Revistas
Revista:
JCI INSIGHT
ISSN:
2379-3708
Año:
2022
Vol.:
7
N°:
7
Págs.:
e154812
Diffuse intrinsic pontine gliomas (DIPGs) are aggressive pediatric brain tumors, and patient survival has not changed despite many therapeutic efforts, emphasizing the urgent need for effective treatments. Here, we evaluated the anti-DIPG effect of the oncolytic adenovirus Delta-24-ACT, which was engineered to express the costimulatory ligand 4-1BBL to potentiate the antitumor immune response of the virus. Delta-24-ACT induced the expression of functional 4-1BBL on the membranes of infected DIPG cells, which enhanced the costimulation of CD8(+) T lymphocytes. In vivo, Delta-24-ACT treatment of murine DIPG orthotopic tumors significantly improved the survival of treated mice, leading to long-term survivors that developed immunological memory against these tumors. In addition, Delta-24-ACT was safe and caused no local or systemic toxicity. Mechanistic studies showed that Delta-24-ACT modulated the tumor-immune content, not only increasing the number, but also improving the functionality of immune cells. All of these data highlight the safety and potential therapeutic benefit of Delta-24-ACT the treatment of patients with DIPG.
Revista:
MOLECULAR THERAPY ONCOLYTICS
ISSN:
2372-7705
Año:
2022
Vol.:
26
Págs.:
246 - 264
The outcomes of metastatic and nonresponder pediatric osteosarcoma patients are very poor and have not improved in the last 30 years. These tumors harbor a highly immunosuppressive environment, making existing immunotherapies ineffective. Here, we evaluated the use of Semliki Forest virus (SFV) vectors expressing galectin-3 (Gal3) inhibitors as therapeutic tools, since both the inhibition of Gal3, which is involved in immunosuppression and metastasis, and virotherapy based on SFV have been demonstrated to reduce tumor progression in different tumor models. In vitro, inhibitors based on the Gal3 amino-terminal domain alone (Gal3-N) or fused to a Gal3 peptide inhibitor (Gal3-N-C12) were able to block the binding of Gal3 to the surface of activated T cells. In vivo, SFV expressing Gal3-N-C12 induced strong antitumor responses in orthotopic K7M2 and MOS-J osteosarcoma tumors, leading to complete regressions in 47% and 30% of mice, respectively. Pulmonary metastases were also reduced in K7M2 tumor-bearing mice after treatment with SFV-Gal3-N-C12. Both the antitumor and antimetastatic responses were dependent on modulation of the immune system, primarily including an increase in tumor-infiltrating lymphocytes and a reduction in the immunosuppressive environment inside tumors. Our results demonstrated that SFV-Gal3-N-C12 could constitute a potential therapeutic agent for osteosarcoma patients expressing Gal3.
Revista:
MOLECULAR CANCER THERAPEUTICS
ISSN:
1535-7163
Año:
2022
Vol.:
21
N°:
3
Págs.:
471 - 480
Osteosarcoma is an aggressive bone tumor occurring primarily in pediatric patients. Despite years of intensive research, the outcomes of patients with metastatic disease or those who do not respond to therapy have remained poor and have not changed in the last 30 years. Oncolytic virotherapy is becoming a reality to treat local and metastatic tumors while maintaining a favorable safety profile. Delta-24-ACT is a replicative oncolytic adenovirus engineered to selectively target cancer cells and to potentiate immune responses through expression of the immune costimulatory ligand 4-1BB. This work aimed to assess the antisarcoma effect of Delta-24-ACr. MIS and replication assays were used to quantify the antitumor effects of Delta-24-ACT in vitro in osteosarcoma human and murine cell lines. Evaluation of the in vivo antitumor effect and immune response to Delta-24-ACI was performed in immunocompetent mice bearing the orthotopic K7M2 cell line. Immunophenotyping of the tumor microenvironment was characterized by immunohistochemistry and flow cytomcny. In vitro, Delta-24-ACT killed osteosarcoma cells and triggered the production of danger signals. In vivo, local treatment with Delta-24-ACT led to antitumor effects against both the primary tumor and spontaneous metastases in a murine osteosarcoma model. Viral treatment was safe, with no noted toxicity. Delta-24-ACT significantly increased the median survival time of treated mice. Collectively, our data identify Delta24-ACT administration as an effective and safe therapeutic strategy for patients with local and metastatic osteosarcoma. These results support clinical translation of this viral immunothcrapy approach.
