Revistas
Autores:
Puyalto, A.; Rodriguez-Remírez, M.; López, I.; et al.
Revista:
FRONTIERS IN IMMUNOLOGY
ISSN:
1664-3224
Año:
2023
Vol.:
14
Págs.:
1272570
Background: Harnessing the anti-tumor immune system response by targeting the program cell death protein (PD-1) and program cell death ligand protein (PD-L1) axis has been a major breakthrough in non-small cell lung cancer (NSCLC) therapy. Nonetheless, conventional imaging tools cannot accurately assess response in immunotherapy-treated patients. Using a lung cancer syngeneic mouse model responder to immunotherapy, we aimed to demonstrate that [89Zr]-anti-PD-1 immuno-PET is a safe and feasible imaging modality to assess the response to PD-1/PD-L1 blockade in NSCLC.
Materials and methods: A syngeneic mouse model responder to anti-PD-1 therapy was used. Tumor growth and response to PD-1 blockade were monitored by conventional 2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG) PET scans. Additionally, tumor lymphocyte infiltration was analyzed by the use of an [89Zr]-labeled anti-PD-1 antibody and measured as 89Zr tumor uptake.
Results: Conventional [18F]-FDG-PET scans failed to detect the antitumor activity exerted by anti-PD-1 therapy. However, [89Zr]-anti-PD-1 uptake was substantially higher in mice that responded to PD-1 blockade. The analysis of tumor-infiltrating immune cell populations and interleukins demonstrated an increased anti-tumor effect elicited by activation of effector immune cells in PD-1-responder mice. Interestingly, a positive correlation between [89Zr]-anti-PD-1 uptake and the proportion of tumor-infiltrating lymphocytes (TILs) was found (Cor = 0.8; p = 0.001).
Conclusion: Our data may support the clinical implementation of immuno-PET as a promising novel imaging tool to predict and assess the response of PD-1/PD-L1 inhibitors in patients with NSCLC.
Autores:
Utomo, E.; Domínguez-Robles, J.; Moreno-Castellanos, N.; et al.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2023
Vol.:
630
Págs.:
122475
Revista:
FOOD HYDROCOLLOIDS
ISSN:
0268-005X
Año:
2023
Vol.:
136
N°:
Part. A
Págs.:
108213
The current work describes the capability of casein-chitosan microparticles to encapsulate Lactobacillus plantarum (CECT 220 and WCFS1 strains) and evaluates their ability to target the distal areas of the gut and to stimulate the immune system. Microparticles were prepared by complex coacervation, between sodium caseinate and chitosan in an aqueous suspension of the bacteria, and dried by spray-drying. In order to increase the survival rate of the loaded bacteria, microparticles were cross-linked with one of the following cross-linkers: tripolyphosphate, calcium salts or vanillin.Overall, microparticles displayed a mean size of about 7.5 mu m with a bacteria loading of about 11 Log CFU/g, when cross-linked with vanillin (MP-LP-V). For conventional microparticles, the payload was 10.12 Log CFU/g. The storage stability study at 25 degrees C/60% RH, MP-LP-V offered the highest degree of protection without signif-icant modification of the payload in 260 days. Compared with control (aqueous suspension of bacteria), MP-LP-V also displayed a significantly higher degree of protection against probiotic inactivation in simulated gastric and intestinal fluids. In vivo results evidenced that microparticles, orally administered to rats, were able to reach the distal ileum and colon in about 4 h post-administration. Additionally, the effect of the daily administration of 107 CFU/mouse of MP-LP-V, for 3 weeks, induced an immunomodulatory effect characterized by an important enhancement of Th1 and Th17 responses. In conclusion, these microparticles seem to be a promising strategy for increasing survival and efficacy of probiotics, allowing the formulation of cost-effective and more stable and effective probiotic-based nutraceuticals.
Revista:
FRONTIERS IN MICROBIOLOGY
ISSN:
1664-302X
Año:
2023
Vol.:
14
Págs.:
1094929
IntroductionSuspected infectious diseases located in difficult-to-access sites can be challenging due to the need for invasive procedures to isolate the etiological agent. Positron emission tomography (PET) is a non-invasive imaging technology that can help locate the infection site. The most widely used radiotracer for PET imaging (2-deoxy-2[F-18] fluoro-D-glucose: [F-18]FDG) shows uptake in both infected and sterile inflammation. Therefore, there is a need to develop new radiotracers able to specifically detect microorganisms. MethodsWe tested two specific radiotracers: 2-deoxy-2-[F-18]-fluoro-D-sorbitol ([F-18]FDS) and 2-[F-18]F-rho-aminobenzoic acid ([F-18]FPABA), and also developed a simplified alternative of the latter for automated synthesis. Clinical and reference isolates of bacterial and yeast species (19 different strains in all) were tested in vitro and in an experimental mouse model of myositis infection. Results and discussionNon-lactose fermenters (Pseudomonas aeruginosa and Stenotrophomonas maltophilia) were unable to take up [F-18]FDG in vitro. [F-18]FDS PET was able to visualize Enterobacterales myositis infection (i.e., Escherichia coli) and to differentiate between yeasts with differential assimilation of sorbitol (i.e., Candida albicans vs. Candida glabrata). All bacteria and yeasts tested were detected in vitro by [F-18]FPABA. Furthermore, [F-18]FPABA was able to distinguish between inflammation and infection in the myositis mouse model (E. coli and Staphylococcus aureus) and could be used as a probe for a wide variety of bacterial and fungal species.
Revista:
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
ISSN:
1661-6596
Año:
2023
Vol.:
24
N°:
15
Págs.:
11938
Acute intermittent porphyria (AIP) is a metabolic disorder caused by mutations in the porphobilinogen deaminase (PBGD) gene, encoding the third enzyme of the heme synthesis pathway. Although AIP is characterized by low clinical penetrance (similar to 1% of PBGD mutation carriers), patients with clinically stable disease report chronic symptoms and frequently show insulin resistance. This study aimed to evaluate the beneficial impact of nutritional interventions on correct carbohydrate dysfunctions in a mouse model of AIP that reproduces insulin resistance and altered glucose metabolism. The addition of spores of Bacillus coagulans in drinking water for 12 weeks modified the gut microbiome composition in AIP mice, ameliorated glucose tolerance and hyperinsulinemia, and stimulated fat disposal in adipose tissue. Lipid breakdown may be mediated by muscles burning energy and heat dissipation by brown adipose tissue, resulting in a loss of fatty tissue and improved lean/fat tissue ratio. Probiotic supplementation also improved muscle glucose uptake, as measured using Positron Emission Tomography (PET) analysis. In conclusion, these data provide a proof of concept that probiotics, as a dietary intervention in AIP, induce relevant changes in intestinal bacteria composition and improve glucose uptake and muscular energy utilization. Probiotics may offer a safe, efficient, and cost-effective option to manage people with insulin resistance associated with AIP.
Revista:
PHARMACEUTICS
ISSN:
1999-4923
Año:
2023
Vol.:
15
N°:
3
Págs.:
843
The use of intranasal implantable drug delivery systems has many potential advantages for the treatment of different diseases, as they can provide sustained drug delivery, improving patient compliance. We describe a novel proof-of-concept methodological study using intranasal implants with radiolabeled risperidone (RISP) as a model molecule. This novel approach could provide very valuable data for the design and optimization of intranasal implants for sustained drug delivery. RISP was radiolabeled with 125I by solid supported direct halogen electrophilic substitution and added to a poly(lactide-co-glycolide) (PLGA; 75/25 D,L-Lactide/glycolide ratio) solution that was casted on top of 3D-printed silicone molds adapted for intranasal administration to laboratory animals. Implants were intranasally administered to rats, and radiolabeled RISP release followed for 4 weeks by in vivo non-invasive quantitative microSPECT/CT imaging. Percentage release data were compared with in vitro ones using radiolabeled implants containing either 125I-RISP or [125I]INa and also by HPLC measurement of drug release. Implants remained in the nasal cavity for up to a month and were slowly and steadily dissolved. All methods showed a fast release of the lipophilic drug in the first days with a steadier increase to reach a plateau after approximately 5 days. The release of [125I]I- took place at a much slower rate. We herein demonstrate the feasibility of this experimental approach to obtain high-resolution, non-invasive quantitative images of the release of the radiolabeled drug, providing valuable information for improved pharmaceutical development of intranasal implants.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2023
Vol.:
643
Págs.:
123216
In this study, the ability of zein nanospheres (NS) and zein nanocapsules containing wheat germ oil (NC) to enhance the bioavailability and efficacy of quercetin was evaluated. Both types of nanocarriers had similar physico-chemical properties, including size (between 230 and 250 nm), spherical shape, negative zeta potential, and surface hydrophobicity. However, NS displayed a higher ability than NC to interact with the intestinal epithelium, as evidenced by an oral biodistribution study in rats. Moreover, both types of nanocarriers offered similar loading efficiencies and release profiles in simulated fluids. In C. elegans, the encapsulation of quercetin in nanospheres (Q-NS) was found to be two twice more effective than the free form of quercetin in reducing lipid accumulation. For nanocapsules, the presence of wheat germ oil significantly increased the storage of lipids in C. elegans; although the incorporation of quercetin (Q-NC) significantly counteracted the presence of the oil. Finally, nanoparticles improved the oral absorption of quercetin in Wistar rats, offering a relative oral bioavailability of 26% and 57% for Q-NS and Q-NC, respectively, compared to a 5% for the control formulation. Overall, the study suggests that zein nanocarriers, particularly nanospheres, could be useful in improving the bioavailability and efficacy of quercetin.
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2022
Vol.:
12
N°:
1
Págs.:
1777
Lobar selective internal radiation therapy (SIRT) is widely used to treat liver tumors inducing atrophy of the treated lobe and contralateral hypertrophy. The lack of animal model has precluded further investigations to improve this treatment. We developed an animal model of liver damage and atrophy-hypertrophy complex after SIRT. Three groups of 5-8 rabbits received transportal SIRT with Yttrium 90 resin microspheres of the cranial lobes with different activities (0.3, 0.6 and 1.2 GBq), corresponding to predicted absorbed radiation dose of 200, 400 and 800 Gy, respectively. Another group received non-loaded microspheres (sham group). Cranial and caudal lobes volumes were assessed using CT volumetry before, 15 and 30 days after SIRT. Liver biochemistry, histopathology and gene expression were evaluated. Four untreated rabbits were used as controls for gene expression studies. All animals receiving 1.2 GBq were euthanized due to clinical deterioration. Cranial SIRT with 0.6 GBq induced caudal lobe hypertrophy after 15 days (median increase 34% -ns-) but produced significant toxicity. Cranial SIRT with 0.3 GBq induced caudal lobe hypertrophy after 30 days (median increase 82%, p = 0.04). No volumetric changes were detected in sham group. Transient increase in serum transaminases was detected in all treated groups returning to normal values at 15 days. There was dose-dependent liver dysfunction with bilirubin elevation and albumin decrease. Histologically, 1.2 GBq group developed permanent severe liver damage with massive necrosis, 0.6 and 0.3 GBq groups developed moderate damage with inflammation and portal fibrosis at 15 days, partially recovering at 30 days. There was no difference in the expression of hepatocyte function and differentiation genes between 0.3 GBq and control groups. Cranial SIRT with 0.3 GBq of Y-90 resin microspheres in rabbits is a reliable animal model to analyse the atrophy-hypertrophy complex and liver damage without toxicity.
