unknown. Here, we have developed a single-molecule imaging approach to monitor the recruitment of individual XBP1 transcripts to the ER surface. Using this methodology, we confirmed that stable ER association of unspliced XBP1 mRNA is established through HR2 (hydrophobic region 2)-dependent targeting and relies on active translation. In addition, we show that IRE1 alpha-catalyzed splicing mobilizes XBP1 mRNA from the ER membrane in response to ER stress. Surprisingly, we find that XBP1 transcripts are not recruited into large IRE1 alpha clusters, which are only observed upon overexpression of fluorescently tagged IRE1 alpha during ER stress. Our findings support a model where ribosome-engaged, immobilized XBP1 mRNA is processed by small IRE1 alpha assemblies that could be dynamically recruited for processing of mRNA transcripts on the ER.
Autores:
Nistal-Villán, E. (Autor de correspondencia); Argemí, José María; de Jaime Soguero, A.; et al.
Revista:
HUMAN GENE THERAPY
ISSN:
1043-0342
Año:
2021
Vol.:
32
N°:
7-8
Págs.:
341 - 348
Tight control of transgene expression is key to ensure the efficacy of a wide range of gene therapy interventions, in which the magnitude and duration of gene expression have to be adjusted to therapeutic needs, thereby limiting secondary effects. The development of upgraded strategies to link transgene expression to pathological stress episodes is an unmet need in gene therapy. Here, we propose an expression strategy that associates transgene expression to an intracellular stress coping mechanism, the unfolded protein response. Specifically, we harnessed the cis elements required to sustain the noncanonical splicing of X-box binding protein 1 (XBP1) messenger RNA (mRNA) in response to the dysfunction of the endoplasmic reticulum (ER), a situation commonly known as ER stress, to drive the expression of heterologous genes. Since ER stress features a wide variety of pathological conditions, including viral infections, cancer, or metabolic disorders, this new expression module stimulates the synthesis of therapeutic genes as a response to cellular damage, and ensures their expression only when necessary. Validation of this inducible expression system was performed in vitro and in vivo, and its potential to limit/inhibit viral infections has been shown in proof-of principle experiments.
Revista:
CELL DEATH AND DISEASE
ISSN:
2041-4889
Año:
2020
Vol.:
11
N°:
5
Págs.:
397
Loss of protein folding homeostasis features many of the most prevalent neurodegenerative disorders. As coping mechanism to folding stress within the endoplasmic reticulum (ER), the unfolded protein response (UPR) comprises a set of signaling mechanisms that initiate a gene expression program to restore proteostasis, or when stress is chronic or overwhelming promote neuronal death. This fate-defining capacity of the UPR has been proposed to play a key role in amyotrophic lateral sclerosis (ALS). However, the several genetic or pharmacological attempts to explore the therapeutic potential of UPR modulation have produced conflicting observations. In order to establish the precise relationship between UPR signaling and neuronal death in ALS, we have developed a neuronal model where the toxicity of a familial ALS-causing allele (mutant G93A SOD1) and UPR activation can be longitudinally monitored in single neurons over the process of neurodegeneration by automated microscopy. Using fluorescent UPR reporters we established the temporal and causal relationship between UPR and neuronal death by Cox regression models. Pharmacological inhibition of discrete UPR processes allowed us to establish the contribution of PERK (PKR-like ER kinase) and IRE1 (inositol-requiring enzyme-1) mechanisms to neuronal fate. Importantly, inhibition of PERK signaling with its downstream inhibitor ISRIB, but not with the direct PERK kinase inhibitor GSK2606414, significantly enhanced the survival of G93A SOD1-expressing neurons. Characterization of the inhibitory properties of both drugs under ER stress revealed that in neurons (but not in glial cells) ISRIB overruled only part of the translational program imposed by PERK, relieving the general inhibition of translation, but maintaining the privileged translation of ATF4 (activating transcription factor 4) messenger RNA. Surprisingly, the fine-tuning of the PERK output in G93A SOD1-expressing neurons led to a reduction of IRE1-dependent signaling. Together, our findings identify ISRIB-mediated translational reprogramming as a new potential ALS therapy.