Revista:
NEW ENGLAND JOURNAL OF MEDICINE
ISSN:
0028-4793
Año:
2022
Vol.:
386
N°:
26
Págs.:
2471 - 2481
Background: Pediatric patients with diffuse intrinsic pontine glioma (DIPG) have a poor prognosis, with a median survival of less than 1 year. Oncolytic viral therapy has been evaluated in patients with pediatric gliomas elsewhere in the brain, but data regarding oncolytic viral therapy in patients with DIPG are lacking.
Methods: We conducted a single-center, dose-escalation study of DNX-2401, an oncolytic adenovirus that selectively replicates in tumor cells, in patients with newly diagnosed DIPG. The patients received a single virus infusion through a catheter placed in the cerebellar peduncle, followed by radiotherapy. The primary objective was to assess the safety and adverse-event profile of DNX-2401. The secondary objectives were to evaluate the effect of DNX-2401 on overall survival and quality of life, to determine the percentage of patients who have an objective response, and to collect tumor-biopsy and peripheral-blood samples for correlative studies of the molecular features of DIPG and antitumor immune responses.
Results: A total of 12 patients, 3 to 18 years of age, with newly diagnosed DIPG received 1×1010 (the first 4 patients) or 5×1010 (the subsequent 8 patients) viral particles of DNX-2401, and 11 received subsequent radiotherapy. Adverse events among the patients included headache, nausea, vomiting, and fatigue. Hemiparesis and tetraparesis developed in 1 patient each. Over a median follow-up of 17.8 months (range, 5.9 to 33.5), a reduction in tumor size, as assessed on magnetic resonance imaging, was reported in 9 patients, a partial response in 3 patients, and stable disease in 8 patients. The median survival was 17.8 months. Two patients were alive at the time of preparation of the current report, 1 of whom was free of tumor progression at 38 months. Examination of a tumor sample obtained during autopsy from 1 patient and peripheral-blood studies revealed alteration of the tumor microenvironment and T-cell repertoire.
Conclusions: Intratumoral infusion of oncolytic virus DNX-2401 followed by radiotherapy in pediatric patients with DIPG resulted in changes in T-cell activity and a reduction in or stabilization of tumor size in some patients but was associated with adverse events. (Funded by the European Research Council under the European Union's Horizon 2020 Research and Innovation Program and others; EudraCT number, 2016-001577-33; ClinicalTrials.gov number, NCT03178032.).
Revista:
JOURNAL FOR IMMUNOTHERAPY OF CANCER
ISSN:
2051-1426
Año:
2021
Vol.:
9
N°:
7
Págs.:
e002644
Background Glioblastoma (GBM) is a devastating primary brain tumor with a highly immunosuppressive tumor microenvironment, and treatment with oncolytic viruses (OVs) has emerged as a promising strategy for these tumors. Our group constructed a new OV named Delta-24-ACT, which was based on the Delta-24-RGD platform armed with 4-1BB ligand (4-1BBL). In this study, we evaluated the antitumor effect of Delta-24-ACT alone or in combination with an immune checkpoint inhibitor (ICI) in preclinical models of glioma. Methods The in vitro effect of Delta-24-ACT was characterized through analyses of its infectivity, replication and cytotoxicity by flow cytometry, immunofluorescence (IF) and MTS assays, respectively. The antitumor effect and therapeutic mechanism were evaluated in vivo using several immunocompetent murine glioma models. The tumor microenvironment was studied by flow cytometry, immunohistochemistry and IF. Results Delta-24-ACT was able to infect and exert a cytotoxic effect on murine and human glioma cell lines. Moreover, Delta-24-ACT expressed functional 4-1BBL that was able to costimulate T lymphocytes in vitro and in vivo. Delta-24-ACT elicited a more potent antitumor effect in GBM murine models than Delta-24-RGD, as demonstrated by significant increases in median survival and the percentage of long-term survivors. Furthermore, Delta-24-ACT modulated the tumor microenvironment, which led to lymphocyte infiltration and alteration of their immune phenotype, as ...
