Nuestros investigadores

Fernando Lecanda Cordero

Publicaciones científicas más recientes (desde 2010)

Autores: Koster, R.; Panagiotou, O.A.; Wheeler, W.A.; et al.
ISSN 0020-7136  Vol. 142  Nº 8  2018  págs. 1594 - 1601
Survival rates for osteosarcoma, the most common primary bone cancer, have changed little over the past three decades and are particularly low for patients with metastatic disease. We conducted a multi-institutional genome-wide association study (GWAS) to identify germline genetic variants associated with overall survival in 632 patients with osteosarcoma, including 523 patients of European ancestry and 109 from Brazil. We conducted a time-to-event analysis and estimated hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards models, with and without adjustment for metastatic disease. The results were combined across the European and Brazilian case sets using a random-effects meta-analysis. The strongest association after meta-analysis was for rs3765555 at 9p24.1, which was inversely associated with overall survival (HR¿=¿1.76; 95% CI 1.41-2.18, p¿=¿4.84 × 10-7 ). After imputation across this region, the combined analysis identified two SNPs that reached genome-wide significance. The strongest single association was with rs55933544 (HR¿=¿1.9; 95% CI 1.5-2.4; p¿=¿1.3 × 10-8 ), which localizes to the GLDC gene, adjacent to the IL33 gene and was consistent across both the European and Brazilian case sets. Using publicly available data, the risk allele was associated with lower expression of IL33 and low expression of IL33 was associated with poor survival in an independent set of patients with osteosarcoma. In conclusion, we have identified the GLDC/IL33 locus on chromosome 9p24.1 as associated with overall survival in patients with osteosarcoma. Further studies are needed to confirm this association and shed light on the biological underpinnings of this susceptibility locus.
Autores: Ajona, Daniel; et al.
ISSN 1073-449X  Vol. 197  Nº 9  2018  págs. 1164 - 1176
RATIONALE: C5aR1 (CD88), a receptor for complement anaphylatoxin C5a, is a potent immune mediator. Its impact on malignant growth and dissemination of non-small cell lung cancer cells is poorly understood. OBJECTIVES: To investigate the contribution of the C5a/C5aR1 axis to the malignant phenotype of non-small cell lung cancer cells, particularly in skeletal colonization, a preferential lung metastasis site. METHODS: Association between C5aR1 expression and clinical outcome was assessed in silico and validated by immunohistochemistry. Functional significance was evaluated by lentiviral gene silencing and ligand l-aptamer inhibition in in vivo models of lung cancer bone metastasis. In vitro functional assays for signaling, migration, invasion, metalloprotease activity, and osteoclastogenesis were also performed. MEASUREMENTS AND MAIN RESULTS: High levels of C5aR1 in human lung tumors were significantly associated with shorter recurrence-free survival, overall survival, and bone metastasis. Silencing of C5aR1 in lung cancer cells led to a substantial reduction in skeletal metastatic burden and osteolysis in in vivo models. Furthermore, metalloproteolytic, migratory, and invasive tumor cell activities were modulated in vitro by C5aR1 stimulation or gene silencing. l-Aptamer blockade or C5aR1 silencing significantly reduced the osseous metastatic activity of lung cancer cells in vivo. This effect was associated with decreased osteoclastogenic activity in vitro and was rescued by the exogenous addition of the chemokine CXCL16. CONCLUSIONS: Disruption of C5aR1 signaling in lung cancer cells abrogates their tumor-associated osteoclastogenic activity, impairing osseous colonization. This study unveils the role played by the C5a/C5aR1 axis in lung cancer dissemination and supports its potential use as a novel therapeutic target.
Autores: Walle, T.; Martínez-Monge, Rafael; Cerwenka, A.; et al.
ISSN 1758-8340  Vol. 10  2018 
Radiotherapy (RT) is currently used in more than 50% of cancer patients during the course of their disease in the curative, adjuvant or palliative setting. RT achieves good local control of tumor growth, conferring DNA damage and impacting tumor vasculature and the immune system. Formerly regarded as a merely immunosuppressive treatment, pre- and clinical observations indicate that the therapeutic effect of RT is partially immune mediated. In some instances, RT synergizes with immunotherapy (IT), through different mechanisms promoting an effective antitumor immune response. Cell death induced by RT is thought to be immunogenic and results in modulation of lymphocyte effector function in the tumor microenvironment promoting local control. Moreover, a systemic immune response can be elicited or modulated to exert effects outside the irradiation field (so called abscopal effects). In this review, we discuss the body of evidence related to RT and its immunogenic potential for the future design of novel combination therapies.
Autores: Vallejo, A.; Guruceaga, Elisabet; et al.
ISSN 2041-1723  Vol. 21  Nº 8  2017  págs. 14294
KRAS mutated tumours represent a large fraction of human cancers, but the vast majority remains refractory to current clinical therapies. Thus, a deeper understanding of the molecular mechanisms triggered by KRAS oncogene may yield alternative therapeutic strategies. Here we report the identification of a common transcriptional signature across mutant KRAS cancers of distinct tissue origin that includes the transcription factor FOSL1. High FOSL1 expression identifies mutant KRAS lung and pancreatic cancer patients with the worst survival outcome. Furthermore, FOSL1 genetic inhibition is detrimental to both KRAS-driven tumour types. Mechanistically, FOSL1 links the KRAS oncogene to components of the mitotic machinery, a pathway previously postulated to function orthogonally to oncogenic KRAS. FOSL1 targets include AURKA, whose inhibition impairs viability of mutant KRAS cells. Lastly, combination of AURKA and MEK inhibitors induces a deleterious effect on mutant KRAS cells. Our findings unveil KRAS downstream effectors that provide opportunities to treat KRAS-driven cancers.
Autores: Martinez Canarias, S.; et al.
