Revistas
Revista:
ISCIENCE
ISSN:
2589-0042
Año:
2022
Vol.:
25
N°:
5
Págs.:
104225
Understanding the regulation of normal and malignant human hematopoiesis requires comprehensive cell atlas of the hematopoietic stem cell (HSC) regulatory microenvironment. Here, we develop a tailored bioinformatic pipeline to integrate public and proprietary single-cell RNA sequencing (scRNA-seq) datasets. As a result, we robustly identify for the first time 14 intermediate cell states and 11 stages of differentiation in the endothelial and mesenchymal BM compartments, respectively. Our data provide the most comprehensive description to date of the murine HSC-regulatory microenvironment and suggest a higher level of specialization of the cellular circuits than previously anticipated. Furthermore, this deep characterization allows inferring conserved features in human, suggesting that the layers of microenvironmental regulation of hematopoiesis may also be shared between species. Our resource and methodology is a stepping-stone toward a comprehensive cell atlas of the BM microenvironment.
Revista:
LEUKEMIA
ISSN:
0887-6924
Año:
2022
Vol.:
36
N°:
8
Págs.:
1969 - 1979
Eradicating leukemia requires a deep understanding of the interaction between leukemic cells and their protective microenvironment. The CXCL12/CXCR4 axis has been postulated as a critical pathway dictating leukemia stem cell (LSC) chemoresistance in AML due to its role in controlling cellular egress from the marrow. Nevertheless, the cellular source of CXCL12 in the acute myeloid leukemia (AML) microenvironment and the mechanism by which CXCL12 exerts its protective role in vivo remain unresolved. Here, we show that CXCL12 produced by Prx1+ mesenchymal cells but not by mature osteolineage cells provide the necessary cues for the maintenance of LSCs in the marrow of an MLL::AF9-induced AML model. Prx1+ cells promote survival of LSCs by modulating energy metabolism and the REDOX balance in LSCs. Deletion of Cxcl12 leads to the accumulation of reactive oxygen species and DNA damage in LSCs, impairing their ability to perpetuate leukemia in transplantation experiments, a defect that can be attenuated by antioxidant therapy. Importantly, our data suggest that this phenomenon appears to be conserved in human patients. Hence, we have identified Prx1+ mesenchymal cells as an integral part of the complex niche-AML metabolic intertwining, pointing towards CXCL12/CXCR4 as a target to eradicate parenchymal LSCs in AML.
Revista:
JOURNAL OF BONE AND MINERAL RESEARCH
ISSN:
0884-0431
Año:
2021
Vol.:
36
N°:
11
Págs.:
2203 - 2213
The remodeling of the extracellular matrix is a central function in endochondral ossification and bone homeostasis. During secondary fracture healing, vascular invasion and bone growth requires the removal of the cartilage intermediate and the coordinate action of the collagenase matrix metalloproteinase (MMP)-13, produced by hypertrophic chondrocytes, and the gelatinase MMP-9, produced by cells of hematopoietic lineage. Interfering with these MMP activities results in impaired fracture healing characterized by cartilage accumulation and delayed vascularization. MMP-10, Stromelysin 2, a matrix metalloproteinase with high homology to MMP-3 (Stromelysin 1), presents a wide range of putative substrates identified in vitro, but its targets and functions in vivo and especially during fracture healing and bone homeostasis are not well defined. Here, we investigated the role of MMP-10 through bone regeneration in C57BL/6 mice. During secondary fracture healing, MMP-10 is expressed by hematopoietic cells and its maximum expression peak is associated with cartilage resorption at 14 days post fracture (dpf). In accordance with this expression pattern, when Mmp10 is globally silenced, we observed an impaired fracture-healing phenotype at 14 dpf, characterized by delayed cartilage resorption and TRAP-positive cell accumulation. This phenotype can be rescued by a non-competitive transplant of wild-type bone marrow, indicating that MMP-10 functions are required only in cells of hematopoietic linage. In addition, we found that this phenotype is a consequence of reduced gelatinase activity and the lack of proMMP-9 processing in macrophages. Our data provide evidence of the in vivo function of MMP-10 during endochondral ossification and defines the macrophages as the lead cell population in cartilage removal and vascular invasion. (c) 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Revista:
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY
ISSN:
1044-1549
Año:
2021
Vol.:
64
N°:
4
Págs.:
465 - 476
Fibroblast activation includes differentiation to myofibroblasts and is a key feature of organ fibrosis. The Notch pathway has been involved in myofibroblast differentiation in several tissues, including the lung. Here, we identify a subset of collagen-expressing cells in the lung that exhibit Notch3 activity at homeostasis. After injury, this activation increases, being found in alpha SMA-expressing myofibroblasts in the mouse and human fibrotic lung. Although previous studies suggest a contribution of Notch3 in stromal activation, in vivo evidence of the role of Notch3 in lung fibrosis remains unknown. In this study, we examine the effects of Notch3 deletion in pulmonary fibrosis and demonstrate that Notch3-deficient lungs are protected from lung injury with significantly reduced collagen deposition after bleomycin administration. The induction of profibrotic genes is reduced in bleomycin-treated Notch3-knockout lungs that consistently present fewer alpha SMA-positive myofibroblasts. As a result, the volume of healthy lung tissue is higher and lung function is improved in the absence of Notch3. Using in vitro cultures of lung primary fibroblasts, we confirmed that Notch3 participates in their survival and differentiation. Thus, Notch3 deficiency mitigates the development of lung fibrosis because of its role in mediating fibroblast activation. Our findings reveal a previously unidentified mechanism underlying lung fibrogenesis and provide a potential novel therapeutic approach to target pulmonary fibrosis.
Revista:
ISCIENCE
ISSN:
2589-0042
Año:
2021
Vol.:
24
N°:
11
Págs.:
103338
The target of Rapamycin complex1 (TORC1) senses and integrates several environmental signals, including amino acid (AA) availability, to regulate cell growth. Folliculin (FLCN) is a tumor suppressor (TS) protein in renal cell carcinoma, which paradoxically activates TORC1 in response to AA supplementation. Fewtractable systems formodeling FLCN-as a TS are available. Here, we characterize the FLCNcontaining complex in Schizosaccharomyces pombe ( called BFC) and show that BFC augments TORC1 repression and activation in response to AA starvation and supplementation, respectively. BFC co-immunoprecipitates V-ATPase, a TORC1 modulator, and regulates its activity in an AA-dependent manner. BFC genetic and proteomic networks identify the conserved peptide transmembrane transporter Ptr2 and the phosphoribosylformylglycinamidine synthase Ade3 as new AA-dependent regulators of TORC1. Overall, these data ascribe an additional repressive function to Folliculin in TORC1 regulation and reveal S. pombe as an excellent system for modeling the AA-dependent, FLCN-mediated repression of TORC1 in eukaryotes.