Revista:
NEUROBIOLOGY OF DISEASE
ISSN:
0969-9961
Año:
2022
Vol.:
167
Págs.:
105669
Dopaminergic denervation in patients with Parkinson's disease is associated with changes in brain metabolism. Cerebral in-vivo mapping of glucose metabolism has been studied in severe stable parkinsonian monkeys, but data on brain metabolic changes in early stages of dopaminergic depletion of this model is lacking. Here, we report cerebral metabolic changes associated with progressive nigrostriatal lesion in the pre-symptomatic and symptomatic stages of the progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkey model of Parkinson's Disease. Monkeys (Macaca fascicularis) received MPTP injections biweekly to induce progressive grades of dopamine depletion. Monkeys were sorted according to motor scale assessments in control, asymptomatic, recovered, mild, and severe parkinsonian groups. Dopaminergic depletion in the striatum and cerebral metabolic patterns across groups were studied in vivo by positron emission tomography (PET) using monoaminergic ([11C]-dihydrotetrabenazine; 11C-DTBZ) and metabolic (2-[18F]-fluoro-2-deoxy-d-glucose; 18F-FDG) radiotracers. 11C-DTBZ-PET analysis showed progressive decrease of binding potential values in the striatum of monkeys throughout MPTP administration and the development of parkinsonian signs. 18F-FDG analysis in asymptomatic and recovered animals showed significant hypometabolism in temporal and parietal areas of the cerebral cortex in association with moderate dopaminergic nigrostriatal depletion. Cortical hypometabolism extended to involve a larger area in mild parkinsonian monkeys, which also exhibited hypermetabolism in the globus pallidum pars interna and cerebellum. In severe parkinsonian monkeys, cortical hypometabolism extended further to lateral-frontal cortices and hypermetabolism also ensued in the thalamus and cerebellum. Unbiased histological quantification of neurons in Brodmann's area 7 in the parietal cortex did not reveal neuron loss in parkinsonian monkeys versus controls. Early dopaminergic nigrostriatal depletion is associated with cortical, mainly temporo-parietal hypometabolism unrelated to neuron loss. These findings, together with recent evidence from Parkinson's Disease patients, suggest that early cortical hypometabolism may be associated and driven by subcortical changes that need to be evaluated appropriately. Altogether, these findings could be relevant when potential disease modifying therapies become available.
Autores:
Guedj, E. (Autor de correspondencia); Varrone, A.; Boellaard, R.; et al.
Revista:
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
ISSN:
1619-7070
Año:
2022
Vol.:
49
N°:
6
Págs.:
2100 - 2101
Autores:
Utomo, E.; Domínguez-Robles, J.; Moreno-Castellanos, N.; et al.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2022
Vol.:
624
Págs.:
122061
In this work the preparation and characterisation of intranasal implants for the delivery of risperidone (RIS) is described. The aim of this work is to develop better therapies to treat chronic conditions affecting the brain such as schizophrenia. This type of systems combines the advantages of intranasal drug delivery with sustained drug release. The resulting implants were prepared using biodegradable materials, including poly(caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA). These polymers were combined with water-soluble compounds, such as poly(ethylene glycol) (PEG) 600, PEG 3000, and Tween (R) 80 using a solvent-casting method. The resulting implants contained RIS loadings ranging between 25 and 50 %. The obtained implants were characterised using a range of techniques including thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM). Moreover, in vitro RIS release was evaluated showing that the addition of watersoluble compounds exhibited significant faster release profiles compared to pristine PCL and PLGA-based implants. Interestingly, PCL-based implants containing 25 % of RIS and PLGA-based implants loaded with 50 % of RIS showed sustained drug release profiles up to 90 days. The former showed faster release rates over the first 28 days but after this period PLGA implants presented higher release rates. The permeability of RIS released from the implants through a model membrane simulating nasal mucosa was subsequently evaluated showing desirable permeation rate of around 2 mg/day. Finally, following in vitro biocompatibility studies, PCL and PLGA-based implants showed acceptable biocompatibility. These results suggested that the resulting implants displayed potential of providing prolonged drug release for brain-targeting drugs.
Autores:
Guedj, E. (Autor de correspondencia); Varrone, A.; Boellaard, R.; et al.
Revista:
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
ISSN:
1619-7070
Año:
2022
Vol.:
49
N°:
2
Págs.:
632 - 651
The present procedural guidelines summarize the current views of the EANM Neuro-Imaging Committee (NIC). The purpose of these guidelines is to assist nuclear medicine practitioners in making recommendations, performing, interpreting, and reporting results of [F-18]FDG-PET imaging of the brain. The aim is to help achieve a high-quality standard of [F-18]FDG brain imaging and to further increase the diagnostic impact of this technique in neurological, neurosurgical, and psychiatric practice. The present document replaces a former version of the guidelines that have been published in 2009. These new guidelines include an update in the light of advances in PET technology such as the introduction of digital PET and hybrid PET/MR systems, advances in individual PET semiquantitative analysis, and current broadening clinical indications (e.g., for encephalitis and brain lymphoma). Further insight has also become available about hyperglycemia effects in patients who undergo brain [F-18]FDG-PET. Accordingly, the patient preparation procedure has been updated. Finally, most typical brain patterns of metabolic changes are summarized for neurodegenerative diseases. The present guidelines are specifically intended to present information related to the European practice. The information provided should be taken in the context of local conditions and regulations.
Revista:
MOLECULAR THERAPY. METHODS & CLINICAL DEVELOPMENT
ISSN:
2329-0501
Año:
2022
Vol.:
9
N°:
26
Págs.:
98 - 106
Wilson's disease (WD) is an inherited disorder of copper metabolism associated with mutations in ATP7B gene. We have shown that the administration of an adeno-associated vector (AAV) encoding a mini version of human ATP7B (VTX-801) provides long-term correction of copper metabolism in a murine WD model. In preparation of a future clinical trial, we have evaluated by positron emission tomography (PET) the value of 64Cu biodistribution, excretion pattern, and blood kinetics as pharmacodynamic biomarkers of VTX-801 effects. Six-week-old WD mice were injected intravenously with increasing doses of VTX-801 and 3 weeks or 3 months later with [64Cu]CuCl2. Untreated WD and wild-type (WT) mice were included as controls. Control WD mice showed increased hepatic 64Cu retention, reduced fecal excretion of the radiotracer, and altered 64Cu blood kinetics (BK) compared with WT mice. VTX-801 treatment in WD mice resulted in a significant reduction of hepatic 64Cu accumulation, the restoration of fecal 64Cu excretion, and the correction of 64Cu BK. This study showed that VTX-801 restores physiological copper metabolism in WD mice, confirming the mechanism of action of VTX-801, and demonstrated the translational potential of [64Cu]CuCl2-PET to explore VTX-801 pharmacodynamics in a minimally invasive and sensitive manner in WD patients.
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2022
Vol.:
12
N°:
1
Págs.:
18161
The aim was to study the performance of the U-SPECT6/CT E-class system for preclinical imaging, to later demonstrate the viability of simultaneous multi-animal and multi-isotope imaging with reliable quantitative accuracy. The performance of the SPECT was evaluated for two collimators dedicated for mouse (UHS-M) and rat imaging (UHR-RM) in terms of sensitivity, energy resolution, uniformity and spatial resolution. Point sources, hot-rod and uniform phantoms were scanned, and additional tests were carried out to evaluate singular settings such as simultaneous multi-isotope acquisition and imaging with a multi-bed system. For in-vivo evaluation, simultaneous triple-isotope and multi-animal studies were performed on mice. Sensitivity for Tc-99m was 2370 cps/MBq for the UHS-M collimator and 493 cps/MBq for the UHR-RM. Rods of 0.6 mm and 0.9 mm were discernible with the UHS-M and UHR-RM collimators respectively, with optimized reconstruction. Uniformity in low counting conditions has proven to be poor (> 75%). Multi-isotope and multi-bed phantom acquisitions demonstrated accurate quantification. In mice, simultaneous multi-isotope imaging provided the separate distribution of 3 tracers and image quality of the multi-mouse bone scan was adequate. The U-SPECT6/CT E-class has shown good sensitivity and spatial resolution. This system provides quantitative images with suitable image quality for multi-mouse and multi-isotope acquisitions.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2022
Vol.:
177
Págs.:
61 - 67
Negatively charged microspheres (NCMs) are postulated as a new form of treatment for chronic wounds. Despite the efficacy shown at clinical level, more studies are required to demonstrate their safety and local effect. The objective of the work was to confirm the lack of NCM systemic absorption performing a biodistribution study of the NCMs in an open wound rat animal model. To this end, radiolabeling of NCMs with technetium-99m was optimized and biodistribution studies were performed by in vivo SPEC/CT imaging and ex vivo counting during 24 h after topical administration. The studies were performed on animals treated with a single or repeated dose to study the effect of macrophages during a prolonged treatment. NCM radiolabeling was achieved in a simple, efficient and stable manner with high yield. SPECT/CT images showed that almost all NCMs (about 85 %) remained on the wound for 24 h either after single or multiple administrations. Ex vivo biodistribution studies confirmed that there was no accumulation of NCMs in any organ or tissue except in the wound area, suggesting a lack of absorption. In conclusion, NCMs can be considered safe as local wound treatment since they remain at the administration area.
Autores:
Garrido, V.; Piñero-Lambea, C.; Rodríguez-Arce, I.; et al.
Revista:
MOLECULAR SYSTEMS BIOLOGY
ISSN:
1744-4292
Año:
2021
Vol.:
17
N°:
10
Págs.:
e10145
Bacteria present a promising delivery system for treating human diseases. Here, we engineered the genome-reduced human lung pathogen Mycoplasma pneumoniae as a live biotherapeutic to treat biofilm-associated bacterial infections. This strain has a unique genetic code, which hinders gene transfer to most other bacterial genera, and it lacks a cell wall, which allows it to express proteins that target peptidoglycans of pathogenic bacteria. We first determined that removal of the pathogenic factors fully attenuated the chassis strain in vivo. We then designed synthetic promoters and identified an endogenous peptide signal sequence that, when fused to heterologous proteins, promotes efficient secretion. Based on this, we equipped the chassis strain with a genetic platform designed to secrete antibiofilm and bactericidal enzymes, resulting in a strain capable of dissolving Staphylococcus aureus biofilms preformed on catheters in vitro, ex vivo, and in vivo. To our knowledge, this is the first engineered genome-reduced bacterium that can fight against clinically relevant biofilm-associated bacterial infections.