Revista:
JOURNAL OF MOLECULAR BIOLOGY
ISSN:
0022-2836
Año:
2020
Vol.:
432
N°:
22
Págs.:
5889 - 5901
Protein lifespan is regulated by co-translational modification by several enzymes, including methionine aminopeptidases and N-alpha-aminoterminal acetyltransferases. The NatB enzymatic complex is an N-terminal acetyltransferase constituted by two subunits, NAA20 and NAA25, whose interaction is necessary to avoid NAA20 catalytic subunit degradation. We found that deletion of the first five amino acids of hNAA20 or fusion of a peptide to its amino terminal end abolishes its interaction with hNAA25. Substitution of the second residue of hNAA20 with amino acids with small, uncharged side-chains allows NatB enzymatic complex formation. However, replacement by residues with large or charged side-chains interferes with its hNAA25 interaction, limiting functional NatB complex formation. Comparison of NAA20 eukaryotic sequences showed that the residue following the initial methionine, an amino acid with a small uncharged side-chain, has been evolutionarily conserved. We have confirmed the relevance of second amino acid characteristics of NAA20 in NatB enzymatic complex formation in Drosophila melanogaster. Moreover, we have evidenced the significance of NAA20 second residue in Saccharomyces cerevisiae using different NAA20 versions to reconstitute NatB formation in a yNAA20-KO yeast strain. The requirement in humans and in fruit flies of an amino acid with a small uncharged side-chain following the initial methionine of NAA20 suggests that methionine aminopeptidase action may be necessary for the NAA20 and NAA25 interaction. We showed that inhibition of MetAP2 expression blocked hNatB enzymatic complex formation by retaining the initial methionine of NAA20. Therefore, NatB-mediated protein N-terminal acetylation is dependent on methionine aminopeptidase, providing a regulatory mechanism for protein N-terminal maturation. (C) 2020 Elsevier Ltd. All rights reserved.
Revista:
NEUROBIOLOGY OF DISEASE
ISSN:
0969-9961
Año:
2020
Vol.:
137
Págs.:
104781
Alpha-synuclein (aSyn) protein levels are sufficient to drive Parkinson's disease (PD) and other synucleinopathies. Despite the biomedical/therapeutic potential of aSyn protein regulation, little is known about mechanisms that limit/control aSyn levels. Here, we investigate the role of a post-translational modification, N-terminal acetylation, in aSyn neurotoxicity. N-terminal acetylation occurs in all aSyn molecules and has been proposed to determine its lipid binding and aggregation capacities; however, its effect in aSyn stability/neurotoxicity has not been evaluated. We generated N-terminal mutants that alter or block physiological aSyn N-terminal acetylation in wild-type or pathological mutant E46K aSyn versions and confirmed N-terminal acetylation status by mass spectrometry. By optical pulse-labeling in living primary neurons we documented a reduced half-life and accumulation of aSyn N-terminal mutants. To analyze the effect of N-terminal acetylation mutants in neuronal toxicity we took advantage of a neuronal model where aSyn toxicity was scored by longitudinal survival analysis. Salient features of aSyn neurotoxicity were previously investigated with this approach. aSyn-dependent neuronal death was recapitulated either by higher aSyn protein levels in the case of WT aSyn, or by the combined effect of protein levels and enhanced neurotoxicity conveyed by the E46K mutation. aSyn N-terminal mutations decreased E46K aSyn-dependent neuronal death both by reducing protein levels and, importantly, by reducing the intrinsic E46K aSyn toxicity, being the D2P mutant the least toxic. Together, our results illustrate that the N-terminus determines, most likely through its acetylation, aSyn protein levels and toxicity, identifying this modification as a potential therapeutic target.
Autores:
Santos-Laso, A.; Izquierdo-Sanchez, L.; Rodrigues, P. M.; et al.