ISSN 1756-8722  Vol. 10  Nº 1  2017  págs. 23
Background: Activated protein C/endothelial protein C receptor (APC/EPCR) axis is physiologically involved in anticoagulant and cytoprotective activities in endothelial cells. Emerging evidence indicates that EPCR also plays a role in breast stemness and human tumorigenesis. Yet, its contribution to breast cancer progression and metastasis has not been elucidated. Methods: Transcriptomic status of EPCR was examined in a cohort of 286 breast cancer patients. Cell growth kinetics was evaluated in control and EPCR and SPARC/osteonectin, Cwcv, and kazal-like domains proteoglycan (SPOCK1/testican 1) silenced breast cancer cells in 2D, 3D, and in co-culture conditions. Orthotopic tumor growth and lung and osseous metastases were evaluated in several human and murine xenograft breast cancer models. Tumor-stroma interactions were further studied in vivo by immunohistochemistry and flow cytometry. An EPCR-induced gene signature was identified by microarray analysis. Results: Analysis of a cohort of breast cancer patients revealed an association of high EPCR levels with adverse clinical outcome. Interestingly, EPCR knockdown did not affect cell growth kinetics in 2D but significantly reduced cell growth in 3D cultures. Using several human and murine xenograft breast cancer models, we showed that EPCR silencing reduced primary tumor growth and secondary outgrowths at metastatic sites, including the skeleton and the lungs. Interestingly, these effects were independent of APC ligand stimulation in vitro and in vivo. Transcriptomic analysis of EPCR-silenced tumors unveiled an effect mediated by matricellular secreted proteoglycan SPOCK1/testican 1. Interestingly, SPOCK1 silencing suppressed in vitro 3D growth. Moreover, SPOCK1 ablation severely decreased orthotopic tumor growth and reduced bone metastatic osteolytic tumors. High SPOCK1 levels were also associated with poor clinical outcome in a subset breast cancer patients. Our results suggest that EPCR through SPOCK1 confers a cell growth advantage in 3D promoting breast tumorigenesis and metastasis. Conclusions: EPCR represents a clinically relevant factor associated with poor outcome and a novel vulnerability to develop combination therapies for breast cancer patients.
Autores: Martin Fernandez, M. ; et al.
ISSN 1944-7124  Vol. 10  Nº 2  2017  págs. 255 - 261
BACKGROUND: The skeleton is the most common site of colonization by metastatic cancers. Zoledronic acid (ZA) has been shown to be effective for the treatment of bone metastases regardless of whether the bone lesions are osteolytic or osteoblastic. Biochemical markers of bone turnover may be useful tools to quantify the degree of bone remodeling in the presence of bone metastases. The aim of this work was to establish the correlation between tumor dispersion (bioluminescence) and biochemical markers of bone turnover in two osteolytic and osteoblastic metastasis models in mice. METHODS: The A549M1 cell line that produces osteolytic metastases and the LADOB cell line extracted from a patient with a lung carcinoma and osteoblastic metastases cells were retrovirally transduced with a luciferase reporter gene for in vivo image analysis. Forty-four-week-oldmicewere inoculated in the left cardiac ventricle with A549M1 or LADOB cells. Twenty mouse of each group were treated with a single dose of ZA (70 mu g/kg) 5 days after i.c. Ten animals of each group were sacrificed at 21 and 28 days postinoculation in A549M1 and 60 and 75 days in the LADOB assay. Bioluminescence analysis was quantified 7, 14, 21, and 28 days postinoculation in A549M1 mice and 33, 45, 60, and 75 days after inoculation in LADOB mice. Osteocalcin (BGP), aminoterminal propeptide of procollagen I (PINP), carboxiterminal telopeptide of type I collagen (CTX), and 5b isoenzyme of tartrate-resistant acid phosphatase were measured by ELISA (IDS, UK). RESULTS: Bioluminescence imaging revealed a significant increase of tumor burden on time in both osteolytic and osteoblastic mice models. ZA administration resulted in a significant decrease in tumor burden at 21 and 28 days in the A549M1 animals and 60 and 70 days postinoculation in the LADOB line. Biomarkers levels were significantly increased in the untreated group at every point in the osteolytic model. In the osteoblastic model, 2 months after inoculation, all biomarkers were significantly increased. However, 2.5 months postinoculation, only PINP and CTX were significantly increased. Serum bone remodeling markers decreased in ZA- treated mice as compared with tumor groups in both models. With respect to the correlation between bone turnover markers and tumor burden, in the osteolytic model, PINP and BGP demonstrate a strong correlation with bioluminescence in both tumoral and ZA animals, and only CTX was significantly associated with bioluminescence in the group of animals that were not treated with ZA. CONCLUSIONS: We found that the best biomarkers for the diagnosis of both osteolytic and osteoblastic metastasis are formation markers, especially BGP. Moreover, these markers can be useful in the follow-up of the treatment with ZA in both types of metastasis.
Autores: Ajona, Daniel; Ortiz Espinosa, S.; Moreno, H. ; et al.
ISSN 2159-8274  Vol. 7  Nº 7  2017  págs. 694 - 703
Disruption of the programmed cell death protein 1 (PD-1) pathway with immune checkpoint inhibitors represents a major breakthrough in the treatment of non-small cell lung cancer. We hypothesized that combined inhibition of C5a/C5aR1 and PD-1 signaling may have a synergistic antitumor effect. The RMP1-14 antibody was used to block PD-1, and an L-aptamer was used to inhibit signaling of complement C5a with its receptors. Using syngeneic models of lung cancer, we demonstrate that the combination of C5a and PD-1 blockade markedly reduces tumor growth and metastasis and leads to prolonged survival. This effect is accompanied by a negative association between the frequency of CD8 T cells and myeloid-derived suppressor cells within tumors, which may result in a more complete reversal of CD8 T-cell exhaustion. Our study provides support for the clinical evaluation of anti-PD-1 and anti-C5a drugs as a novel combination therapeutic strategy for lung cancer. SIGNIFICANCE: Using a variety of preclinical models of lung cancer, we demonstrate that the blockade of C5a results in a substantial improvement in the efficacy of anti-PD-1 antibodies against lung cancer growth and metastasis. This study provides the preclinical rationale for the combined blockade of PD-1/PD-L1 and C5a to restore antitumor immune responses, inhibit tumor cell growth, and improve outcomes of patients with lung cancer. (C) 2017 AACR.