Revista:
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
ISSN:
1422-0067
Año:
2021
Vol.:
22
N°:
9
Págs.:
4825
Mutations in the GBA1 gene coding for glucocerebrosidase (GCase) are the main genetic risk factor for Parkinson's disease (PD). Indeed, identifying reduced GCase activity as a common feature underlying the typical neuropathological signatures of PD-even when considering idiopathic forms of PD-has recently paved the way for designing novel strategies focused on enhancing GCase activity to reduce alpha-synuclein burden and preventing dopaminergic cell death. Here we have performed bilateral injections of a viral vector coding for the mutated form of alpha-synuclein (rAAV9-SynA53T) for disease modeling purposes, both in mice as well as in nonhuman primates (NHPs), further inducing a progressive neuronal death in the substantia nigra pars compacta (SNpc). Next, another vector coding for the GBA1 gene (rAAV9-GBA1) was unilaterally delivered in the SNpc of mice and NHPs one month after the initial insult, together with the contralateral delivery of an empty/null rAAV9 for control purposes. Obtained results showed that GCase enhancement reduced alpha-synuclein burden, leading to improved survival of dopaminergic neurons. Data reported here support using GCase gene therapy as a disease-modifying treatment for PD and related synucleinopathies, including idiopathic forms of these disorders.
Revista:
JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY
ISSN:
1773-2247
Año:
2021
Vol.:
64
Págs.:
101809
The aim of this work was to study the biodistribution of bevacizumab-loaded HSA nanoparticles (NP-Ab) crosslinked with PEG35000 by SPECT/CT in vivo imaging. For this purpose, NP-Abs were prepared by a desolvation process, coated with PEG35000 and radiolabeled with technetium-99 m using a pre-tinning method ([99mTc]TcNP-Ab). The Ab was labeled using [99mTc][Tc(CO)3(H2O)3]+ and used to prepare nanoparticles (NP-[99mTc]TcAb). Particle size was similar in both formulations. Chemical and radiochemical purity of the two nanosystems were >95%. Bevacizumab-labeling conditions were tested by in vitro stability studies. More than 87% of the radiolabeled antibody remained intact for 24 h after incubation with plasma. SPECT/CT imaging of the two nanoparticles was performed in healthy female Wistar rats. Ex vivo gamma counting of selected organs was also carried out in all animals. The results showed different clearance rates of the nanoparticle shell and the antibody, providing valuable information by the use of molecular imaging in the evaluation of drug delivery nanosystems.
Revista:
MOLECULAR THERAPY - NUCLEIC ACIDS
ISSN:
2162-2531
Año:
2021
Vol.:
25
Págs.:
207 - 219
Variegate porphyria (VP) results from haploinsufficiency of pro-toporphyrinogen oxidase (PPDX), the seventh enzyme in the heme synthesis pathway. There is no VP model that recapitulates the clinical manifestations of acute attacks. Combined administrations of 2-allyl-2-isopropylacetamide and rifampicin in rabbits halved hepatic PP OX activity, resulting in increased accumulation of a potentially neurotoxic heme precursor, lipid peroxidation, inflammation, and hepatocyte cytoplasmic stress. Rabbits also showed hypertension, motor impairment, reduced activity of critical mitochondrial hemoprotein functions, and altered glucose homeostasis. Hemin treatment only resulted in a slight drop in heme precursor accumulation but further increased hepatic heme catabolism, inflammation, and cytoplasmic stress. Hemin replenishment did protect against hypertension, but it failed to restore action potentials in the sciatic nerve or glucose homeostasis. Systemic porphobilinogen deaminase (PBGD) mRNA administration increased hepatic PBGD activity, the third enzyme of the pathway, and rapidly normalized serum and urine porphyrin precursor levels. All features studied were improved, including those related to critical hemoprotein functions. In conclusion, the VP model recapitulates the biochemical characteristics and some clinical manifestations associated with severe acute attacks in humans.
Autores:
Morbelli, S. (Autor de correspondencia); Ekmekcioglu, O.; Barthel, H. ; et al.
Revista:
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
ISSN:
1619-7070
Año:
2020
Vol.:
47
N°:
11
Págs.:
2487 - 2492
Revista:
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
ISSN:
1619-7070
Año:
2020
Vol.:
47
N°:
8
Págs.:
1885 - 1912
Purpose This joint practice guideline or procedure standard was developed collaboratively by the European Association of Nuclear Medicine (EANM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI). The goal of this guideline is to assist nuclear medicine practitioners in recommending, performing, interpreting, and reporting the results of dopaminergic imaging in parkinsonian syndromes. Methods Currently nuclear medicine investigations can assess both presynaptic and postsynaptic function of dopaminergic synapses. To date both EANM and SNMMI have published procedural guidelines for dopamine transporter imaging with single photon emission computed tomography (SPECT) (in 2009 and 2011, respectively). An EANM guideline for D2 SPECT imaging is also available (2009). Since the publication of these previous guidelines, new lines of evidence have been made available on semiquantification, harmonization, comparison with normal datasets, and longitudinal analyses of dopamine transporter imaging with SPECT. Similarly, details on acquisition protocols and simplified quantification methods are now available for dopamine transporter imaging with PET, including recently developed fluorinated tracers. Finally, [F-18]fluorodopa PET is now used in some centers for the differential diagnosis of parkinsonism, although procedural guidelines aiming to define standard procedures for [F-18]fluorodopa imaging in this setting are still lacking. Conclusion All these emerging issues are addressed in the present procedural guidelines for dopaminergic imaging in parkinsonian syndromes.
Revista:
DRUG DELIVERY AND TRANSLATIONAL RESEARCH
ISSN:
2190-393X
Año:
2020
Vol.:
10
N°:
3
Págs.:
635 - 645
Bevacizumab (as other monoclonal antibodies) has now become a mainstay in the treatment of several cancers in spite of some limitations, including poor tumour penetration and the development of resistance mechanisms. Its nanoencapsulation may be an adequate strategy to minimize these problems. The aim of this work was to evaluate the efficacy of bevacizumab-loaded nanoparticles (B-NP-PEG) on a xenograft model of human colorectal cancer. For this purpose, human serum albumin nanoparticles were prepared by coacervation, then coated with poly(ethylene glycol) and freeze-dried. B-NP-PEG displayed a mean size of about 300 nm and a bevacizumab loading of approximately 145 ¿g/mg. An in vivo study was conducted in the HT-29 xenograft model of colorectal cancer. Both, free and nanoencapsulated bevacizumab, induced a similar reduction in the tumour growth rate of about 50%, when compared to controls. By microPET imaging analysis, B-NP-PEG was found to be a more effective treatment in decreasing the glycolysis and metabolic tumour volume than free bevacizumab, suggesting higher efficacy. These results correlated well with the capability of B-NP-PEG to increase about fourfold the levels of intratumour bevacizumab, compared with the conventional formulation. In parallel, B-NP-PEG displayed six-times lower amounts of bevacizumab in blood than the aqueous formulation of the antibody, suggesting a lower incidence of potential undesirable side effects. In summary, albumin-based nanoparticles may be adequate carriers to promote the delivery of monoclonal antibodies (i.e. bevacizumab) to tumour tissues.
Autores:
de Arcocha-Torres, M. (Autor de correspondencia); Quincoces, Gemma; Martinez-Lopez, A. L.; et al.
Revista:
REVISTA ESPAÑOLA DE MEDICINA NUCLEAR E IMAGEN MOLECULAR
ISSN:
2253-654X
Año:
2020
Vol.:
39
N°:
4
Págs.:
225 - 232
Revista:
VACCINE
ISSN:
0264-410X
Año:
2019
Vol.:
7
N°:
4
Págs.:
159
Intradermal (ID) immunization is of increasing interest due to the easy accessibility and excellent immunogenic properties of the skin. Among ID immunization methods, dissolving microneedles (MNs) have appeared as an alternative to traditional hypodermic immunization, offering many advantages, such as being an easily administered method, with no need for health personnel, painless, and avoiding the use of needles and sharp wastage. In this study, an affordable and easy-to-produce MNs method was developed based on aqueous blends of 30% w/w poly (methyl vinyl ether-co-maleic anhydride). As an antigen model, a subunit vaccine candidate based on outer membrane vesicles from Shigella flexneri was used. Both unloaded and antigen-loaded MNs were synthetized and characterized. The MNs were successfully validated in an in vitro Parafilm M skin model and in a pig skin ex vivo model. Biodistribution studies were performed in BALB/c mice using 99mTcO4- radiolabeled samples. Results indicated that the vesicle vaccine was successfully released from the MNs and targeted gastrointestinal tract after 6 h post-administration. In vivo immunization and protection studies were performed in BALB/c mice. Mice were intradermally immunized through ear skin with one single dose of 200 g antigenic complex, eliciting the production of specific systemic IgG and mucosal IgA.
Revista:
JOURNAL OF PHARMACEUTICAL SCIENCES
ISSN:
0022-3549
Año:
2019
Vol.:
108
N°:
7
Págs.:
2421 - 2429
Peanut allergy is one of the most prevalent and severe of food allergies with no available cure. The aim of this work was to evaluate the potential of an oral immunotherapy based on the use of a roasted peanut extract encapsulated in nanoparticles with immunoadjuvant properties. For this, a polymer conjugate formed by the covalent binding of mannosamine to the copolymer of methyl vinyl ether and maleic anhydride was first synthetized and characterized. Then, the conjugate was used to prepare nanoparticles with an important capability to diffuse through the mucus layer and reach, in a large extent, the intestinal epithelium, including Peyer's patches. Their immunotherapeutic potential was evaluated in a model of presensitized CD1 mice to peanut. After completing therapy, mice underwent an intraperitoneal challenge with peanut extract. Nanoparticle-treatment was associated with both less serious anaphylaxis symptoms and higher survival rates than control, confirming the protective effect of this formulation against the challenge.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS. X
ISSN:
2590-1567
Año:
2019
Vol.:
1
Págs.:
100006
The aim of this work was to evaluate the mucus-permeating properties of nanocarriers using zein nanoparticles (NPZ) coated with a Gantrez (R) AN-thiamine conjugate (GT). NPZ were coated by incubation at different GT-to-zein ratios: 2.5% coating with GT (GT-NPZ1), 5% (GT-NPZ2) and 10% (GT-NPZ3). During the process, the GT conjugate formed a polymer layer around the surface of zein nanoparticles. For GT-NPZ2, the thickness of this corona was estimated between 15 and 20 nm. These nanocarriers displayed a more negative zeta potential than uncoated NPZ. The diffusivity of nanoparticles was evaluated in pig intestinal mucus by multiple particle tracking analysis. GT-NPZ2 displayed a 28-fold higher diffusion coefficient within the mucus layer than NPZ particles. These results align with in vivo biodistribution studies in which NPZ displayed a localisation restricted to the mucus layer, whereas GT-NPZ2 were capable of reaching the intestinal epithelium. The gastro-intestinal transit of mucoadhesive (NPZ) and mucus-permeating nanoparticles (GT-NPZ2) was also found to be different. Thus, mucoadhesive nanoparticles displayed a significant accumulation in the stomach of animals, whereas mucus-penetrating nanoparticles appeared to exit the stomach more rapidly to access the small intestine of animals.