Revista:
LIVER INTERNATIONAL
ISSN:
1478-3223
Año:
2020
Vol.:
40
N°:
7
Págs.:
1670 - 1685
Background & Aims Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive development of multiple biliary cysts. Recently, novel PLD-causative genes, encoding for endoplasmic reticulum (ER)-resident proteins involved in protein biogenesis and transport, were identified. We hypothesized that aberrant proteostasis contributes to PLD pathogenesis, representing a potential therapeutic target. Methods ER stress was analysed at transcriptional (qPCR), proteomic (mass spectrometry), morphological (transmission electron microscopy, TEM) and functional (proteasome activity) levels in different PLD models. The effect of ER stress inhibitors [4-phenylbutyric acid (4-PBA)] and/or activators [tunicamycin (TM)] was tested in polycystic (PCK) rats and cystic cholangiocytes in vitro. Results The expression levels of unfolded protein response (UPR) components were upregulated in liver tissue from PLD patients and PCK rats, as well as in primary cultures of human and rat cystic cholangiocytes, compared to normal controls. Cystic cholangiocytes showed altered proteomic profiles, mainly related to proteostasis (ie synthesis, folding, trafficking and degradation of proteins), marked enlargement of the ER lumen (by TEM) and hyperactivation of the proteasome. Notably, chronic treatment of PCK rats with 4-PBA decreased liver weight, as well as both liver and cystic volumes, of animals under baseline conditions or after TM administration compared to controls. In vitro, 4-PBA downregulated the expression (mRNA) of UPR effectors, normalized proteomic profiles related to protein synthesis, folding, trafficking and degradation and reduced the proteasome hyperactivity in cystic cholangiocytes, reducing their hyperproliferation and apoptosis. Conclusions Restoration of proteostasis in cystic cholangiocytes with 4-PBA halts hepatic cystogenesis, emerging as a novel therapeutic strategy.
Autores:
Armengaud, J. (Autor de correspondencia); Delaunay-Moisan, A. ; Thuret, J. Y.; et al.
Revista:
ENVIRONMENTAL MICROBIOLOGY
ISSN:
1462-2912
Año:
2020
Vol.:
22
N°:
6
Págs.:
1997 - 2000
The current SARS-CoV-2 pandemic is wreaking havoc throughout the world and has rapidly become a global health emergency. A central question concerning COVID-19 is why some individuals become sick and others not. Many have pointed already at variation in risk factors between individuals. However, the variable outcome of SARS-CoV-2 infections may, at least in part, be due also to differences between the viral subspecies with which individuals are infected. A more pertinent question is how we are to overcome the current pandemic. A vaccine against SARS-CoV-2 would offer significant relief, although vaccine developers have warned that design, testing and production of vaccines may take a year if not longer. Vaccines are based on a handful of different designs (i), but the earliest vaccines were based on the live, attenuated virus. As has been the case for other viruses during earlier pandemics, SARS-CoV-2 will mutate and may naturally attenuate over time (ii). What makes the current pandemic unique is that, thanks to state-of-the-art nucleic acid sequencing technologies, we can follow in detail how SARS-CoV-2 evolves while it spreads. We argue that knowledge of naturally emerging attenuated SARS-CoV-2 variants across the globe should be of key interest in our fight against the pandemic.
Revista:
NATURE COMMUNICATIONS
ISSN:
2041-1723
Año:
2019
Vol.:
10
N°:
3126
Alcoholic hepatitis (AH) is a life-threatening condition characterized by profound hepatocellular dysfunction for which targeted treatments are urgently needed. Identification of molecular drivers is hampered by the lack of suitable animal models. By performing RNA sequencing in livers from patients with different phenotypes of alcohol-related liver disease (ALD), we show that development of AH is characterized by defective activity of liver-enriched transcription factors (LETFs). TGF beta 1 is a key upstream transcriptome regulator in AH and induces the use of HNF4 alpha P2 promoter in hepatocytes, which results in defective metabolic and synthetic functions. Gene polymorphisms in LETFs including HNF4 alpha are not associated with the development of AH. In contrast, epigenetic studies show that AH livers have profound changes in DNA methylation state and chromatin remodeling, affecting HNF4 alpha-dependent gene expression. We conclude that targeting TGF beta 1 and epigenetic drivers that modulate HNF4 alpha-dependent gene expression could be beneficial to improve hepatocellular function in patients with AH.