Autores: Ajona, Daniel; Moreno, H.; et al.
ISSN 1556-0864  Vol. 12  Nº 1  2017  págs. S391 - S391
Autores: Ormazábal, Cristina; et al.
ISSN 0022-3417  Vol. 239  Nº 4  2016  págs. 438-49
Osteosarcoma (OS) is the most prevalent osseous tumour in children and adolescents and, within this, lung metastases remain one of the factors associated with a dismal prognosis. At present, the genetic determinants driving pulmonary metastasis are poorly understood. We adopted a novel strategy using robust filtering analysis of transcriptomic profiling in tumour osteoblastic cell populations derived from human chemo-naive primary tumours displaying extreme phenotypes (indolent versus metastatic) to uncover predictors associated with metastasis and poor survival. We identified MGP, encoding matrix-Gla protein (MGP), a non-collagenous matrix protein previously associated with the inhibition of arterial calcification. Using different orthotopic models, we found that ectopic expression of Mgp in murine and human OS cells led to a marked increase in lung metastasis. This effect was independent of the carboxylation of glutamic acid residues required for its physiological role. Abrogation of Mgp prevented lung metastatic activity, an effect that was rescued by forced expression. Mgp levels dramatically altered endothelial adhesion, trans-endothelial migration in vitro and tumour cell extravasation ability in vivo. Furthermore, Mgp modulated metalloproteinase activities and TGFß-induced Smad2/3 phosphorylation. In the clinical setting, OS patients who developed lung metastases had high serum levels of MGP at diagnosis. Thus, MGP represents a novel adverse prognostic factor and a potential therapeutic target in OS. Microarray datasets may be found at: Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Autores: Vicent, Silvestre; Govindan, R.; et al.
ISSN 1073-449X  Vol. 192  Nº 7  2015  págs. 799 - 809
Autores: Mirabello, L.; Yeager, M.; Mai, P.L.; et al.
ISSN 0027-8874  Vol. 107  Nº 7  2015  págs. djv101
The etiologic contribution of germline genetic variation to sporadic osteosarcoma is not well understood. Osteosarcoma is a sentinel cancer of Li-Fraumeni syndrome (LFS), in which approximately 70% of families meeting the classic criteria have germline TP53 mutations. We sequenced TP53 exons in 765 osteosarcoma cases. Data were analyzed with ¿(2) tests, logistic regression, and Cox proportional hazards regression models. We observed a high frequency of young osteosarcoma cases (age <30 years) carrying a known LFS- or likely LFS-associated mutation (3.8%) or rare exonic variant (5.7%) with an overall frequency of 9.5%, compared with none in case patients age 30 years and older (P < .001). This high TP53 mutation prevalence in young osteosarcoma cases is statistically significantly greater than the previously reported prevalence of 3% (P = .0024). We identified a novel association between a TP53 rare variant and metastasis at diagnosis of osteosarcoma (rs1800372, odds ratio = 4.27, 95% confidence interval = 1.2 to 15.5, P = .026). Genetic susceptibility to young onset osteosarcoma is distinct from older adult onset osteosarcoma, with a high frequency of LFS-associated and rare exonic TP53 variants.
Autores: Sampson, J.N.; Wheeler, W.A.; Yeager, M.; et al.
ISSN 0027-8874  Vol. 107  Nº 12  2015  págs. djv279
Background: Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide polymorphisms (SNPs) for cancer at 13 anatomical sites. Methods: Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology (GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers. Results: GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, hl 2, on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally statistically significant correlations, specifically kidney and testes (¿ = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL) and pediatric osteosarcoma (¿ = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (¿ = 0.51, SE =0.18), and bladder and lung (¿ = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that the genetic etiology for the same disease can vary by population and environmental exposures. Conclusion: Our results provide important insights into the genetic architecture of cancers and suggest new avenues for investigation.
Autores: Redrado M; et al.
ISSN 1949-2553  Vol. 6  Nº 29  2015  págs. 27288 - 27303
The spread of lung cancer cells to distant sites represents a common event associated with poor prognosis. A fraction of tumor cells named cancer stem cells (CSCs) have the ability to overcome therapeutic stress and remain quiescent. However, whether these CSCs have also the capacity to initiate and sustain metastasis remains unclear. Here, we used tumor sphere cultures (TSC) isolated from mouse and human lung cancer models to enrich for CSCs, and assessed their metastatic potential as compared to non-CSCs. As expected, TSC overexpressed a variety of stem cell markers and displayed chemoresistance. The CSC phenotype of TSC was confirmed by their higher growth ability in soft agar and tumorigenic potential in vivo, despite their reduced in vitro cell growth kinetics. Surprisingly, the appearance of spontaneous lung metastases was strongly delayed in mice injected with TSC as compared to non-TSC cells. Similarly, this finding was confirmed in several other models of metastasis, an effect associated with a retarded colonization activity. Interestingly, such delay correlated with a quiescent phenotype whose underlined mechanisms included an increase in p27 protein and lower phospho-ERK1/2 levels. Thus, these data suggest that cells enriched for CSC properties display an impaired metastatic activity, a finding with potential clinical implications.
Autores: Mirabello, L.; Koster, R.; Moriarity, B.S.; et al.