Revista:
MOLECULAR THERAPY ONCOLYTICS
ISSN:
2372-7705
Año:
2021
Vol.:
20
Págs.:
23 - 33
Osteosarcoma is the most frequent and aggressive bone tumor in children and adolescents, with a long-term survival rate of 30%. Interleukin-12 (IL-12) is a potent cytokine that bridges innate and adaptive immunity, triggers antiangiogenic responses, and achieves potent antitumor effects. In this work, we evaluated the antisarcoma effect of a high-capacity adenoviral vector encoding mouse IL-12. This vector harbored a mifepristone-inducible system for controlled expression of IL-12 (High-Capacity adenoviral vector enconding the EF1alpha promoter [HCA-EFZP]-IL-12). We found that local administration of the vector resulted in a reduction in the tumor burden, extended overall survival, and tumor eradication. Moreover, long-term survivors exhibited immunological memory when rechallenged with the same tumor cells. Treatment with HCA-EFZP-IL-12 also resulted in a significant decrease in lung metastasis. Immunohistochemical analyses showed profound remodeling of the osteosarcoma microenvironment with decreases in angiogenesis and macrophage and myeloid cell numbers. In summary, our data underscore the potential therapeutic value of IL-12 in the context of a drug-inducible system that allows controlled expression of this cytokine, which can trigger a potent antitumor immune response in primary and metastatic pediatric osteosarcoma.
Revista:
NEURO-ONCOLOGY ADVANCES
ISSN:
2632-2498
Año:
2020
Vol.:
2
N°:
1
Págs.:
vdaa010
Background: Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Circulating biomarkers may assist in the processes of differential diagnosis and response assessment. GBM cells release extracellular vesicles containing a subset of proteins and nucleic acids. We previously demonstrated that exosomes isolated from the serum of GBM patients had an increased expression of RNU6-1 compared to healthy subjects. In this exploratory study, we investigated the role of this small noncoding RNA as a diagnostic biomarker for GBM versus other brain lesions with some potential radiological similarities.
Methods: We analyzed the expression of RNU6-1 in circulating exosomes of GBM patients (n = 18), healthy controls (n = 30), and patients with subacute stroke (n = 30), acute/subacute hemorrhage (n = 30), acute demyelinating lesions (n = 18), brain metastases (n = 21), and primary central nervous system lymphoma (PCNSL; n = 12) using digital droplet PCR.
Results: Expression of RNU6-1 was significantly higher in GBM patients than in healthy controls (P = .002). RNU6-1 levels were also significantly higher in exosomes from GBM patients than from patients with non-neoplastic lesions (stroke [P = .05], hemorrhage [P = .01], demyelinating lesions [P = .019]) and PCNSL (P = .004). In contrast, no significant differences were found between patients with GBM and brain metastases (P = .573). Receiver operator characteristic curve analyses supported the role of this biomarker in differentiating GBM from subacute stroke, acute/subacute hemorrhage, acute demyelinating lesions, and PCNSL (P < .05), but again not from brain metastases (P = .575).
Conclusions: Our data suggest that the expression of RNU6-1 in circulating exosomes could be useful for the differentiation of GBM from non-neoplastic brain lesions and PCNSL, but not from brain metastases.
Revista:
ACTA NEUROPATHOLOGICA
ISSN:
1432-0533
Año:
2019
Vol.:
7
Págs.:
64
Pediatric high grade gliomas (pHGG), including diffuse intrinsic pontine gliomas (DIPGs), are aggressive tumors with a dismal outcome. Radiotherapy (RT) is part of the standard of care of these tumors; however, radiotherapy only leads to a transient clinical improvement. Delta-24-RGD is a genetically engineered tumor-selective adenovirus that has shown safety and clinical efficacy in adults with recurrent gliomas. In this work, we evaluated the feasibility, safety and therapeutic efficacy of Delta-24-RGD in combination with radiotherapy in pHGGs and DIPGs models. Our results showed that the combination of Delta-24-RGD with radiotherapy was feasible and resulted in a synergistic anti-glioma effect in vitro and in vivo in pHGG and DIPG models. Interestingly, Delta-24-RGD treatment led to the downregulation of relevant DNA damage repair proteins, further sensitizing tumors cells to the effect of radiotherapy. Additionally, Delta-24-RGD/radiotherapy treatment significantly increased the trafficking of immune cells (CD3, CD4+ and CD8+) to the tumor niche compared with single treatments. In summary, administration of the Delta-24-RGD/radiotherapy combination to pHGG and DIPG models is safe and significantly increases the overall survival of mice bearing these tumors. Our data offer a rationale for the combination Delta-24-RGD/radiotherapy as a therapeutic option for children with these tumors. SIGNIFICANCE: Delta-24-RGD/radiotherapy administration is safe and significantly increases the survival of treated mice. These positive data underscore the urge to translate this approach to the clinical treatment of children with pHGG and DIPGs.