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2019
Vol.:
569
Págs.:
118484
Re-activation of the healing process is a major challenge in the field of chronic wound treatment. For that purpose, lipid-nanoparticles, especially nanostructured lipid carriers (NLC), possess extremely useful characteristics such as biodegradability, biocompatibility and long-term stability, besides being suitable for drug delivery. Moreover, they maintain wound moisture due to their occlusive properties, which have been associated with increased healing rates. In the light of above, NLC have been extensively used topically for wound healing; but to date, there are no safety-preclinical studies concerning such type of application. Thus, in this work, biodistribution studies were performed in rats with the NLC previously developed by our research group, using technetium-99 m (99mTc-NLC) as radiomarker, topically administered on a wound. 99mTc-NLC remained on the wound for 24 h and systemic absorption was not observed after administration. In addition, toxicological studies were performed to assess NLC safety after topical administration. The results obtained demonstrated that NLC were non-cytotoxic, non-sensitizing and non-irritant/corrosive. Overall, it might be concluded that developed NLC remained at the administration area, potentially exerting a local effect, and were safe after topical administration on wounds.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES
ISSN:
0928-0987
Año:
2019
Vol.:
128
Págs.:
81 - 90
Thiamine-coated nanoparticles were prepared by two different preparative methods and evaluated to compare their mucus-penetrating properties and fate in vivo. The first method of preparation consisted of surface modification of freshly poly(anhydride) nanoparticles (NP) by simple incubation with thiamine (T-NPA). The second procedure focused on the preparation and characterization of a new polymeric conjugate between the poly (anhydride) backbone and thiamine prior the nanoparticle formation (T-NPB). The resulting nanoparticles displayed comparable sizes (about 200 nm) and slightly negative surface charges. For T-NPA, the amount of thiamine associated to the surface of the nanoparticles was 15 mu g/mg. For in vivo studies, nanoparticles were labelled with either Tc-99m or Lumogen (R) Red. T-NPA and T-NPB moved faster from the stomach to the small intestine than naked nanoparticles. Two hours post-administration, for T-NPA and T-NPB, > 30% of the given dose was found in close contact with the intestinal mucosa, compared with a 13.5% for NP. Interestingly, both types of thiamine-coated nanoparticles showed a greater ability to cross the mucus layer and interact with the surface of the intestinal epithelium than NP, which remained adhered in the mucus layer. Four hours post-administration, around 35% of T-NPA and T-NPB were localized in the ileum of animals. Overall, both preparative processes yielded thiamine decorated carriers with similar physico-chemical and biodistribution properties, increasing the versatility of these nanocarriers as oral delivery systems for a number of biologically active compounds.
Revista:
BMC CANCER
ISSN:
1471-2407
Año:
2018
Vol.:
18
N°:
1
Págs.:
1193
BACKGROUND: Osteosarcoma is the most common malignant bone tumor in children and young adults that produces aberrant osteoid. The aim of this study was to assess the utility of 2-deoxy-2-[18F-] fluoro-D-glucose ([18F] FDG) and sodium [18F] Fluoride (Na [18F] F) PET scans in orthotopic murine models of osteosarcoma to describe the metabolic pattern of the tumors, to detect and diagnose tumors and to evaluate the efficacy of a new treatment based in oncolytic adenoviruses.
METHODS: Orthotopic osteosarcoma murine models were created by the injection of 143B and 531MII cell lines. [18F]FDG and Na [18F] F PET scans were performed 30 days (143B) and 90 days (531MII) post-injection. The antitumor effect of two doses (107 and 108 pfu) of the oncolytic adenovirus VCN-01 was evaluated in 531 MII model by [18F] FDG PET studies. [18F] FDG uptake was quantified by SUVmax and Total Lesion Glycolysis (TLG) indexes. For Na [18F] F, the ratio tumor SUVmax/hip SUVmax was calculated. PET findings were confirmed by histopathological techniques.
RESULTS: The metabolic pattern of tumors was different between both orthotopic models. All tumors showed [18F] FDG uptake, with a sensitivity and specificity of 100%. The [18F] FDG uptake was significantly higher for the 143B model (p < 0.001). Sensitivity for Na [18F] F was around 70% in both models, with a specificity of 100%. 531MII tumors showed a heterogeneous Na [18F] F uptake, significantly higher than 143B tumors (p < 0.01).
Revista:
INTERNATIONAL JOURNAL OF PHARMACEUTICS
ISSN:
0378-5173
Año:
2018
Vol.:
541
N°:
1 - 2
Págs.:
214 - 223
Bevacizumab-loaded nanoparticles (B-NP) were prepared by a desolvation process followed by freeze-drying, without any chemical, physical or enzymatic cross-linkage. Compared with typical HSA nanoparticles crosslinked with glutaraldehyde (B-NP-GLU), B-NP displayed a significantly higher mean size (310 nm vs. 180 nm) and a lower negative zeta potential (-15 mV vs. -36 mV). On the contrary, B-NP displayed a high payload of approximately 13% when measured by a specific ELISA, whereas B-NP-GLU presented a very low bevacizumab loading (0.1 mu g/mg). These results could be related to the inactivation of bevacizumab after reacting with glutaraldehyde. From B-NP, bevacizumab was released following an initial burst effect, proceeded by a continuous release of bevacizumab at a rate of 6 mu g/h. Cytotoxicity studies in ARPE cells were carried out at a single dose up to 72 h and with repeated doses over a 5-day period. Neither bevacizumab nor B-NP altered cell viability even when repeated doses were used. Finally, B-NP were labeled with Tc-99m and administered as eye drops in rats. Tc-99m-B-NP remained in the eye for at least 4 h while Tc-99m-HSA was rapidly drained from the administration point. In summary, HSA nanoparticles may be an appropriate candidate for ocular delivery of bevacizumab.
Revista:
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
ISSN:
1422-0067
Año:
2018
Vol.:
19
N°:
9
Págs.:
2816
Resveratrol is a naturally occurring polyphenol that provides several health benefits including cardioprotection and cancer prevention. However, its biological activity is limited by a poor bioavailability when taken orally. The aim of this work was to evaluate the capability of casein nanoparticles as oral carriers for resveratrol. Nanoparticles were prepared by a coacervation process, purified and dried by spray-drying. The mean size of nanoparticles was around 200 nm with a resveratrol payload close to 30 ¿g/mg nanoparticle. In vitro studies demonstrated that the resveratrol release from casein nanoparticles was not affected by the pH conditions and followed a zero-order kinetic. When nanoparticles were administered orally to rats, they remained within the gut, displaying an important capability to reach the intestinal epithelium. No evidence of nanoparticle "translocation" were observed. The resveratrol plasma levels were high and sustained for at least 8 h with a similar profile to that observed for the presence of the major metabolite in plasma. The oral bioavailability of resveratrol when loaded in casein nanoparticles was calculated to be 26.5%, 10 times higher than when the polyphenol was administered as oral solution. Finally, a good correlation between in vitro and in vivo data was observed.
Autores:
Niu, Z.; Samaridou, E.; Jaumain, E.; et al.
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN:
0168-3659
Año:
2018
Vol.:
276
Págs.:
125-139
Revista:
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
ISSN:
1619-7070
Año:
2018
Vol.:
45
N°:
Supl. 1
Págs.:
S615
Revista:
PHYSICA MEDICA
ISSN:
1120-1797
Año:
2018
Vol.:
46
Págs.:
134 - 139
A significant radiation dose reduction of 28.7% was reached. Despite a slight reduction in image quality, the new regime was successfully implemented with readers reporting unchanged clinical confidence
Revista:
JOURNAL OF MEDICAL MICROBIOLOGY
ISSN:
0022-2615
Año:
2017
Vol.:
66
N°:
7
Págs.:
946 - 958
Purpose. The aim of this study was to develop an immunogenic protective product against Shigella flexneri by employing a simple and safe heat treatment-based strategy. Methodology. The physicochemical characteristics of naturally produced (OMV) and heat-induced (HT) outer-membrane vesicles from S. flexneri were examined, including a comparison of the protein content of the products. Toxicological and biodistribution studies, and a preliminary experiment to examine the protective effectiveness of HT in a murine model of S. flexneri infection, were also included. Results. This method simultaneously achieves complete bacterial inactivation and the production of the HT vaccine product, leading to a safe working process. The obtained HT complex presented a similar morphology (electron microscopy) and chemical composition to the classical OMV, although it was enriched in some immunogens, such as lipoproteins, OmpA or OmpC, among others. The HT formulation was not toxic and biodistribution studies performed in mice demonstrated that the vaccine product remained in the small intestine after nasal administration. Finally, a single dose of HT administered nasally was able to protect mice against S. flexneri 2a. Conclusion. The convenient and safe manufacturing process, and the preliminary biological evaluation, support the use of the self-adjuvanted HT complex as a new vaccine candidate to face shigellosis. Further development is required, such as additional immune analyses, to evaluate whether this new subunit vaccine can be useful in achieving full protection against Shigella.
Revista:
THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
ISSN:
1824-4785
Año:
2017
Vol.:
61
N°:
4
Págs.:
447 - 455
Background: The feasibility of beta cell mass (BCM) imaging and quantification with positron emission tomography (PET) in the pancreas is controversial. In an effort to shed some light on this topic, we have used a xenograft model of rat insulinoma (RIN) in mice, mimicking an intramuscular islet transplantation situation.
Methods: A total of 105 RIN cells were subcutaneously implanted in nude mice (N.=8). Tumor size and glycaemia levels were determined daily. Rat C-peptide was measured to demonstrate rat insulin production. PET imaging with 11C-(+)-¿-dihydrotetrabenazine (11C-DTBZ) was done at 3 and 4 weeks and compared with 18F-FDG and 18F-DOPA studies in the same mice. Ex-vivo autoradiography with 11C-DTBZ was carried out in frozen sections of tumors. VMAT2 expression was measured by Western-blot and immunohistochemistry in tumors and RIN cells.
Results: Functional rat insulin production in mice was demonstrated by substantial decrease in glycaemia (<50 mg/dL by week 4) and rat C-peptide levels (7.2±2.6 ng/mL) similar to those measured in control rats. PET studies showed that tumor imaging with 11C-DTBZ at four (N.=8) and five (N.=5) weeks was negative; only bigger tumors could be seen with 18F-DOPA. In explanted tumors 11C-DTBZ autoradiography was negative, albeit VMAT2 expression measured by Western-blot and immunohistochemistry was lower than in cultured RIN cells.