ISSN 2159-8274  Vol. 5  Nº 9  2015  págs. 920-31
Autores: Weekes, D.; Kashima, T.G.; Zandueta, C.; et al.
ISSN 0950-9232  Vol. 35  Nº 22  2015  págs. 2948
Osteosarcoma is the most common primary malignancy of the skeleton and is prevalent in children and adolescents. Survival rates are poor and have remained stagnant owing to chemoresistance and the high propensity to form lung metastases. In this study, we used in vivo transgenic models of c-fos oncogene-induced osteosarcoma and chondrosarcoma in addition to c-Fos-inducible systems in vitro to investigate downstream signalling pathways that regulate osteosarcoma growth and metastasis. Fgfr1 (fibroblast growth factor receptor 1) was identified as a novel c-Fos/activator protein-1(AP-1)-regulated gene. Induction of c-Fos in vitro in osteoblasts and chondroblasts caused an increase in Fgfr1 RNA and FGFR1 protein expression levels that resulted in increased and sustained activation of mitogen-activated protein kinases (MAPKs), morphological transformation and increased anchorage-independent growth in response to FGF2 ligand treatment. High levels of FGFR1 protein and activated pFRS2¿ signalling were observed in murine and human osteosarcomas. Pharmacological inhibition of FGFR1 signalling blocked MAPK activation and colony growth of osteosarcoma cells in vitro. Orthotopic injection in vivo of FGFR1-silenced osteosarcoma cells caused a marked twofold to fivefold decrease in spontaneous lung metastases. Similarly, inhibition of FGFR signalling in vivo with the small-molecule inhibitor AZD4547 markedly reduced the number and size of metastatic nodules. Thus deregulated FGFR signallin
Autores: Martínez-Velez, N.; Xipell, E.; et al.
ISSN 0884-0431  Vol. 29  Nº 10  2014  págs. 2287 - 2296
Osteosarcoma is the most common malignant bone tumor in children and adolescents. The presence of metastases and the lack of response to conventional treatment are the major adverse prognostic factors. Therefore, there is an urgent need for new treatment strategies that overcome both of these problems. Our purpose was to elucidate whether the use of the oncolytic adenovirus ¿24-RGD alone or in combination with standard chemotherapy would be effective, in vitro and in vivo, against osteosarcoma. Our results showed that ¿24-RGD exerted a potent antitumor effect against osteosarcoma cell lines that was increased by the addition of cisplatin. ¿24-RGD osteosarcoma treatment resulted in autophagy in vitro that was further enhanced when combined with cisplatin. Of importance, administration of ¿24-RGD and/or cisplatin, in novel orthotopic and two lung metastatic models in vivo resulted in a significant reduction of tumor burden meanwhile maintaining a safe toxicity profile. Together, our data underscore the potential of ¿24-RGD to become a realistic therapeutic option for primary and metastatic pediatric osteosarcoma. Moreover, this study warrants a future clinical trial to evaluate the safety and efficacy of ¿24-RGD for this devastating disease.
Autores:  et al.
ISSN 1574-7891  Vol. 8  Nº 2  2014  págs. 196 - 206
Lung adenocarcinoma (ADC) is the most common lung cancer subtype and presents a high mortality rate. Clinical recurrence is often associated with the emergence of metastasis and treatment resistance. The purpose of this study was to identify genes with high prometastatic activity which could potentially account for treatment resistance. Global transcriptomic profiling was performed by robust microarray analysis in highly metastatic subpopulations. Extensive in vitro and in vivo functional studies were achieved by overexpression and by silencing gene expression. We identified the small GTPase RHOB as a gene that promotes early and late stages of metastasis in ADC. Gene silencing of RHOB prevented metastatic activity in a systemic murine model of bone metastasis. These effects were highly dependent on tumor-host interactions. Clinical analysis revealed a marked association between high RHOB levels and poor survival. Consistently, high RHOB levels promote metastasis progression, taxane-chemoresistance, and contribute to the survival advantage to ¿-irradiation. We postulate that RHOB belongs to a novel class of "genes of recurrence" that have a dual role in metastasis and treatment resistance.
Autores: Freire, Francisco Javier; Pajares, María Josefa; et al.
ISSN 0020-7136  Vol. 135  Nº 11  2014  págs. 2516 - 2527
New mouse models with specific drivers of genetic alterations are needed for preclinical studies. Herein, we created and characterized at the genetic level a new syngeneic model for lung cancer and metastasis in Balb-c mice. Tumor cell lines were obtained from a silica-mediated airway chronic inflammation that promotes tumorigenesis when combined with low doses of N-nitrosodimethylamine, a tobacco smoke carcinogen. Orthotopic transplantation of these cells induced lung adenocarcinomas, and their intracardiac injection led to prominent colonization of various organs (bone, lung, liver and brain). Driver gene alterations included a mutation in the codon 12 of KRAS (G-A transition), accompanied by a homozygous deletion of the WW domain-containing oxidoreductase (WWOX) gene. The mutant form of WWOX lacked exons 5-8 and displayed reduced protein expression level and activity. WWOX gene restoration decreased the in vitro and in vivo tumorigenicity, confirming the tumor suppressor function of this gene in this particular model. Interestingly, we found that cells displayed remarkable sphere formation ability with expression of specific lung cancer stem cell markers. Study of non-small-cell lung cancer patient cohorts demonstrated a deletion of WWOX in 30% of cases, with significant reduction in protein levels as compared to normal tissues. Overall, our new syngeneic mouse model provides a most valuable tool to study lung cancer metastasis in balb-c mice background and highlights the importance of WWOX deletion in lung carcinogenesis.
Autores: Brun, J.; Dieudonné, F. X.; Marty, C.; et al.