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2019
Vol.:
9
N°:
1
Págs.:
14368
Last advances in the treatment of pediatric tumors has led to an increase of survival rates of children affected by primitive neuroectodermal tumors, however, still a significant amount of the patients do not overcome the disease. In addition, the survivors might suffer from severe side effects caused by the current standard treatments. Oncolytic virotherapy has emerged in the last years as a promising alternative for the treatment of solid tumors. In this work, we study the anti-tumor effect mediated by the oncolytic adenovirus VCN-01 in CNS-PNET models. VCN-01 is able to infect and replicate in PNET cell cultures, leading to a cytotoxicity and immunogenic cell death. In vivo, VCN-01 increased significantly the median survival of mice and led to long-term survivors in two orthotopic models of PNETs. In summary, these results underscore the therapeutic effect ofVCN-01 for rare pediatric cancers such as PNETs, and warrants further exploration on the use of this virus to treat them.
Revista:
NATURE COMMUNICATIONS
ISSN:
2041-1723
Año:
2019
Vol.:
10
N°:
1
Págs.:
2235
Pediatric high-grade glioma (pHGG) and diffuse intrinsic pontine gliomas (DIPGs) are aggressive pediatric brain tumors in desperate need of a curative treatment. Oncolytic virotherapy is emerging as a solid therapeutic approach. Delta-24-RGD is a replication competent adenovirus engineered to replicate in tumor cells with an aberrant RB pathway. This virus has proven to be safe and effective in adult gliomas. Here we report that the administration of Delta-24-RGD is safe in mice and results in a significant increase in survival in immunodeficient and immunocompetent models of pHGG and DIPGs. Our results show that the Delta-24-RGD antiglioma effect is mediated by the oncolytic effect and the immune response elicited against the tumor. Altogether, our data highlight the potential of this virus as treatment for patients with these tumors. Of clinical significance, these data have led to the start of a phase I/II clinical trial at our institution for newly diagnosed DIPG (NCT03178032).
Revista:
FRONTIERS IN ONCOLOGY
ISSN:
2234-943X
Año:
2018
Vol.:
12
N°:
8
Págs.:
61
Diffuse intrinsic pontine gliomas (DIPGs) are aggressive glial brain tumors that primarily affect children, for which there is no curative treatment. Median overall survival is only one year. Currently, the scientific focus is on expanding the knowledge base of the molecular biology of DIPG, and identifying effective therapies. Oncolytic adenovirus DNX-2401 is a replication-competent, genetically modified virus capable of infecting and killing glioma cells, and stimulating an anti-tumor immune response. Clinical trials evaluating intratumoral DNX-2401 in adults with recurrent glioblastoma have demonstrated that the virus has a favorable safety profile and can prolong survival. Subsequently, these results have encouraged the transition of this biologically active therapy from adults into the pediatric population. To this aim, we have designed a clinical Phase I trial for newly diagnosed pediatric DIPG to investigate the feasibility, safety, and preliminary efficacy of delivering DNX-2401 into tumors within the pons following biopsy. This case report presents a pediatric patient enrolled in this ongoing Phase I trial for children and adolescents with newly diagnosed DIPG. The case involves an 8-year-old female patient with radiologically diagnosed DIPG who underwent stereotactic tumor biopsy immediately followed by intratumoral DNX-2401 in the same biopsy track. Because there were no safety concerns or new neurological deficits, the patient was discharged 3¿days after the procedures. To our knowledge, this is the first report of intratumoral DNX-2401 for a patient with DIPG in a clinical trial. We plan to demonstrate that intratumoral delivery of an oncolytic virus following tumor biopsy for pediatric patients with DIPG is a novel and feasible approach and that DNX-2401 represents an innovative treatment for the disease.