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2018
Vol.:
13
N°:
6
Págs.:
e0198490
Early life events are associated with the susceptibility to chronic diseases in adult life. Perturbations of endoplasmic reticulum (ER) homeostasis activate the unfolded protein response (UPR), which contributes to the development of metabolic alterations. Our aim was to evaluate liver UPR in an animal model of intrauterine growth restriction (IUGR). A significantly increased expression of X-box binding protein-1 spliced (XBP1s) mRNA (p<0.01), Endoplasmic Reticulum-localized DnaJ homologue (Erdj4) mRNA (p<0.05) and Bip/GRP78-glucose-regulated protein 78 (Bip) mRNA (p<0.05) was observed in the liver of IUGR rats at birth. Furthermore, the expression of gluconeogenesis genes and lipogenesis genes were significantly upregulated (p<0.05) in IUGR pups. At 105 d, IUGR male rats showed significantly reduced glucose tolerance (p<0.01). A significant decreased expression of XBP1s mRNA (p<0.01) and increased expression of double-stranded RNA-dependent protein kinase-like ER kinase (PERK) and Asparagine synthetase (ASNS) (p<0.05) was observed in the liver of IUGR male adult rats. Liver focal steatosis and periportal fibrosis were observed in IUGR rats. These findings show for the first time that fetal exposure to uteroplacental insufficiency is associated with the activation of hepatic UPR and suggest that UPR signaling may play a role in the metabolic risk.
Autores:
Cohen, N.; Breker, M.; Bakunts, A.; et al.
Revista:
JOURNAL OF CELL SCIENCE
ISSN:
0021-9533
Año:
2017
Vol.:
130
N°:
19
Págs.:
3222 - 3233
The unfolded protein response (UPR) allows cells to adjust secretory pathway capacity according to need. Ire1, the endoplasmic reticulum (ER) stress sensor and central activator of the UPR is conserved from the budding yeast Saccharomyces cerevisiae to humans. Under ER stress conditions, Ire1 clusters into foci that enable optimal UPR activation. To discover factors that affect Ire1 clustering, we performed a high-content screen using a whole-genome yeast mutant library expressing Ire1-mCherry. We imaged the strains following UPR induction and found 154 strains that displayed alterations in Ire1 clustering. The hits were enriched for iron and heme effectors and binding proteins. By performing pharmacological depletion and repletion, we confirmed that iron (Fe3+) affects UPR activation in both yeast and human cells. We suggest that Ire1 clustering propensity depends on membrane composition, which is governed by heme-dependent biosynthesis of sterols. Our findings highlight the diverse cellular functions that feed into the UPR and emphasize the cross-talk between organelles required to concertedly maintain homeostasis.
Revista:
GASTROENTEROLOGY
ISSN:
0016-5085
Año:
2017
Vol.:
152
N°:
5
Págs.:
1203 - 1216.e15
BACKGROUND & AIMS: Liver regeneration after partial hepatectomy ( PH) increases the protein folding burden at the endoplasmic reticulum of remnant hepatocytes, resulting in induction of the unfolded protein response. We investigated the role of the core unfolded protein response transcription factor X-box binding protein 1 ( XBP1) in liver regeneration using genome-wide chromatin immunoprecipitation analysis. METHODS: We performed studies with C57Bl6-J ( control) and interleukin 6-knockout mice. Mice underwent PH or sham surgeries. In some mice, hepatic expression of XBP1 was knocked down by injection of adenoviral vectors encoding small hairpin RNAs against Xbp1 messenger RNA. Liver tissues were collected before surgery and at 6 and 48 hours after surgery and analyzed by chromatin immunoprecipitation followed by sequencing. We also performed functional analyses of HepG2 cells. RESULTS: Expression of XBP1 by hepatocytes increased immediately after PH ( priming phase of liver regeneration) in control mice, but this effect was delayed in interleukin 6-deficient mice. In mice with knockdown of XBP1, we observed of liver tissue persistent endoplasmic reticulum stress, defects in acute-phase response, and increased hepatocellular damage, compared with control mice. Chromatin immunoprecipitation analyses of liver tissue showed that at 6 hours after PH, liver XBP1 became bound to a large set of genes implicated in proteostasis, the acute-phase response, metabolism, and the DNA damage response ( DDR). At this time point, XBP1 bound the promoter of the signal transducer and activator of transcription 3 gene ( Stat3). Livers of XBP1-knockdown mice showed reduced expression of STAT3 and had lower levels of STAT3 phosphorylation at Ser727, a modification that promotes cell proliferation and the DDR. Regenerating livers from XBP1-knockdown mice expressed high levels of a marker of DNA double-strand breaks, phosphorylated histone 2A, member X ( H2AX), compared with control mice. The inhibition of XBP1 expression caused a reduced up-regulation of DDR messenger RNAs in regenerating hepatocytes. CONCLUSION: In livers of mice, we found that PH induces expression of XBP1, and that this activity requires interleukin 6. XBP1 expression regulates the unfolded protein response, acute-phase response, and DDR in hepatocytes. In regenerating livers, XBP1 deficiency leads to endoplasmic reticulum stress and DNA damage.