Revista: PLOS ONE
ISSN 1932-6203  Vol. 8  Nº 1  2013  págs. e55034
Background: The molecular mechanisms that are involved in the growth and invasiveness of osteosarcoma, an aggressive and invasive primary bone tumor, are not fully understood. The transcriptional co-factor FHL2 (four and a half LIM domains protein 2) acts as an oncoprotein or as a tumor suppressor depending on the tissue context. In this study, we investigated the role of FHL2 in tumorigenesis in osteosarcoma model. Methodology/Principal Findings: Western blot analyses showed that FHL2 is expressed above normal in most human and murine osteosarcoma cells. Tissue microarray analysis revealed that FHL2 protein expression is high in human osteosarcoma and correlates with osteosarcoma aggressiveness. In murine osteosarcoma cells, FHL2 silencing using shRNA decreased canonical Wnt/beta-catenin signaling and reduced the expression of Wnt responsive genes as well as of the key Wnt molecules Wnt5a and Wnt10b. This effect resulted in inhibition of osteosarcoma cell proliferation, invasion and migration in vitro. Using xenograft experiments, we showed that FHL2 silencing markedly reduced tumor growth and lung metastasis occurence in mice. The anti-oncogenic effect of FHL2 silencing in vivo was associated with reduced cell proliferation and decreased Wnt signaling in the tumors. Conclusion/Significance: Our findings demonstrate that FHL2 acts as an oncogene in osteosarcoma cells and contributes to tumorigenesis through Wnt signaling. More importantly, FHL2 depletion greatly reduces tumor cell growth and metastasis, which raises the potential therapeutic interest of targeting FHL2 to efficiently impact primary bone tumors.
Autores: Jullien, N.; Dieudonné, F. X.; Habel, N.; et al.
Revista: GENE
ISSN 0378-1119  Vol. 521  Nº 1  2013  págs. 55 - 61
Osteosarcoma is the most common primary bone tumor in children and adults. Despite improved prognosis, resistance to chemotherapy remains responsible for failure of osteosarcoma treatment. The identification of the molecular signals that contribute to the aberrant osteosarcoma cell growth may provide clues to develop new therapeutic strategies for chemoresistant osteosarcoma. Here we show that the expression of ErbB3 is increased in human osteosarcoma cells in vitro. Tissue microarray analysis of tissue cores from osteosarcoma patients further showed that the ErbB3 protein expression is higher in bone tumors compared to normal bone tissue, and is further increased in patients with recurrent disease or soft tissue metastasis. In murine osteosarcoma cells, silencing ErbB3 using shRNA decreased cell replication, cell migration and invasion, indicating that ErbB3 contributes to tumor cell growth and invasiveness. Furthermore, ErbB3 silencing markedly reduced tumor growth in a murine allograft model in vivo. Immunohistochemal analysis showed that the reduced tumor growth induced by ErbB3 silencing in this model resulted from decreased cell osteosarcoma cell proliferation, supporting a role of ErbB3 in bone tumor growth in vivo. Taken together, the results reveal that ErbB3 expression in human osteosarcoma correlates with tumor grade. Furthermore, silencing ErbB3 in a murine osteosarcoma model results in decreased cell growth and invasiveness in vitro, and reduced tumor growth in vivo, which supports the potential therapeutic interest of targeting ErbB3 in osteosarcoma.
Autores: Habel, N.; Hamidouche, Z.; Girault, I.; et al.
ISSN 2041-4889  Vol. 4  2013  págs. e874.
Osteosarcoma is the most common primary tumor of bone occurring in children and adolescents. The histological response to chemotherapy represents a key clinical factor related to survival. We previously showed that statins exhibit antitumor effects in vitro, inducing apoptotic cell death, reducing cell migration and invasion capacities and strengthening cytotoxic effects in combination with standard drugs. Comparative transcriptomic analysis between control and statin-treated cells revealed strong expression of several genes, including metallothionein (MT) 2A. MT2A overexpression by lentiviral transduction reduced bioavailable zinc levels, an effect associated with reduced osteosarcoma cell viability and enhanced cell differentiation. In contrast, MT2A silencing did not modify cell viability but strongly inhibited expression of osteoblastic markers and differentiation process. MT2A overexpression induced chemoresistance to cytotoxic drugs through direct chelation of platinum-containing drugs and indirect action on p53 zinc-dependent activity. In contrast, abrogation of MT2A enhanced cytotoxic action of chemotherapeutic drugs on osteosarcoma cells. Finally, clinical samples derived from chemonaive biopsies revealed that tumor cells expressing low MT2A levels correspond to good prognostic (good responder patients with longer survival rate), whereas high MT2A levels were associated with adverse prognosis (poor responder patients). Taken together, these data show that MT2A contri
Autores: Martin-Fernandez, M; et al.
Revista: BONE
ISSN 8756-3282  Vol. 52  Nº 1  2013  págs. 532-539
Recent evidence suggests that miRNAs could be used as serum markers in a variety of normal and pathological conditions. In this study, we aimed to identify novel miRNAs associated with skeletal metastatic disease in a preclinical model of lung cancer bone metastasis. We assessed the validity of these miRNAs as reliable serum biochemical markers to monitor the extent of disease and response to treatment in comparison to imaging techniques and standard biochemical markers of bone turnover. Using a murine model of human lung cancer bone metastasis after zoledronic acid (ZA) treatment, PINP (procollagen I amino-terminal propeptide) was the only marker that exhibited a strong correlation with osteolytic lesions and tumor burden at early and late stages of bone colonization. In contrast, BGP (osteocalcin) and CTX (carboxyterminal telopeptide) demonstrated a strong correlation only at late stages. We performed qPCR based screening of a panel of 380 human miRNAs and quantified bone metastatic burden using micro-CT scans, X-rays and bioluminescence imaging. Interestingly, levels of miR-326 strongly associated with tumor burden and PINP in vehicle-treated animals, whereas no association was found in ZA-treated animals. Only miR-193 was associated with biochemical markers PINP, BGP and CTX in ZA-treated animals. Consistently, miR-326 and PINP demonstrated a strong correlation with tumor burden. Our findings, taken together, indicate that miR-326 could potentially serve as a novel biochemical marker for monitoring bone metastatic progression. (C) 2012 Elsevier Inc. All rights reserved.