Revista:
NEURO-ONCOLOGY
ISSN:
1522-8517
Año:
2018
Vol.:
20
N°:
7
Págs.:
930 - 941
Background: Glioblastoma, the most aggressive primary brain tumor, is genetically heterogeneous. Alternative splicing (AS) plays a key role in numerous pathologies, including cancer. The objectives of our study were to determine whether aberrant AS could play a role in the malignant phenotype of glioma and to understand the mechanism underlying its aberrant regulation. Methods: We obtained surgical samples from patients with glioblastoma who underwent 5-aminolevulinic fluorescence-guided surgery. Biopsies were taken from the tumor center as well as from adjacent normal-appearing tissue. We used a global splicing array to identify candidate genes aberrantly spliced in these glioblastoma samples. Mechanistic and functional studies were performed to elucidate the role of our top candidate splice variant, BAF45d, in glioblastoma. Results: BAF45d is part of the switch/sucrose nonfermentable complex and plays a key role in the development of the CNS. The BAF45d/6A isoform is present in 85% of over 200 glioma samples that have been analyzed and contributes to the malignant glioma phenotype through the maintenance of an undifferentiated cellular state. We demonstrate that BAF45d splicing is mediated by polypyrimidine tract-binding protein 1 (PTBP1) and that BAF45d regulates PTBP1, uncovering a reciprocal interplay between RNA splicing regulation and transcription. Conclusions: Our data indicate that AS is a mechanism that contributes to the malignant phenotype of glioblastoma. Understanding the consequences of this biological process will uncover new therapeutic targets for this devastating disease.
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2017
Vol.:
12
N°:
1
Págs.:
e0170501
Objective In this work we set to develop and to validate a new in vivo frameless orthotopic Diffuse Intrinsic Pontine Glioma (DIPG) model based in the implantation of a guide-screw system. Methods It consisted of a guide-screw also called bolt, a Hamilton syringe with a 26-gauge needle and an insulin-like 15-gauge needle. The guide screw is 2.6 mm in length and harbors a 0.5 mm central hole which accepts the needle of the Hamilton syringe avoiding a theoretical displacement during insertion. The guide-screw is fixed on the mouse skull according to the coordinates: 1 mm right to and 0.8 mm posterior to lambda. To reach the pons the Hamilton syringe is adjusted to a 6.5 mm depth using a cuff that serves as a stopper. This system allows delivering not only cells but also any kind of intratumoral chemotherapy, antibodies or gene/viral therapies. Results The guide-screw was successfully implanted in 10 immunodeficient mice and the animals were inoculated with DIPG human cell lines during the same anesthetic period. All the mice developed severe neurologic symptoms and had a median overall survival of 95 days ranging the time of death from 81 to 116 days. Histopathological analysis confirmed tumor into the pons in all animals confirming the validity of this model. Conclusion Here we presented a reproducible and frameless DIPG model that allows for rapid evaluation of tumorigenicity and efficacy of chemotherapeutic or gene therapy products delivered intratumorally to the pons.
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2016
Vol.:
11
N°:
1
Págs.:
e0147211
Despite the recent advances in the development of antitumor therapies, the prognosis for patients with malignant gliomas remains dismal. Therapy with tumor-selective viruses is emerging as a treatment option for this devastating disease. In this study we characterize the anti-glioma effect of VCN-01, an improved hyaluronidase-armed pRB-pathway-selective oncolytic adenovirus that has proven safe and effective in the treatment of several solid tumors. VCN-01 displayed a significant cytotoxic effect on glioma cells in vitro. In vivo, in two different orthotopic glioma models, a single intra-tumoral administration of VCN-01 increased overall survival significantly and led to long-term survivors free of disease.
Revista:
NEURO-ONCOLOGY
ISSN:
1522-8517
Año:
2016
Vol.:
18
N°:
8
Págs.:
1109-1119
These findings provide a strong rationale for combining temozolomide with ER stress-inducing drugs as an alternative therapeutic strategy for glioblastoma.