Conclusions: Although insulinomas are fully functional it does not seem feasible to use 11C-DTBZ for in-vivo measuring of BCM. This might either be due to inherent technical limitations of PET, decrease in VMAT2 expression in the tumors due to unknown reasons, or other biological limiting facts.
Revista:
JOURNAL OF TRANSLATIONAL MEDICINE
ISSN:
1479-5876
Año:
2017
Vol.:
15
N°:
1
Págs.:
56
PET/CT imaging of 18F-FDG-labeled CSC allows quantifying biodistribution and acute retention of implanted cells in a clinically relevant pig model of chronic myocardial infarction. Similar levels of acute retention are achieved when cells are IM or IC administered. However, acute cell retention does not correlate with cell engraftment, which is improved by IM injection.
Revista:
FOOD AND CHEMICAL TOXICOLOGY
ISSN:
0278-6915
Año:
2017
Vol.:
106
Págs.:
477 - 486
In the last years, casein nanoparticles have been proposed as carriers for the oral delivery of biologically active compounds. However, till now, no information about their possible specific hazards in vivo was available. The aim of this work was to assess the safety of casein nanoparticles when administered orally to animals through a 90 days dose-repeated toxicity study (OECD guideline 408), that was performed in Wistar rats under GLP conditions. After 90 days, no evidences of significant alterations in animals treated daily with 50,150 or 500 mg/kg bw of nanoparticles were found. This safety agrees well with the fact that nanoparticles were not absorbed and remained within the gut as observed by radiolabelling in the biodistribution study. After 28 days, there was a generalized hyperchloremia in males and females treated with the highest dose of 500 mg/kg bw, that was coupled with hypernatremia in the females. These effects were related to the presence of mannitol which was used as excipient in the formulation of casein nanoparticles. According to these results, the No Observed Adverse Effect Level (NOAEL) could be established in 150 mg/kg bw/day and the Lowest Observed Effect Level (LOEL) could be established in 500 mg/kg bw/day. (C) 2017 Published by Elsevier Ltd.
Revista:
HUMAN MOLECULAR GENETICS
ISSN:
0964-6906
Año:
2016
Vol.:
25
N°:
7
Págs.:
1318 - 1327
Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria, AIP) is characterized by neurovisceral attacks when hepatic heme synthesis is activated by endogenous or environmental factors including fasting. While the molecular mechanisms underlying the nutritional regulation of hepatic heme synthesis have been described, glucose homeostasis during fasting is poorly understood in porphyria. Our study aimed to analyse glucose homeostasis and hepatic carbohydrate metabolism during fasting in PBGD-deficient mice. To determine the contribution of hepatic PBGD deficiency to carbohydrate metabolism, AIP mice injected with a PBGD-liver gene delivery vector were included. After a 14 h fasting period, serum and liver metabolomics analyses showed that wild-type mice stimulated hepatic glycogen degradation to maintain glucose homeostasis while AIP livers activated gluconeogenesis and ketogenesis due to their inability to use stored glycogen. The serum of fasted AIP mice showed increased concentrations of insulin and reduced glucagon levels. Specific over-expression of the PBGD protein in the liver tended to normalize circulating insulin and glucagon levels, stimulated hepatic glycogen catabolism and blocked ketone body production. Reduced glucose uptake was observed in the primary somatosensorial brain cortex of fasted AIP mice, which could be reversed by PBGD-liver gene delivery. In conclusion, AIP mice showed a different response to fasting as measured by altered carbohydrate metabolism in the liver and modified glucose consumption in the brain cortex. Glucose homeostasis in fasted AIP mice was efficiently normalized after restoration of PBGD gene expression in the liver.
Revista:
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS
ISSN:
0939-6411
Año:
2015
Vol.:
97
N°:
A
Págs.:
280 - 289
The aim of this work was to investigate the mucus-permeating properties of poly(ethyleneglycol)-coated nanoparticles prepared from the copolymer of methyl vinyl ether and maleic anhydride (Gantrez® AN) after oral administration in rats. Nanoparticles were ¿decorated¿ with PEGs of different molecular masses (PEG2000, PEG6000 and PEG10000) at a PEG-to-polymer ratio of 0.125. All the PEG-coated nanoparticles displayed a mean size of ~150 nm, slightly negative ¿ values and a ¿brush¿ conformation as determined from the calculation of the PEG density. For in vivo studies, nanoparticles were labelled with either 99mTc or fluorescent tags. Naked nanoparticles displayed a higher ability to interact with the mucosa of the stomach than with the small intestine. However, these interactions were restricted to the mucus layer covering the epithelial surface, as visualised by fluorescence microscopy. On the contrary, PEG-coated nanoparticles moved rapidly to the intestine, as determined by imaging, and, then, were capable to develop important interactions with the mucosa, reaching the surface of the epithelium. These mucus permeating properties were more intense for nanoparticles coated with PEG2000 or PEG6000 than with PEG10000. However, the capability of nanocarriers to develop adhesive interactions within the mucosa decreased when prepared at excessive PEG densities.
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN:
0168-3659
Año:
2015
Vol.:
202
Págs.:
31 - 39
PRGF is a platelet concentrate within a plasma suspension that forms an in situ-generated fibrin-matrix delivery system, releasing multiple growth factors and other bioactive molecules that play key roles in tissue regeneration. This study was aimed at exploring the angiogenic and myogenic effects of PRGF on in vitro endothelial cells (HUVEC) and skeletal myoblasts (hSkMb) as well as on in vivo mouse subcutaneously implanted matrigel and on limb muscles after a severe ischemia. Human PRGF was prepared and characterized. Both proliferative and anti-apoptotic responses to PRGF were assessed in vitro in HUVEC and hSkMb. In vivo murine matrigel plug assay was conducted to determine the angiogenic capacity of PRGF, whereas in vivo ischemic hind limb model was carried out to demonstrate PRGF-driven vascular and myogenic regeneration. Primary HUVEC and hSkMb incubated with PRGF showed a dose dependent proliferative and anti-apoptotic effect and the PRGF matrigel plugs triggered an early and significant sustained angiogenesis compared with the control group. Moreover, mice treated with PRGF intramuscular infiltrations displayed a substantial reperfusion enhancement at day 28 associated with a fibrotic tissue reduction. These findings suggest that PRGF-induced angiogenesis is functionally effective at expanding the perfusion capacity of the new vasculature and attenuating the endogenous tissue fibrosis after a severe-induced skeletal muscle ischemia. (C) 2015 Elsevier B.V. All rights reserved.
Revista:
CIRCULATION
ISSN:
0009-7322
Año:
2015
Vol.:
131
N°:
9
Págs.:
815 - 826
Background-Microvascular endothelium in different organs is specialized to fulfill the particular needs of parenchymal cells. However, specific information about heart capillary endothelial cells (ECs) is lacking.
Methods and Results-Using microarray profiling on freshly isolated ECs from heart, brain, and liver, we revealed a genetic signature for microvascular heart ECs and identified Meox2/Tcf15 heterodimers as novel transcriptional determinants. This signature was largely shared with skeletal muscle and adipose tissue endothelium and was enriched in genes encoding fatty acid (FA) transport-related proteins. Using gain-and loss-of-function approaches, we showed that Meox2/Tcf15 mediate FA uptake in heart ECs, in part, by driving endothelial CD36 and lipoprotein lipase expression and facilitate FA transport across heart ECs. Combined Meox2 and Tcf15 haplodeficiency impaired FA uptake in heart ECs and reduced FA transfer to cardiomyocytes. In the long term, this combined haplodeficiency resulted in impaired cardiac contractility.
Conclusions-Our findings highlight a regulatory role for ECs in FA transfer to the heart parenchyma and unveil 2 of its intrinsic regulators. Our insights could be used to develop new strategies based on endothelial Meox2/Tcf15 targeting to modulate FA transfer to the heart and remedy cardiac dysfunction resulting from altered energy substrate usage.
Revista:
NEUROBIOLOGY OF DISEASE
ISSN:
0969-9961
Año:
2015
Vol.:
77
Págs.:
165 - 172
Carbon-11 labeled dihydrotetrabenazine (11C-DTBZ) binds to the vesicular monoamine transporter 2 and has been used to assess nigro-striatal integrity in animal models and patients with Parkinson's disease. Here, we applied 11C-DTBZ positron emission tomography (PET) to obtain longitudinally in-vivo assessment of striatal dopaminergic loss in the classic unilateral and in a novel bilateral 6-hydroxydopamine (6-OHDA) lesion rat model. Forty-four Sprague-Dawley rats were divided into 3 sub-groups: 1. 6-OHDA-induced unilateral lesion in the medial forebrain bundle, 2. bilateral lesion by injection of 6-OHDA in the third ventricle, and 3. vehicle injection in either site. 11C-DTBZ PET studies were investigated in the same animals successively at baseline, 1, 3 and 6weeks after lesion using an anatomically standardized volumes-of-interest approach. Additionally, 12 rats had PET and Magnetic Resonance Imaging to construct a new 11C-DTBZ PET template. Behavior was characterized by rotational, catalepsy and limb-use asymmetry tests and dopaminergic striatal denervation was validated post-mortem by immunostaining of the dopamine transporter (DAT). 11C-DTBZ PET showed a significant decrease of striatal binding (SB) values one week after the unilateral lesion. At this point, there was a 60% reduction in SB in the affected hemisphere compared with baseline values in 6-OHDA unilaterally lesioned animals. A 46% symmetric reduction over baseline SB values was found in bilaterally lesioned rats at the first week after lesion. SB values remained constant in unilaterally lesioned rats whereas animals with bilateral lesions showed a modest (22%) increase in binding values at the 3rd and 6th weeks post-lesion. The degree of striatal dopaminergic denervation was corroborated histologically by DAT immunostaining. Statistical analysis revealed a high correlation between 11C-DTBZ PET SB and striatal DAT immunostaining values (r=0.95, p<0.001). The data presented here indicate that 11C-DTBZ PET may be used to ascertain changes occurring in-vivo throughout the evolution of nigro-striatal dopaminergic neurodegeneration, mainly in the unilateral 6-OHDA lesion rat.
Revista:
EJNMMI RESEARCH
ISSN:
2191-219X
Año:
2015
Vol.:
15
N°:
1
Págs.:
70
Background: [F-18]-tetrafluoroborate is a PET radiotracer taken up by the sodium/iodide symporter (NIS). Albeit the in vivo behavior in rodents is similar to the (99)mTc-pertechnetate, no studies exist in primates or in humans. The aims of this study were to evaluate the biodistribution of [F-18]-tetrafluoroborate in non-human primates with PET and to estimate the absorbed dose in organs.