Autores: Savage, S. A.; Mirabello, L.; Wang, Z.; et al.
ISSN 1061-4036  Vol. 45  Nº 7  2013  págs. 799 - 803
Osteosarcoma is the most common primary bone malignancy of adolescents and young adults. To better understand the genetic etiology of osteosarcoma, we performed a multistage genome-wide association study consisting of 941 individuals with osteosarcoma (cases) and 3,291 cancer-free adult controls of European ancestry. Two loci achieved genome-wide significance: a locus in the GRM4 gene at 6p21.3 (encoding glutamate receptor metabotropic 4; rs1906953; P = 8.1 × 10¿¿) and a locus in the gene desert at 2p25.2 (rs7591996 and rs10208273; P = 1.0 × 10¿¿ and 2.9 × 10¿¿, respectively). These two loci warrant further exploration to uncover the biological mechanisms underlying susceptibility to osteosarcoma.
Autores: Marion, A.; Dieudonne, F. X; Patiño-Garcia, Ana; et al.
ISSN 0020-7136  Vol. 130  Nº 11  2012  págs. 2514-2525
Bone tumors strongly influence normal tissues and stimulate bone cells for the production of cytokines supporting proliferation and abnormal survival in cancer cells. We previously reported that the proteoglycan syndecan-2 controls the activity of various cytokines and growth factors and also modulates apoptosis and response to cytotoxic agents in osteosarcoma cell lines. Here, we show that syndecan-2 has a stronger tumor suppressor activity in vivo. We identify calpain-6 as a target gene downregulated by syndecan-2 in cells and in vivo. We demonstrate that calpain-6 expression in osteosarcoma cells depends on endothelin-1, a mediator of the tumor progression in bone. Syndecan-2 overexpression alters ERK1/2, PI3K/AKT and NF?B pathways that are calpain-6-promoting signals downstream of endothelin-1. Immunohistochemical analysis shows that calpain-6 is expressed in human bone tumors and metastases. A high expression of calpain-6 was specially found in recurrent osteosarcoma. Moreover, calpain-6 levels in primary tumors were inversely related to the response to chemotherapy. Consistently, calpain-6 was increased by doxorubicin and was found to be expressed at higher levels in doxorubicin-resistant U2OS osteosarcoma-derived cells as compared to responsive cells. Inhibition of calpain-6 with shRNA resulted in decreased proliferation, increased spontaneous apoptosis and increased sensitivity to doxorubicin and also methotrexate in responsive and resistant osteosarcoma cells. Taken together, our data show that syndecan-2 exerts its pro-apoptotic function through modulation of the endothelin-1/NF?B signaling and through downregulation of calpain-6, a protective factor that contributes to abnormal cell survival. Thus, this study identifies calpain-6 as a new possible therapeutic target in chemoresistant osteosarcoma.
Autores: Ormazábal, Cristina; et al.
ISSN 1078-0432  Vol. 18  Nº 4  2012  págs. 969 - 980
Purpose: We investigated the role of the collagen-binding receptor discoidin domain receptor-1 (DDR1) in the initiation and development of bone metastasis. Experimental Design: We conducted immunohistochemical analyses in a cohort of 83 lung cancer specimens and examined phosphorylation status in a panel of human lung cancer cell lines. Adhesion, chemotaxis, invasiveness, metalloproteolytic, osteoclastogenic, and apoptotic assays were conducted in DDR1-silenced cells. In vivo, metastatic osseous homing and colonization were assessed in a murine model of metastasis. Results: DDR1 was expressed in a panel of human lung cancer cell lines, and high DDR1 levels in human lung tumors were associated with poor survival. Knockdown (shDDR1) cells displayed unaltered growth kinetics in vitro and in vivo. In contrast, shDDR1 cells showed reduced invasiveness in collagen matrices and increased apoptosis in basal conditions and induced apoptosis in vitro. More importantly, conditioned media of DDR1-knockdown cells decreased osteoclastogenic activity in vitro. Consequently, in a model of tumor metastasis to bone, lack of DDR1 showed decreased metastatic activity associated with reduced tumor burden and osteolytic lesions. These effects were consistent with a substantial reduction in the number of cells reaching the bone compartment. Moreover, intratibial injection of shDDR1 cells significantly decreased bone tumor burden, suggesting impaired colonization ability that was highly dependent on the bone microenvironment. Conclusions: Disruption of DDR1 hampers tumor cell survival, leading to impaired early tumor-bone engagement during skeletal homing. Furthermore, inhibition of DDR1 crucially alters bone colonization. We suggest that DDR1 represents a novel therapeutic target involved in bone metastasis.
Autores:  et al.
