Revistas
Revista:
THE EUROPEAN PHYSICAL JOURNAL CONFERENCES
ISSN 2101-6275
Vol. 249
Año 2021
Págs.04003
Some years ago, Harth et al. experimentally explored the steady state dynamics of a heated granular gas of rod-like particles in microgravity [K. Harth et al. Phys. Rev. Lett. 110, 144102 (2013)]. Here, we report numerical results that quantitatively reproduce their experimental findings and provide additional insight into the process. A system of sphero-cylinders is heated by the vibration of three flat side walls, resulting in one symmetrically heated direction, one non-symmetrically heated direction, and one non-heated direction.
Revista:
PHYSICAL REVIEW E
ISSN 2470-0045
Vol. 103
N° 6
Año 2021
Págs.062905
We study the flow of elongated grains (wooden pegs of length L = 20 mm with circular cross section of diameter d(c) = 6 and 8 mm) from a silo with a rotating bottom and a circular orifice of diameter D. In the small orifice range (D/d < 5) clogs are mostly broken by the rotating base, and the flow is intermittent with avalanches and temporary clogs. Here d (3/2d(c)(2)L)(1/3) is the effective grain diameter. Unlike for spherical grains, for rods the flow rate W clearly deviates from the power law dependence W proportional to (D - kd)(2.5) at lower orifice sizes in the intermittent regime, where W is measured in between temporary clogs only. Instead, below about D/d < 3 an exponential dependence W proportional to e(kappa D) is detected. Here k and kappa are constants of order unity. Even more importantly, rotating the silo base leads to a strong-more than 50%-decrease of the flow rate, which otherwise does not depend significantly on the value of omega in the continuous flow regime. In the intermittent regime, W(omega) appears to follow a nonmonotonic trend, although with considerable noise. A simple picture, in terms of the switching from funnel flow to mass flow and the alignment of the pegs due to rotation, is proposed to explain the observed difference between spherical and elongated grains. We also observe shear-induced orientational ordering of the pegs at the bottom such that their long axes in average are oriented at a small angle <theta > approximate to 15 degrees to the motion of the bottom.
Revista:
NEW JOURNAL OF PHYSICS
ISSN 1367-2630
Vol. 23
Año 2021
Págs.023001
Granular flow out of a silo is studied experimentally and numerically. The time evolution of the discharge rate as well as the normal force (apparent weight) at the bottom of the container is monitored. We show that particle stiffness has a strong effect on the qualitative features of silo discharge. For deformable grains with a Young modulus of about Ym ¿ 40 kPa in a silo with basal pressure of the order of 4 kPa, lowering the friction coefficient leads to a gradual change in the discharge curve: the flow rate becomes filling height dependent, it decreases during the discharge process. For hard grains with a Young modulus of about Ym ¿ 500 MPa the flow rate is much less sensitive to the value of the friction coefficient. Using DEM data combined with a coarse-graining methodology allows us to compute all the relevant macroscopic fields, namely, linear momentum, density and stress tensors. The observed difference in the discharge in the low friction limit is connected to a strong difference in the pressure field: while for hard grains Janssen-screening is effective, leading to high vertical stress near the silo wall and small pressure above the orifice region, for deformable grains the pressure above the orifice is larger and gradually decreases during the discharge process. We have analyzed the momentum balance in the region of the orifice (near the location of the outlet) for the case of soft particles with low friction coefficient, and proposed a phenomenological...
Revista:
SOFT MATTER
ISSN 1744-6848
Vol. 17
N° 16
Año 2021
Págs.4282 - 4295
We study the outflow dynamics and clogging phenomena of mixtures of soft, elastic low-friction spherical grains and hard frictional spheres of similar size in a quasi-two-dimensional (2D) silo with narrow orifice at the bottom. Previous work has demonstrated the crucial influence of elasticity and friction on silo discharge. We show that the addition of small amounts, even as low as 5%, of hard grains to an ensemble of soft, low-friction grains already has significant consequences. The mixtures allow a direct comparison of the probabilities of the different types of particles to clog the orifice. We analyze these probabilities for the hard, frictional and the soft, slippery grains on the basis of their participation in the blocking arches, and compare outflow velocities and durations of non-permanent clogs for different compositions of the mixtures. Experimental results are compared with numerical simulations. The latter strongly suggest a significant influence of the inter-species particle friction.
Revista:
PHYSICAL REVIEW E
ISSN 2470-0045
Vol. 102
N° 4
Año 2020
Very recently, To et al. have experimentally explored granular flow in a cylindrical silo, with a bottom wall that rotates horizontally with respect to the lateral wall [Phys. Rev. E 100, 012906 (2019)]. Here we numerically reproduce their experimental findings, in particular, the peculiar behavior of the mass flow rate Q as a function of the frequency of rotation f. Namely, we find that for small outlet diameters D the flow rate increased with f, while for larger D a nonmonotonic behavior is confirmed. Furthermore, using a coarse-graining technique, we compute the macroscopic density, momentum, and the stress tensor fields. These results show conclusively that changes in the discharge process are directly related to changes in the flow pattern from funnel flow to mass flow. Moreover, by decomposing the mass flux (linear momentum field) at the orifice into two main factors, macroscopic velocity and density fields, we obtain that the nonmonotonic behavior of the linear momentum is caused by density changes rather than by changes in the macroscopic velocity. In addition, by analyzing the spatial distribution of the kinetic stress, we find that for small orifices increasing rotational shear enhances the mean kinetic pressure < p(k)> and the system dilatancy. This reduces the stability of the arches, and, consequently, the volumetric flow rate increases monotonically. For large orifices, however, we detected that < p(k)> changes nonmonotonically, which might explain the ...