Methods: Whole-body PET imaging was done in a Siemens ECAT HR+ scanner in two male Macaca fascicularis monkeys. After an i.v. injection of 24.93 +/- 0.05 MBq/kg of [F-18]-tetrafluoroborate, prepared by isotopic exchange of sodium tetrafluoroborate with [F-18]-fluoride under acidic conditions, eight sequential images from the head to the thigh (five beds) were collected for a total duration of 132 min. The whole-body emission scan was reconstructed applying attenuation and scatter corrections. After image reconstruction, three-dimensional volumes of interest (VOIs) were hand-drawn on the PET transaxial or coronal slices of the frame where the organ was most conspicuous. Time-activity curves for each VOI were obtained, and the organ residence times were calculated by integration of the time-activity curves. Human absorbed doses were estimated using the OLINDA/EXM software and the standard human model.
Results: [F-18]-tetrafluoroborate was able to discriminate clearly the thyroid gland with an excellent signal-to-noise ratio. Most of the radiotracers (residence time) are localised in the orga
Revista:
JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY
ISSN:
1773-2247
Año:
2015
Vol.:
30
N°:
B
Págs.:
450 - 457
The aim of this work was to prepare and evaluate the capability of zein nanoparticles for oral drug delivery. More particularly, in this work, the ability of these nanoparticles to improve the oral bioavailability of folic acid is reported. The nanoparticles were prepared by a desolvation process, followed by purification via ultrafiltration and drying in a spray-drier apparatus. The resulting nanoparticles displayed a mean size close to 200 nm with negative zeta potential and a payload of 54 ¿g folic acid per mg nanoparticle. From the in vitro release studies, it was observed that folic acid was only released from nanoparticles in simulated intestinal conditions. In vivo biodistribution studies, with radiolabelled or fluorescently marked nanoparticles, revealed that nanoparticles remained within the gut and were capable of interacting with the protective mucus layer of the jejunum. For the pharmacokinetic study, folic acid was orally administered to rats as a single dose of 1 mg/kg.
The relatively oral bioavailability of folic acid, when encapsulated in zein nanoparticles, was around 70%: two-times higher than the value obtained with an aqueous solution of the vitamin. This fact might be explained by the mucoadhesive properties of these nanoparticles.
Revista:
RADIOPROTECCION
ISSN:
1133-1747
Año:
2014
Vol.:
21
N°:
79
Págs.:
57 - 59
Autores:
Garrido, V.; Collantes M; Barberán, M.; et al.
Revista:
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
ISSN:
0066-4804
Año:
2014
Vol.:
58
N°:
11
Págs.:
6660 - 6667
A mouse model was developed for in vivo monitoring of infection and the effect of antimicrobial treatment against Staphylococcus aureus biofilms, using the [(18)F]fluoro-deoxyglucose-MicroPET ([(18)F]FDG-MicroPET) image technique. In the model, sealed Vialon catheters were briefly precolonized with S. aureus strains ATCC 15981 or V329, which differ in cytotoxic properties and biofilm matrix composition. After subcutaneous implantation of catheters in mice, the S. aureus strain differences found in bacterial counts and the inflammatory reaction triggered were detected by the regular bacteriological and histological procedures and also by [(18)F]FDG-MicroPET image signal intensity determinations in the infection area and regional lymph node. Moreover, [(18)F]FDG-MicroPET imaging allowed the monitoring of the rifampin treatment effect, identifying the periods of controlled infection and those of reactivated infection due to the appearance of bacteria naturally resistant to rifampin. Overall, the mouse model developed may be useful for noninvasive in vivo determinations in studies on S. aureus biofilm infections and assessment of new therapeutic approaches.
Revista:
NEUROBIOLOGY OF DISEASE
ISSN:
0969-9961
Año:
2014
Vol.:
62
Págs.:
250-259
Much controversy exists concerning the effect of levodopa on striatal dopaminergic markers in Parkinson's disease (PD) and its influence on functional neuroimaging. To deal with this issue we studied the impact of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and chronic levodopa administration on striatal (18)F-DOPA uptake (Ki) in an animal model of PD. The levels of several striatal dopaminergic markers and the number of surviving dopaminergic neurons in the substantia nigra (SN) were also assessed. Eleven Macaca fascicularis were included in the study. Eight animals received weekly intravenous injections of MPTP for 7weeks and 3 intact animals served as controls. MPTP-monkeys were divided in two groups. Group I was treated with placebo while Group II received levodopa. Both treatments were maintained for 11months and then followed by a washout period of 6months. (18)F-DOPA positron emission tomography (PET) scans were performed at baseline, after MPTP intoxication, following 11months of treatment, and after a washout period of 1, 3 and 6months. Monkeys were sacrificed 6months after concluding either placebo or levodopa treatment and immediately after the last (18)F-DOPA PET study. Striatal dopamine transporter (DAT) content, tyrosine hydroxylase (TH) content and aromatic l-amino acid decarboxylase (AADC) content were assessed. In Group II (18)F-DOPA PET studies performed at 3 and 6months after interrupting levodopa showed a significantly increased Ki in the anterior putamen as compared to Group I. Levodopa and placebo treated animals exhibited a similar number of surviving dopaminergic cells in the SN. Striatal DAT content was equally reduced in both groups of animals. Animals in Group I exhibited a significant decrease in TH protein content in all the striatal regions assessed. However, in Group II, TH levels were significantly reduced only in the anterior and posterior putamen. Surprisingly, in the levodopa-treated animals the TH levels in the posterior putamen were significantly lower than those in the placebo group. AADC levels in MPTP groups were similar to those of control animals in all striatal areas analyzed. This study shows that chronic levodopa administration to monkeys with partial nigrostriatal degeneration followed by a washout period induces modifications in the functional activity of the dopaminergic nigrostriatal pathway.
Revista:
MEDICAL PHYSICS
ISSN:
0094-2405
Año:
2014
Vol.:
41
N°:
9
Págs.:
092503
Qualitative and quantitative 90Y PET imaging improved with the introduction of TOF in a PET/CT scanner, thereby allowing the visualization of microsphere deposition in lesions not visible in non-TOF images. This technique accurately quantifies the total activity delivered to the liver during radioembolization with (90)Y-microspheres and allows dose estimation.
Revista:
RADIOPROTECCION
ISSN:
1133-1747
Año:
2014
Vol.:
79
Págs.:
26 - 36
La imagen preclínica engloba distintas técnicas de imagen molecular que utilizan radiaciones ionizantes, destacando la tomografía por emisión de fotón único (SPECT), la tomografía de emisión de positrones (PET) y la imagen autorradiográfica. Cada una de ellas utiliza distintas sondas que permiten obtener imágenes de una gran variedad de procesos metabólicos. En ocasiones se emplean junto a equipos de rayos X que permiten obtener imágenes anatómicas. En consecuencia, la investigación en las instalaciones de imagen molecular preclínica deberá realizarse en un contexto en el que se aplique la protección radiológica. De entre los riesgos radiológicos del personal que opera este tipo de instalaciones destaca la irradiación de las manos producida tanto por la administración de los radiotrazadores a los animales como por la manipulación de los mismos, siendo importante el entrenamiento y el uso de los blindajes. El diseño de la instalación radiactiva estará determinado por la actividad que en ella se realice. En particular dependerá tanto de las distintas técnicas de imagen molecular preclínica que se desarrollen como de la relación funcional que la instalación tenga con el resto del centro en el que se encuentre, en particular con el animalario y la unidad de radiofarmacia.
Revista:
REVISTA ESPAÑOLA DE MEDICINA NUCLEAR E IMAGEN MOLECULAR
ISSN:
2253-8089
Año:
2014
Vol.:
33
N°:
2
Págs.:
79 - 86
Objetivo Diseñar una técnica novedosa de adquisición ex-vivo para establecer un marco común de validación de diferentes técnicas de segmentación para imágenes PET oncológicas. Evaluar sobre estas imágenes el funcionamiento de varios algoritmos de segmentación automática.
Material y métodos En 15 pacientes oncológicos se realizaron estudios PET ex-vivo de las piezas quirúrgicas extraídas durante la cirugía, previa inyección de 18F-FDG, adquiriéndose imágenes en 2 tomógrafos: un PET/CT clínico y un tomógrafo PET de alta resolución. Se determinó el volumen tumoral real en cada paciente, generándose una imagen de referencia para la segmentación de cada tumor. Las imágenes se segmentaron con 12 algoritmos automáticos y con un método estándar para PET (umbral relativo del 42%) y se evaluaron los resultados mediante parámetros cuantitativos.
Resultados La segmentación de imágenes PET de piezas quirúrgicas ha demostrado que para imágenes PET de alta resolución 8 de las 12 técnicas de segmentación evaluadas superan al método estándar del 42%. Sin embargo, ninguno de los algoritmos superó al método estándar en las imágenes procedentes del PET/CT clínico. Debido al gran interés de este conjunto de imágenes PET, todos los estudios se han publicado a través de Internet con el fin de servir de marco común de validación y comparación de diferentes técnicas de segmentación.
Conclusiones Se ha propuesto una técnica novedosa para validar técnicas de segmentación para imágenes PET oncológicas, adquiriéndose estudios ex-vivo de piezas quirúrgicas. Se ha demostrado la utilidad de este conjunto de imágenes PET mediante la evaluación de varios algoritmos automáticos.
Revista:
REVISTA ESPAÑOLA DE MEDICINA NUCLEAR E IMAGEN MOLECULAR
ISSN:
2253-8089
Año:
2014
Vol.:
33
N°:
5
Págs.:
280-285
Objectives: To investigate quantitative methods of tumor proliferation using 3'-[F-18]fluoro-3'-deoxythymidine ([F-18]FLT) PET in patients with breast cancer (BC), studied before and after one bevacizumab administration, and to correlate the [F-18]FLT-PET uptake with the Ki67 index.
Material and methods: Thirty patients with newly diagnosed, untreated BC underwent a [F-18]FLT-PET before and 14 days after bevacizumab treatment. A dynamic scan centered over the tumor began simultaneously with the injection of [F-18]FLT (385 +/- 56 MBq). Image derived input functions were obtained using regions of interest drawn on the left ventricle (LV) and descending aorta (DA). Metabolite corrected blood curves were used as input functions to obtain the kinetic Ki constant using the Patlak graphical analysis (time interval 10-60 min after injection). Maximum SUV values were derived for the intervals 40-60 min (SUV40) and 50-60 min (SUV50). PET parameters were correlated with the Ki67 index obtained staining tumor biopsies.
Results: [F-18]FLT uptake parameters decreased significantly (p < 0.001) after treatment: SUV50 = 3.09 +/- 1.21 vs 2.22 +/- 0.96; SUV40 = 3.00 +/- 1.18 vs 2.14 +/- 0.95, Ki_LV(10-3) = 52[22-116] vs 38[13-80] and Ki_DA(10-3) = 49[15-129] vs 33[11-98]. Consistency interclass correlation coefficients within SUV and within Ki were high. Changes of SUV50 and Ki_DA between baseline PET and after one bevacizumab dose PET correlated with changes in Ki67 index (r-Pearson = 0.35
Revista:
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
ISSN:
1619-7070
Año:
2013
Vol.:
10
N°:
9
Págs.:
1394 - 1405
To introduce, evaluate and validate a voxel-based analysis method of F-18-FDG PET imaging for determining the probability of Alzheimer's disease (AD) in a particular individual.