Revista:
ONCOTARGET
ISSN:
1949-2553
Año:
2016
Vol.:
7
N°:
21
Págs.:
30626-30641
Glioblastoma is the most frequent malignant brain tumor. Even with aggressive treatment, prognosis for patients is poor. One characteristic of glioblastoma cells is its intrinsic resistance to apoptosis. Therefore, drugs that induce alternative cell deaths could be interesting to evaluate as alternative therapeutic candidates for glioblastoma. Salinomycin (SLM) was identified through a chemical screening as a promising anticancer drug, but its mechanism of cell death remains unclear. In the present work we set out to elucidate how SLM causes cell death in glioblastoma cell lines (both established cell lines and brain tumor stem cell lines), aiming to find a potential antitumor candidate. In addition, we sought to determine the mechanism of action of SLM so that this mechanism can be can be exploited in the fight against cancer. Our data showed that SLM induces a potent endoplasmic reticulum (ER) stress followed by the trigger of the unfolded protein response (UPR) and an aberrant autophagic flux that culminated in necrosis due to mitochondria and lysosomal alterations. Of importance, the aberrant autophagic flux was orchestrated by the production of Reactive Oxygen Species (ROS). Alleviation of ROS production restored the autophagic flux. Altogether our data suggest that in our system the oxidative stress blocks the autophagic flux through lipid oxidation. Importantly, oxidative stress could be instructing the type of cell death in SLM-treated cells, suggesting that cell deat
Revista:
CLINICAL CANCER RESEARCH
ISSN:
1078-0432
Año:
2016
Vol.:
22
N°:
9
Págs.:
2217-25
These results uncover VCN-01 as a promising strategy for osteosarcoma, setting the bases to propel a phase I/II trial for kids with this disease.
Revista:
NEURO-ONCOLOGY
ISSN:
1522-8517
Año:
2014
Vol.:
16
N°:
4
Págs.:
520 - 527
ackground: Glioblastoma multiforme (GBM) is the most frequent malignant brain tumor in adults, and its prognosis remains dismal despite intensive research and therapeutic advances. Diagnostic biomarkers would be clinically meaningful to allow for early detection of the tumor and for those cases in which surgery is contraindicated or biopsy results are inconclusive. Recent findings show that GBM cells release microvesicles that contain a select subset of cellular proteins and RNA. The aim of this hypothesis-generating study was to assess the diagnostic potential of miRNAs found in microvesicles isolated from the serum of GBM patients.
Methods: To control disease heterogeneity, we used patients with newly diagnosed GBM. In the discovery stage, PCR-based TaqMan Low Density Arrays followed by individual quantitative reverse transcriptase polymerase chain reaction were used to test the differences in the miRNA expression levels of serum microvesicles among 25 GBM patients and healthy controls paired by age and sex. The detected noncoding RNAs were then validated in another 50 GBM patients.
Results: We found that the expression levels of 1 small noncoding RNA (RNU6-1) and 2 microRNAs (miR-320 and miR-574-3p) were significantly associated with a GBM diagnosis. In addition, RNU6-1 was consistently an independent predictor of a GBM diagnosis.
Conclusions: Altogether our results uncovered a small noncoding RNA signature in microvesicles isolated from GBM patient serum that could be used as a fast and reliable differential diagnostic biomarker.
Revista:
STEM CELLS
ISSN:
1066-5099
Año:
2011
Vol.:
29
N°:
11
Págs.:
1661 - 1671
Nacionales y Regionales
Título:
Utilidad de un perfil de ARN pequeño no codificante aislado en exosomas circulantes como marcador diagnóstico y de seguimiento en pacientes con glioblastoma multiforme
Código de expediente:
42/2015
Investigador principal:
Jaime Gállego Pérez de Larraya
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2015 GN SALUD
Fecha de inicio:
06/12/2015
Fecha fin:
05/12/2018
Importe concedido:
50.682,00€
Otros fondos:
-
Título:
GRANATE - GRUPO DE RADIOTERAPIA AVANZADA DE NAVARRA ¿ TERAPIA Y EFICACIA
Código de expediente:
0011-1411-2022-000066
Investigador principal:
Ana Patiño García
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2022 GN PROYECTOS ESTRATEGICOS DE I+D 2022-2025
Fecha de inicio:
01/06/2022
Fecha fin:
31/12/2024
Importe concedido:
536.739,00€
Otros fondos:
-
Título:
Inmunoviroterapia contra el osteosarcoma pediátrico: análisis preclínico de las estrategias basadas en el virus Delta-24-RGDOX.
Código de expediente:
PI21/00940
Investigador principal:
Ana Patiño García
Financiador:
INSTITUTO DE SALUD CARLOS III
Convocatoria:
2021 AES Proyectos de investigación
Fecha de inicio:
01/01/2022
Fecha fin:
31/12/2024
Importe concedido:
171.820,00€
Otros fondos:
Fondos FEDER
Título:
Ensayo clínico fase I con el adenovirus oncolítico DNX-2440 para el tratamiento de tumores cerebrales pediátricos recurrentes.