Revista:
NEURO-ONCOLOGY
ISSN:
1522-8517
Año:
2016
Vol.:
18
N°:
8
Págs.:
1109-1119
These findings provide a strong rationale for combining temozolomide with ER stress-inducing drugs as an alternative therapeutic strategy for glioblastoma.
Revista:
JOURNAL OF HEPATOLOGY
ISSN:
1600-0641
Año:
2014
Vol.:
60
N°:
5
Págs.:
1017 - 1025
Background & Aims: Cardiotrophin-1 (CT-1) is a hepatoprotective cytokine that modulates fat and glucose metabolism in muscle and adipose tissue. Here we analyzed the changes in hepatic fat stores induced by recombinant CT-1 (rCT-1) and its therapeutic potential in non-alcoholic fatty liver disease (NAFLD).
Methods: rCT-1 was administered to two murine NAFLD models: ob/ob and high fat diet-fed mice. Livers were analyzed for lipid composition and expression of genes involved in fat metabolism. We studied the effects of rCT-1 on lipogenesis and fatty acid (FA) oxidation in liver cells and the ability of dominant negative inhibitor of AMP-activated protein kinase (AMPK) to block these effects.
Results: CT-1 was found to be upregulated in human and murine steatotic livers. In two NAFLD mouse models, treatment with rCT-1 for 10 days induced a marked decrease in liver triglyceride content with augmented proportion of poly-unsaturated FA and reduction of monounsaturated species. These changes were accompanied by attenuation of inflammation and improved insulin signaling. Chronic administration of rCT-1 caused downregulation of lipogenic genes and genes involved in FA import to hepatocytes together with amelioration of ER stress, elevation of NAD(+)/ NADH ratio, phosphorylation of LKB1 and AMPK, increased expression and activity of sirtuin1 (SIRT1) and upregulation of genes mediating FA oxidation. rCT-1 potently inhibited de novo lipogenesis and stimulated FA oxidation in liver cells both in vitro and in vivo. In vitro studies showed that these effects are mediated by activated AMPK.
Conclusions: rCT-1 resolves hepatic steatosis in obese mice by mechanisms involving AMPK activation. rCT-1 deserves consideration as a potential therapy for NAFLD. (c) 2013 European Association for the Study of the Liver.
Revista:
HUMAN MOLECULAR GENETICS
ISSN:
0964-6906
Año:
2013
Vol.:
22
N°:
14
Págs.:
2929-40
Acute intermittent porphyria (AIP) is a hepatic metabolic disease that results from haplo-insufficient activity of porphobilinogen deaminase (PBGD). The dominant clinical feature is acute intermittent attacks when hepatic heme synthesis is activated by endocrine or exogenous factors. Gene therapy vectors over-expressing PBGD protein in the liver offers potential as a cure for AIP. Here, we developed a helper-dependent adenovirus (HDA) encoding human PBGD (hPBGD) and assessed its therapeutic efficacy in a murine model of AIP. Intravenous or intrahepatic administration of HDA-hPBGD to AIP mice resulted in a sustained hepatic hPBGD expression in a dose-dependent manner. Intrahepatic administration conveyed full protection against induced porphyria attacks at a significantly lower viral dose than intravenous injection. Transgenic hPBGD accumulated only in the cytosol of hepatocytes as the endogenous protein. Characterization of PBGD-deficient mouse strains revealed that a strong PBGD deficiency causes the chronic disturbance of cytosolic and endoplasmic reticulum folding machineries. This disturbance was completely restored over time by the over-expression of hPBGD. HDA-hPBGD is a promising vector that protects against porphyria attacks and resolves the chronic folding stress associated with low levels of PBGD activity.