The subject groups for model derivation comprised 80 healthy subjects (HS), 36 patients with mild cognitive impairment (MCI) who converted to AD dementia within 18 months, 85 non-converter MCI patients who did not convert within 24 months, and 67 AD dementia patients with baseline FDG PET scan were recruited from the AD Neuroimaging Initiative (ADNI) database. Additionally, baseline FDG PET scans from 20 HS, 27 MCI and 21 AD dementia patients from our institutional cohort were included for model validation. The analysis technique was designed on the basis of the AD-related hypometabolic convergence index adapted for our laboratory-specific context (AD-PET index), and combined in a multivariable model with age and gender for AD dementia detection (AD score). A logistic regression analysis of different cortical PET indexes and clinical variables was applied to search for relevant predictive factors to include in the multivariable model for the prediction of MCI conversion to AD dementia (AD-Conv score). The resultant scores were stratified into sixtiles for probabilistic diagnosis.
The area under the receiver operating characteristic curve (AUC) for the AD score detecting AD dementia in the ADNI database was 0.879, and the observed probability of AD dementia in the six defined groups ranged from 8 % to 100 % in a monotonic trend. For predicting MCI conversion to AD dementia, only the posterior cingulate index, Mini-Mental State Examination (MMSE) score and apolipoprotein E4 genotype (ApoE4) exhibited significant independent effects in the univariable and multivariable models. When only the latter two clinical variables were included in the model, the AUC was 0.742 (95 % CI 0.646 - 0.838), but this increased to 0.804 (95 % CI 0.714 - 0.894, bootstrap p = 0.027) with the addition of the posterior cingulate index (AD-Conv score). Baseline clinical diagnosis of MCI showed 29.7 % of converters after 18 months. The observed probability of conversion in relation to baseline AD-Conv score was 75 % in the high probability group (sixtile 6), 34 % in the medium probability group (merged sixtiles 4 and 5), 20 % in the low probability group (sixtile 3) and 7.5 % in the very low probability group (merged sixtiles 1 and 2). In the validation population, the AD score reached an AUC of 0.948 (95 % CI 0.625 - 0.969) and the AD-Conv score reached 0.968 (95 % CI 0.908 - 1.000), with AD patients and MCI converters included in the highest probability categories.
Posterior cingulate hypometabolism, when combined in a multivariable model with age and gender as well as MMSE score and ApoE4 data, improved the determination of the likelihood of patients with MCI converting to AD dementia compared with clinical variables alone. The probabilistic model described here provides a new tool that may aid in the clinical diagnosis of AD and MCI conversion.
Revista:
REVISTA ESPAÑOLA DE MEDICINA NUCLEAR
ISSN:
0212-6982
Año:
2013
Vol.:
32
N°:
1
Págs.:
13 - 21
Objective: To characterize the performance of the Biograph mCT PET/CT TrueV scanner with time of flight (TOF) and point spread function (PSF) modeling.
Material and methods: The PET/CT scanner combines a 64-slice CT and PET scanner that incorporates in the reconstruction the TOF and PSF information. PET operating characteristics were evaluated according to the standard NEMA NU 2-2007, expanding some tests. In addition, different reconstruction algorithms were included, and the intrinsic radiation and tomographic uniformity were also evaluated.
Results: The spatial resolution (FWHM) at 1 and 10 cm was 4.4 and 5.3 mm, improving to 2.6 and 2.5 mm when PSF is introduced. Sensitivity was 10.9 and 10.2 Kcps/MBq at 0 and 10 cm from the axis. Scatter fraction was less than 34% at low concentrations and the noise equivalent count rate (NECR) was maximal at 27.8 kBq/mL with 182 Kcps, the intrinsic radiation produced a rate of 4.42 true coincidences per second. Coefficient of variation of the volume and system uniformity were 4.7 and 0.8% respectively. The image quality test showed better results when PSF and TOF were included together. PSF improved the hot spheres contrast and background variability, while TOF improved the cold spheres contrast.
Conclusions: The Biograph mCT TrueV scanner has good performance characteristics. The image quality improves when the information from the PSF and the TOF is incorporated in the reconstruction.
Revista:
CLINICAL NUCLEAR MEDICINE
ISSN:
0363-9762
Año:
2013
Vol.:
38
N°:
2
Págs.:
103 - 109
Background: Accuracy in the quantification of the SUV is a critical point in PET because proper quantification of tumor uptake is essential for therapy monitoring and prognosis evaluation. Recent advances such as time-of-flight (TOF) and point-spread-function (PSF) reconstructions have dramatically improved detectability. However, first experiences with these techniques have shown a consistent tendency to measure markedly high SUV values, bewildering nuclear medicine physicians and referring clinicians. Purpose: We investigated different reconstruction and quantification procedures to determine the optimum protocol for an accurate SUV quantification in last generation PET scanners. Methods: Both phantom and patient images were evaluated. A complete set of experiments was performed using a body phantom containing 6 spheres with different background levels and contrasts. Whole-body FDG PET/CT of 20 patients with breast and lung cancer was evaluated. One hundred five foci were identified by 2 experienced nuclear medicine physicians. Each acquisition was reconstructed both with classical and advanced (TOF, PSF) reconstruction techniques. Each sphere and each in vivo lesion was quantified with different parameters as follows: SUVmax, SUVmean, and SUV50 (mean within a 50% isocontour). Results: This study has confirmed that quantification with SUVmax produces important overestimation of metabolism in new generation PET scanners. This is a relevant result because, currently, SUVmax is the standard parameter for quantification. SUV50 has been shown as the best alternative, especially when applied to images reconstructed with PSF + TOF. Conclusions: SUV50 provides accurate quantification and should replace SUVmax in PET tomographs incorporating advanced reconstruction techniques. PSF + TOF reconstruction is the optimum for both detection and accurate quantification.
Revista:
REV ESP MED NUCL IMAGEN MOL
ISSN:
2253-654X
Año:
2013
Vol.:
32
N°:
2
Págs.:
92 - 97
Purpose: To optimize radiolabeling with (99m)Tc of mannosylated Gantrez(®) nanoparticles loaded with the Brucella Ovis antigen (Man-NP-HS) and to carry out biodistribution studies in mice after ocular administration of the nanoparticles.
Material and methods: Man-NP-HS nanoparticles were prepared by the solvent displacement method. They were purified, lyophilized and characterized. Following this, they were radiolabeled with 74 MBq of (99m)TcO4(-) previously reduced with an acidic stannous chloride solution, working in absence of oxygen and at a final pH of 4. Radiolabeling yield was evaluated by TLC. Biodistribution studies were carried out in mice after ocular administration of the formulation and control of free (99m)TcO4(-). To do so, the animals were humanely killed at 2 and 24hours after the ocular administration and activity in organs was measured in a Gamma counter.
Results: Radiolabeling yield obtained was greater than 90%. Biodistribution studies of (99m)Tc-Man-NP-HS showed radioactivity accumulated at 2 and 24hours in nasal and ocular mucosa and gastrointestinal tract, in contrast to biodistribution of free (99m)TcO4(-) that remained concentrated in the skin around the eye and gastrointestinal tract.
Conclusion: Biodistribution studies of (99m)Tc-Man-NP-HS after ocular instillation have made it possible to demonstrate its biodistribution in nasal mucosa and gastrointestinal tract. This characteristic is essential as an antigenic delivery system throughout the ocular mucosa. This, together with its elevated immune response, effective protection and intrinsic avirulence make them a suitable anti-Brucella vaccine candidate.
Revista:
JOURNAL OF CONTROLLED RELEASE
ISSN:
0168-3659
Año:
2012
Vol.:
162
N°:
3
Págs.:
553 - 560
The use of sub-unit vaccines can solve some drawbacks associated with traditional attenuated or inactivated ones. However, in order to improve their immunogenicity, these vaccines needs to be associated to an appropriate adjuvant which, adequately selected, may also offer an alternative pathway for administration. The aim of this work was to evaluate the protection offered by the hot saline complex extracted from Brucella ovis (HS) encapsulated in mannosylated nanoparticles (MAN-NP-HS) when instilled conjunctivally in mice. Nanoparticles displayed a size of 300 nm and the antigen loading was close to 30 mu g per mg nanoparticle. Importantly, encapsulated HS maintained its protein profile, structural integrity and antigenicity during and after the preparative process of nanoparticles. The ocular immunization was performed on BALB/c mice. Eight weeks after vaccination animals were challenged with B. ovis, and 3 weeks later, were slaughtered for bacteriological examinations. Animals immunized with MAN-NP-HS displayed a 3-log reduction in spleen CFU compared with unvaccinated animals. This degree of protection was significantly higher than that observed for the commercial vaccine (Rev1) subcutaneously administered. Interestingly, the mucosal IgA response induced by MAN-NP-HS was found to be much more intense than that offered by Rev1 and prolonged in time. Furthermore, the elicited IL-2, IL-4 and.-IFN levels showed good correlation with the degree of protection. On the other hand, biodistribution studies in animals were performed with nanoparticles labelled with either (99m)technetium or rhodamine B isothiocyanate. The biodistribution revealed that, after instillation, MAN-NP-HS moved from the palpebral area to the nasal region and, the gastrointestinal tract. This profile of distribution was different to that observed for free (TcO4)-Tc-99m-colloids, which remained for at least 24 h in the site of administration. In summary, mannosylated nanoparticles appear to be a safe and suitable adjuvant for conjunctival vaccination. (C) 2012 Elsevier B. V. All rights reserved.
Revista:
CELL TRANSPLANTATION
ISSN:
0963-6897
Año:
2012
Vol.:
21
N°:
5
Págs.:
1023 - 1037
Fresh adipose-derived cells have been shown to be effective in the treatment of acute myocardial infarction (MI), but their role in the chronic setting is unknown. We sought to determine the long-term effect of the adipose derived-stromal vascular fraction (SVF) cell transplantation in a rat model of chronic MI. MI was induced in 82 rats by permanent coronary artery ligation and 5 weeks later rats were allocated to receive an intramyocardial injection of 10(7) GFP-expressing fresh SVF cells or culture media as control. Heart function and tissue metabolism were determined by echocardiography and F-18-FDG-microPET, respectively, and histological studies were performed for up to 3 months after transplantation. SVF induced a statistically significant long-lasting (3 months) improvement in cardiac function and tissue metabolism that was associated with increased revascularization and positive heart remodeling, with a significantly smaller infarct size, thicker infarct wall, lower scar fibrosis, and lower cardiac hypertrophy. Importantly, injected cells engrafted and were detected in the treated hearts for at least 3 months, directly contributing to the vasculature and myofibroblasts and at negligible levels to cardiomyocytes. Furthermore, SVF release of angiogenic (VEGF and HGF) and proinflammatory (MCP-1) cytokines, as well as TIMP1 and TIMP4, was demonstrated in vitro and in vivo, strongly suggesting that they have a trophic effect. These results show the potential of SVF to contribute to the regeneration of ischemic tissue and to provide a long-term functional benefit in a rat model of chronic MI, by both direct and indirect mechanisms.