ISSN 1073-449X  Vol. 186  Nº 1  2012  págs. 96 - 105
Rationale: Efficient metastasis requires survival and adaptation of tumor cells to stringent conditions imposed by the extracellular milieu. Identification of critical survival signaling pathways in tumor cells might unveil novel targets relevant in disease progression. Objectives: To investigate the contribution of activated protein C (APC) and its receptor (endothelial protein C receptor [EPCR]) in animal models of lung cancer metastasis and in patients with lung adenocarcinoma. Methods: Signaling pathway triggered by APC/EPCR and its relevance in apoptosis was studied in vitro. Functional significance was assessed by silencing and blocking antibodies in several in vivo models of lung cancer metastasis in athymic nude Foxn1(nu) mice. We examined EPCR levels using a microarray dataset of 107 patients. Immunohistochemical analysis was performed in an independent cohort of 295 patients with lung adenocarcinoma. Measurements and Main Results: The effects of APC binding to EPCR rapidly triggered Akt and extracellular signal-regulated kinase signaling pathways, leading to attenuated in vitro apoptosis. In vivo, silencing of EPCR expression or blocking APC/EPCR interaction reduced infiltration in the target organ, resulting in impaired prometastatic activity. Moreover, overexpression of EPCR induced an increased metastatic activity to target organs. Analysis of clinical samples showed a robust association between high EPCR levels and poor prognosis, particularly in stage I patients. Conclusions: EPCR and its ligand APC promote cell survival that contributes to tumor cell endurance to stress favoring prometastatic activity of lung adenocarcinoma. EPCR/APC is a novel target of relevance in the clinical outcome of early-stage lung cancer.
Autores: Folio, Cecilia; Zalacain, Marta; et al.
ISSN 1574-0153  Vol. 10  Nº 1  2012  págs. 35 - 41
BACKGROUND: The cortactin (CTTN) gene has been found, by transcriptomic profiling, to be overexpressed in pediatric osteosarcoma. The location of CTTN at 11q13 and the role of cortactin in cytoskeleton restructuring make CTTN of interest as a potential biomarker for osteosarcoma. MATERIALS AND METHODS: Osteoblasts were isolated from 20 high-grade osteosarcomas before chemotherapy, and paired with cell samples from normal tissue, prior to RNA expression analysis on HG-U133A chips (Affymetrix). Semiquantitative CTTN mRNA expression was analyzed by real-time PCR. An osteosarcoma tissue microarray (TMA) containing 233 tissue spots from 48 patients was used for an immunohistochemical (IHC) study of cortactin. RESULTS: Transcriptomic profiling and real-time PCR analysis indicated increased CTTN expression in osteosarcomas (p = 0.001, Student's T test). TMA IHC showed cortactin to be present more frequently and in greater abundance in osteosarcomas than non-tumoral osteoblastic samples (p< 0.006, Mann-Withney test). Analysis of clinical outcomes indicated that overall survival for patients with primary tumors positive for cortactin was significantly lower than that for patients with cortactin negative (or only weakly staining) tumors (p = 0.0278, Log-rank test). CONCLUSIONS: Our preliminary data support the hypothesis that over-expression of cortactin, contained in the 11q13 amplicon, is involved in osteosarcoma carcinogenesis. The potential of cortactin overexpression as a biom
Autores: Sévère, N.; Dieudonné, F. X.; Marty, C.; et al.
ISSN 0884-0431  Vol. 27  Nº 10  2012  págs. 2108 - 2117
Targeting receptor tyrosine kinase (RTK) degradation may be an interesting approach to reduce RTK cell signaling in cancer cells. Here we show that increasing E3 ubiquitin ligase casitas B-lineage lymphoma (c-Cbl) expression using lentiviral infection decreased osteosarcoma cell replication and survival and reduced cell migration and invasion in murine and human osteosarcoma cells. Conversely, c-Cbl inhibition using short hairpin RNA (shRNA) increased osteosarcoma cell growth and survival, as well as invasion and migration, indicating that c-Cbl plays a critical role as a bone tumor suppressor. Importantly, the anticancer effect of increasing c-Cbl expression in osteosarcoma cells was related mainly to the downregulation of epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor alpha (PDGFRa). In a murine bone tumor model, increasing c-Cbl expression also reduced RTK expression, resulting in decreased tumor cell proliferation and survival and reduced tumor growth. Interestingly, increasing c-Cbl also markedly reduced lung metastasis in mice. Tissue microarray analysis revealed that low c-Cbl protein expression is associated with elevated EGFR and PDGFRa protein levels in human osteosarcoma with poor outcome. This study shows that increasing c-Cbl expression reduces osteosarcoma cell growth, survival, and metastasis in part through downregulation of RTKs, which supports the potential therapeutic interest of targeting c-Cbl in malignant bone diseases involving increased RTK.
Autores: Catena , R.; Luis-Ravelo , D.; et al.
ISSN 0008-5472  Vol. 71  Nº 1  2011  págs. 164 - 174
Bone microenvironment and cell-cell interactions are crucial for the initiation and development of metastasis. By means of a pharmacologic approach, using the multitargeted tyrosine kinase inhibitor sunitinib, we tested the relevance of the platelet-derived growth factor receptor (PDGFR) axis in the bone marrow (BM) stromal compartment for the initiation and development of lung cancer metastasis to bone. PDGFR beta was found to be the main tyrosine kinase target of sunitinib expressed in BM stromal ST-2 and MC3T3-E1 preosteoblastic cells. In contrast, no expression of sunitinib-targeted receptors was found in A549M1 and low levels in H460M5 lung cancer metastatic cells. Incubation of ST-2 and human BM endothelial cells with sunitinib led to potent cell growth inhibition and induction of apoptosis in a dose-dependent manner. Similarly, sunitinib induced a robust proapoptotic effect in vivo on BM stromal PDGFR beta(+) cells and produced extensive disruption of tissue architecture and vessel leakage in the BM cavity. Pretreatment of ST-2 cells with sunitinib also hindered heterotypic adhesion to lung cancer cell lines. These effects were correlated with changes in cell-cell and cell-matrix molecules in both stromal and tumor cells. Pretreatment of mice with sunitinib before intracardiac inoculation of A549M1 or H460M5 cells caused marked inhibition of tumor cells homing to bone, whereas no effect was found when tumor cells were pretreated before inoculation. Treatment with sunit
Autores: Fromigue, O.; Hamidouche, Z.; Vaudin, P.; et al.