Código de expediente:
PI19/01896
Financiador:
INSTITUTO DE SALUD CARLOS III
Convocatoria:
2019 AES Proyectos de investigación
Fecha de inicio:
01/01/2020
Fecha fin:
30/06/2024
Importe concedido:
189.970,00€
Otros fondos:
Fondos FEDER
Título:
Papel del RNU6 aislado de exosomas circulantes como marcador diagnóstico y de seguimiento en pacientes con glioblastoma
Código de expediente:
PI19/01440
Financiador:
INSTITUTO DE SALUD CARLOS III
Convocatoria:
2019 AES Proyectos de investigación
Fecha de inicio:
01/01/2020
Fecha fin:
31/12/2023
Importe concedido:
96.800,00€
Otros fondos:
Fondos FEDER
Título:
Inmunoviroterapia contra el osteosarcoma infantil.
Código de expediente:
PI18/00614
Investigador principal:
Ana Patiño García
Financiador:
INSTITUTO DE SALUD CARLOS III
Convocatoria:
AES2018 PI
Fecha de inicio:
01/01/2019
Fecha fin:
31/12/2021
Importe concedido:
93.170,00€
Otros fondos:
Fondos FEDER
Título:
Modulando el sistema inmune con adenovirus oncolíticos como estrategia para los tumores difusos de tronco (DIPGs).
Código de expediente:
PI16/00066
Investigador principal:
Marta María Alonso Roldán
Financiador:
INSTITUTO DE SALUD CARLOS III
Convocatoria:
2016 AES PROYECTOS DE INVESTIGACIÓN
Fecha de inicio:
01/01/2017
Fecha fin:
31/12/2019
Importe concedido:
86.515,00€
Otros fondos:
Fondos FEDER
Otros (PIUNA, fundaciones, contratos…)
Título:
Targeting calcium channels against primary and resistant glioblastoma
Código de expediente:
201909-30-31
Investigador principal:
Marta María Alonso Roldán
Financiador:
FUNDACIO "LA MARATO DE TV3"
Convocatoria:
2019 FD LA MARATÓ PROYECTOS DE INVESTIGACIÓN
Fecha de inicio:
31/07/2020
Fecha fin:
30/07/2023
Importe concedido:
117.500,00€
Título:
Niños contra el cáncer - Inmunoterapia basada en el uso de células dendríticas en tumores sólidos avanzados de niños y adolescentes
Código de expediente:
FBLC (ALONSO)
Investigador principal:
Ana Patiño García, Marta María Alonso Roldán
Financiador:
FUNDACIÓN BANCARIA LA CAIXA
Convocatoria:
2017 CAIXA NCC
Fecha de inicio:
26/09/2017
Fecha fin:
27/09/2021
Importe concedido:
400.000,00€
Título:
Inmunomodulación del microambiente tumoral para el tratamiento del glioma difuso de línea media
Investigador principal:
Sara Labiano Almiñana, Jaime Gállego Pérez de Larraya
Financiador:
FUNDACIÓN BLANCA MORELL
Convocatoria:
2021 FD BLANCA MORELL - Proyectos de Investigación en Gliomas
Fecha de inicio:
10/02/2022
Fecha fin:
09/02/2025
Importe concedido:
194.352,00€
Título:
Combinatorial biotherapies for the treatment of pediatric diffuse midline glioma
Código de expediente:
PRYGN21937ALON
Investigador principal:
Marta María Alonso Roldán
Financiador:
ASOCIACION ESPAÑOLA CONTRA EL CANCER
Convocatoria:
2021 AECC Proyectos Generales
Fecha de inicio:
01/12/2021
Fecha fin:
30/11/2024
Importe concedido:
300.000,00€
Título:
Terapias avanzadas para tumores sólidos pediátricos
Investigador principal:
Ana Patiño García, Marta María Alonso Roldán, Jaime Gállego Pérez de Larraya
Financiador:
FUNDACIÓN ADEY
Convocatoria:
2021 FD ADEY Proyectos
Fecha de inicio:
01/04/2021
Fecha fin:
03/04/2024
Importe concedido:
120.000,00€