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2013
Vol.:
8
N°:
8
Págs.:
e71082
Understanding how neural cells handle proteostasis stress in the endoplasmic reticulum (ER) is important to decipher the mechanisms that underlie the cell death associated with neurodegenerative diseases and to design appropriate therapeutic tools. Here we have compared the sensitivity of a human neuroblastoma cell line (SH-SY5H) to the ER stress caused by an inhibitor of protein glycosylation with that observed in human embryonic kidney (HEK-293T) cells. In response to stress, SH-SY5H cells increase the expression of mRNA encoding downstream effectors of ER stress sensors and transcription factors related to the unfolded protein response (the spliced X-box binding protein 1, CCAAT-enhancer-binding protein homologous protein, endoplasmic reticulum-localized DnaJ homologue 4 and asparagine synthetase). Tunicamycin-induced death of SH-SY5H cells was prevented by terminal aromatic substituted butyric or valeric acids, in association with a decrease in the mRNA expression of stress-related factors, and in the accumulation of the ATF4 protein. Interestingly, this decrease in ATF4 protein occurs without modifying the phosphorylation of the translation initiation factor eIF2¿. Together, these results show that when short chain phenyl acyl acids alleviate ER stress in SH-SY5H cells their survival is enhanced.
Autores:
Kimmig P; Diaz M; Zheng J; et al.
Revista:
ELIFE
ISSN:
2050-084X
Año:
2012
Vol.:
1
Págs.:
e00048
The unfolded protein response (UPR) monitors the protein folding capacity of the endoplasmic reticulum (ER). In all organisms analyzed to date, the UPR drives transcriptional programs that allow cells to cope with ER stress. The non-conventional splicing of Hac1 (yeasts) and XBP1 (metazoans) mRNA, encoding orthologous UPR transcription activators, is conserved and dependent on Ire1, an ER membrane-resident kinase/endoribonuclease. We found that the fission yeast Schizosaccharomyces pombe lacks both a Hac1/XBP1 ortholog and a UPR-dependent-transcriptional-program. Instead, Ire1 initiates the selective decay of a subset of ER-localized-mRNAs that is required to survive ER stress. We identified Bip1 mRNA, encoding a major ER-chaperone, as the sole mRNA cleaved upon Ire1 activation that escapes decay. Instead, truncation of its 3' UTR, including loss of its polyA tail, stabilized Bip1 mRNA, resulting in increased Bip1 translation. Thus, S. pombe uses a universally conserved stress-sensing machinery in novel ways to maintain homeostasis in the ER.DOI:http://dx.doi.org/10.7554/eLife.00048.001.
Revista:
PLOS BIOLOGY
ISSN:
1544-9173
Año:
2010
Vol.:
8
N°:
7
Págs.:
e1000415
The unfolded protein response (UPR) is an intracellular signaling pathway that counteracts variable stresses that impair protein folding in the endoplasmic reticulum (ER). As such, the UPR is thought to be a homeostat that finely tunes ER protein folding capacity and ER abundance according to need. The mechanism by which the ER stress sensor Ire1 is activated by unfolded proteins and the role that the ER chaperone protein BiP plays in Ire1 regulation have remained unclear. Here we show that the UPR matches its output to the magnitude of the stress by regulating the duration of Ire1 signaling. BiP binding to Ire1 serves to desensitize Ire1 to low levels of stress and promotes its deactivation when favorable folding conditions are restored to the ER. We propose that, mechanistically, BiP achieves these functions by sequestering inactive Ire1 molecules, thereby providing a barrier to oligomerization and activation, and a stabilizing interaction that facilitates de-oligomerization and deactivation. Thus BiP binding to or release from Ire1 is not instrumental for switching the UPR on and off as previously posed. By contrast, BiP provides a buffer for inactive Ire1 molecules that ensures an appropriate response to restore protein folding homeostasis to the ER by modulating the sensitivity and dynamics of Ire1 activity.