ISSN 0884-0431  Vol. 26  Nº 7  2011  págs. 1533-42
Osteosarcoma is the most common primary tumor of bone. The rapid development of metastatic lesions and resistance to chemotherapy remain major mechanisms responsible for the failure of treatments and the poor survival rate for patients. We showed previously that the HMGCoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase inhibitor statin exhibits antitumoral effects on osteosarcoma cells. Here, using microarray analysis, we identify Cyr61 as a new target of statins. Transcriptome and molecular analyses revealed that statins downregulate Cyr61 expression in human and murine osteosarcoma cells. Cyr61 silencing in osteosarcoma cell lines enhanced cell death and reduced cell migration and cell invasion compared with parental cells, whereas Cyr61 overexpression had opposite effects. Cyr61 expression was evaluated in 231 tissue cores from osteosarcoma patients. Tissue microarray analysis revealed that Cyr61 protein expression was higher in human osteosarcoma than in normal bone tissue and was further increased in metastatic tissues. Finally, tumor behavior and metastasis occurrence were analyzed by intramuscular injection of modified osteosarcoma cells into BALB/c mice. Cyr61 overexpression enhanced lung metastasis development, whereas cyr61 silencing strongly reduced lung metastases in mice. The results reveal that cyr61 expression increases with tumor grade in human osteosarcoma and demonstrate that cyr61 silencing inhibits in vitro osteosarcoma cell invasion and migration as we
Autores: Suárez Fuentetaja, N.; Alfaro Alegría, C.; Dubrot Armendáriz, J.; et al.
Revista: International Journal of Cancer (Print)
ISSN 0020-7136  Vol. 129  Nº 2  2011  págs. 374 - 386
The synergy mechanism can be traced to enhanced CTLA-4 expression in effector cells as a result of T(reg) elimination, thereby offering more targets to the blocking antibody. Human T cells and allogenic DCs (derived both from healthy donors and advanced cancer patients) were coinjected in the peritoneum of Rag2(-/-) IL-2R¿(-/-) mice. In these conditions, tremelimumab injected intravenously did not significantly enhance alloreactive proliferation unless T(reg) cells had been predepleted. Synergistic effects in vivo were again largely restricted to the CD4 T-cell compartment. In addition, T(reg) depletion and CTLA-4 blockade synergistically enhanced specific cytotoxicity raised in culture against autologous EBV-transformed cell lines. Taken together, these experiments indicate that tremelimumab therapy may benefit from previous or concomitant T(reg) depletion
Autores: Luis-Ravelo; Vicent, Silvestre; et al.
ISSN 0262-0898  Vol. 28  Nº 8  2011  págs. 779 - 791
Lung cancer comprises a large variety of histological subtypes with a frequent proclivity to form bone metastasis; a condition associated with dismal prognosis. To identify common mechanisms in the development of osteolytic metastasis, we systematically screened a battery of lung cancer cell lines and developed three models of non-small cell lung cancer (NSCLC) with a common proclivity to form osseous lesions, which represented different histological subtypes. Comparative analysis revealed different incidences and latency times. These differences were correlated with cell-type-specific secretion of osteoclastogenic factors, including macrophage inflammatory protein-1¿, interleukin-8 and parathyroid hormone-related protein, some of which were exacerbated in conditions that mimicked tumor-stroma interactions. In addition, a distinct signature of matrix metalloproteinase (MMP) activity derived from reciprocal tumor-stroma interactions was detected for each tumor cell line. Thus, these results suggest subtle differences in the mechanisms of bone colonization for each lung cancer subtype, but share, although each to a different degree, dual MMP and osteoclastogenic activities that are differentially enhanced upon tumor-stromal interactions
Autores:  et al.
Revista: Oncogene
ISSN 0950-9232  Vol. 29  Nº 26  2010  págs. 3758 - 3769
ADAMs (a disintegrin and metalloprotease) are transmembrane proteins involved in a variety of physiological processes and tumorigenesis. Recently, ADAM8 has been associated with poor prognosis of lung cancer. However, its contribution to tumorigenesis in the context of lung cancer metastasis remains unknown. Native ADAM8 expression levels were lower in lung cancer cell lines. In contrast, we identified and characterized two novel spliced isoforms encoding truncated proteins, Delta18a and Delta14', which were present in several tumor cell lines and not in normal cells. Overexpression of Delta18a protein resulted in enhanced invasive activity in vitro. ADAM8 and its Delta14' isoform expression levels were markedly increased in lung cancer cells, in conditions mimicking tumor microenvironment. Moreover, addition of supernatants from Delta14'-overexpressing cells resulted in a significant increase in tartrate-resistant acid phosphatase+ cells in osteoclast cultures in vitro. These findings were associated with increased pro-osteoclastogenic cytokines interleukin (IL)-8 and IL-6 protein levels. Furthermore, lung cancer cells overexpressing Delta14' increased prometastatic activity with a high tumor burden and increased osteolysis in a murine model of bone metastasis. Thus, the expression of truncated forms of ADAM8 by the lung cancer cells may result in the specific upregulation of their invasive and osteoclastogenic activities in the bone microenvironment. These findings suggest a novel mechanism of tumor-induced osteolysis in metastatic bone colonization.
Autores: Patiño-Garcia, Ana; Lecanda, Fernando;
Libro:  Bone Cancer
2015  págs. 223 - 234
Osteosarcoma (OS) is characterized by its complex ontology. Nevertheless, an array of molecular tools for the global analysis at the genomic or post-genomic level has exposed a wealth of data illuminating some of the molecular intricacies of this tumor. A systematic molecular profiling driven by the emergence of novel technological platforms is shaping our understanding of OS. This review gathers all the information into a comprehensive and systematic summary, underlining the contribution of each gene, protein or signaling pathway to tumorigenesis of OS. We give special emphasis to their functional relevance to chemoresistance and metastasis, together with their potential clinical impact. This chapter hopefully will provide inspiration to explore new avenues with future clinical impact.