Revista:
BRAIN
ISSN:
0006-8950
Año:
2012
Vol.:
135
Págs.:
2817-25
Neuronal loss in Alzheimer's disease, a better correlate of cognitive impairment than amyloid deposition, is currently gauged by the degree of regional atrophy. However, functional markers, such as GABA(A) receptor density, a marker of neuronal integrity, could be more sensitive. In post-mortem hippocampus, GABA(A) messenger RNA expression is reduced even in mild cognitive impairment. We measured whole-brain GABA(A) binding potential in vivo using [(11)C]-flumazenil positron emission tomography and compared GABA(A) binding with metabolic and volumetric measurements. For this purpose, we studied 12 subjects, six patients with early Alzheimer's disease and six healthy controls, with [(11)C]-flumazenil and [(18)F]-fluorodeoxyglucose positron emission tomography, as well as with high-resolution magnetic resonance imaging. Data were evaluated with both voxel-based parametric methods and volume of interest methods. We found that in early Alzheimer's disease, with voxel-based analysis, [(11)C]-flumazenil binding was decreased in infero-medial temporal cortex, retrosplenial cortex and posterior perisylvian regions. Inter-group differences reached corrected significance when using an arterial input function. Metabolism measured with positron emission tomography and volumetric measurements obtained with magnetic resonance imaging showed changes in regions affected in early Alzheimer's disease, but, unlike with [(11)C]-flumazenil binding and probably due to sample size, the voxel-based findings failed to reach corrected significance in any region of the brain. With volume of interest analysis, hippocampi and posterior cingulate gyrus showed decreased [(11)C]-flumazenil binding. In addition, [(11)C]-flumazenil hippocampal binding correlated with memory performance. Remarkably, [(11)C]-flumazenil binding was decreased precisely in the regions showing the greatest degree of neuronal loss in post-mortem studies of early Alzheimer's disease. From these data, we conclude that [(11)C]-flumazenil binding could be a useful marker of neuronal loss in early Alzheimer's disease
Autores:
Vicente-Duenas, C.; Fontan, L. ; Gonzalez-Herrero, I. ; et al.
Revista:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN:
0027-8424
Año:
2012
Vol.:
109
N°:
26
Págs.:
10534 - 10539
Chromosomal translocations involving the MALT1 gene are hallmarks of mucosa-associated lymphoid tissue (MALT) lymphoma. To date, targeting these translocations to mouse B cells has failed to reproduce human disease. Here, we induced MALT1 expression in mouse Sca1(+)Lin(-) hematopoietic stem/progenitor cells, which showed NF-kappa B activation and early lymphoid priming, being selectively skewed toward B-cell differentiation. These cells accumulated in extranodal tissues and gave rise to clonal tumors recapitulating the principal clinical, biological, and molecular genetic features of MALT lymphoma. Deletion of p53 gene accelerated tumor onset and induced transformation of MALT lymphoma to activated B-cell diffuse large-cell lymphoma (ABC-DLBCL). Treatment of MALT1-induced lymphomas with a specific inhibitor of MALT1 proteolytic activity decreased cell viability, indicating that endogenous Malt1 signaling was required for tumor cell survival. Our study shows that human-like lymphomas can be modeled in mice by targeting MALT1 expression to hematopoietic stem/progenitor cells, demonstrating the oncogenic role of MALT1 in lymphomagenesis. Furthermore, this work establishes a molecular link between MALT lymphoma and ABC-DLBCL, and provides mouse models to test MALT1 inhibitors. Finally, our results suggest that hematopoietic stem/progenitor cells may be involved in the pathogenesis of human mature B-cell lymphomas.
Revista:
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
ISSN:
1619-7070
Año:
2012
Vol.:
39
N°:
5
Págs.:
771 - 781
PURPOSE:
The aim of the study was to evaluate the volumetric integration patterns of standard MRI and (11)C-methionine positron emission tomography (PET) images in the surgery planning of gliomas and their relationship to the histological grade.
METHODS:
We studied 23 patients with suspected or previously treated glioma who underwent preoperative (11)C-methionine PET because MRI was imprecise in defining the surgical target contour. Images were transferred to the treatment planning system, coregistered and fused (BrainLAB). Tumour delineation was performed by (11)C-methionine PET thresholding (vPET) and manual segmentation over MRI (vMRI). A 3-D volumetric study was conducted to evaluate the contribution of each modality to tumour target volume. All cases were surgically treated and histological classification was performed according to WHO grades. Additionally, several biopsy samples were taken according to the results derived either from PET or from MRI and analysed separately.
RESULTS:
Fifteen patients had high-grade tumours [ten glioblastoma multiforme (GBM) and five anaplastic), whereas eight patients had low-grade tumours. Biopsies from areas with high (11)C-methionine uptake without correspondence in MRI showed tumour proliferation, including infiltrative zones, distinguishing them from dysplasia and radionecrosis. Two main PET/MRI integration patterns emerged after analysis of volumetric data: pattern vMRI-in-vPET (11/23) and pattern vPET-in-vMRI (9/23). Besides, a possible third pattern with differences in both directions (vMRI-diff-vPET) could also be observed (3/23). There was a statistically significant association between the tumour classification and integration patterns described above (p¿<¿0.001, ¿¿=¿0.72). GBM was associated with pattern vMRI-in-vPET (9/10), low-grade with pattern vPET-in-vMRI (7/8) and anaplastic with pattern vMRI-diff-vPET (3/5).
CONCLUSION:
The metabolically active tumour volume observed in (11)C-methionine PET differs from the volume of MRI by showing areas of infiltrative tumour and distinguishing from non-tumour lesions. Differences in (11)C-methionine PET/MRI integration patterns can be assigned to tumour grades according to the WHO classification. This finding may improve tumour delineation and therapy planning for gliomas.
Revista:
Cancer Discovery
ISSN:
2159-8274
Año:
2012
Vol.:
2
N°:
7
Págs.:
608 - 623
Revista:
NEUROBIOLOGY OF DISEASE
ISSN:
0969-9961
Año:
2012
Vol.:
48
N°:
1
Págs.:
79 - 91
Revista:
PHARMACEUTICAL RESEARCH
ISSN:
0724-8741
Año:
2012
Vol.:
29
N°:
9
Págs.:
2615 - 2627
To evaluate the acute and subacute toxicity of poly(anhydride) nanoparticles as carriers for oral drug/antigen delivery.
Three types of poly(anhydride) nanoparticles were assayed: conventional (NP), nanoparticles containing 2-hydroxypropyl-beta-cyclodextrin (NP-HPCD) and nanoparticles coated with poly(ethylene glycol) 6000 (PEG-NP). Nanoparticles were prepared by a desolvation method and characterized in terms of size, zeta potential and morphology. For in vivo oral studies, acute and sub-acute toxicity studies were performed in rats in accordance to the OECD 425 and 407 guidelines respectively. Finally, biodistribution studies were carried out after radiolabelling nanoparticles with (99m)technetium.
Nanoparticle formulations displayed a homogeneous size of about 180 nm and a negative zeta potential. The LD50 for all the nanoparticles tested was established to be higher than 2000 mg/kg bw. In the sub-chronic oral toxicity studies at two different doses (30 and 300 mg/kg bw), no evident signs of toxicity were found. Lastly, biodistribution studies demonstrated that these carriers remained in the gut with no evidences of particle translocation or distribution to other organs.
Poly(anhydride) nanoparticles (either conventional or modified with HPCD or PEG6000) showed no toxic effects, indicating that these carriers might be a safe strategy for oral delivery of therapeutics.
Revista:
PHYSICS IN MEDICINE AND BIOLOGY
ISSN:
0031-9155
Año:
2012
Vol.:
57
N°:
12
Págs.:
3963-80
Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools
Revista:
Human Gene Therapy (Print)
ISSN:
1043-0342
Año:
2011
Vol.:
22
N°:
8
Págs.:
999-1009
Revista:
Cancer Research
ISSN:
0008-5472
Año:
2011
Vol.:
71
N°:
3
Págs.:
801 - 11
Agonist monoclonal antibodies (mAb) to the immune costimulatory molecule CD137, also known as 4-1BB, are presently in clinical trials for cancer treatment on the basis of their costimulatory effects on primed T cells and perhaps other cells of the immune system. Here we provide evidence that CD137 is selectively expressed on the surface of tumor endothelial cells. Hypoxia upregulated CD137 on murine endothelial cells. Treatment of tumor-bearing immunocompromised Rag(-/-) mice with agonist CD137 mAb did not elicit any measurable antiangiogenic effects. In contrast, agonist mAb stimulated tumor endothelial cells, increasing cell surface expression of the adhesion molecules intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin. When adoptively transferred into mice, activated T lymphocytes derived from CD137-deficient animals entered more avidly into tumor tissue after treatment with agonist mAb. This effect could be neutralized with anti-ICAM-1 and anti-VCAM-1 blocking antibodies. Thus, stimulation of CD137 not only enhanced T-cell activation but also augmented their trafficking into malignant tissue, through direct actions on the blood vessels that irrigate the tumor. Our findings identify an additional mechanism of action that can explain the immunotherapeutic effects of agonist CD137 antibodies
Revista:
REVISTA ESPAÑOLA DE MEDICINA NUCLEAR
ISSN:
0212-6982
Año:
2011
Vol.:
30
N°:
2
Págs.:
88 - 93
(18)F-FDOPA is an amino acid analogue used to evaluate presynaptic dopaminergic activity, which has aroused great interest in neuro-oncology. We have evaluated five (18)F-FDOPA PET studies of patients referred for study of parkinsonian syndrome. Two subjects had previously treated high-grade brain tumors, one nonspecific brain injury, and 2 subjects presented unexpected tumoral lesions. For all lesions SUVmax, time to SUVmax and tumor-to-normal grey matter SUVmax rate (T/N) were calculated, and 90 minutes (18)F-FDOPA kinetics were analyzed. Tumor lesions corresponded to three malignant neurocytomas, one meningioma, one pineocytoma and one intrasinusal hemangioma. Both malignant and benign tumors exhibited high uptake of (18)F-FDOPA well above the normal cortex. However, the analysis of the curve uptake displayed characteristic patterns that facilitate the characterization of tumor lesions. A dual phase maximum uptake was observed, with an early 10 minutes uptake in malignant lesions, and a late 60 to 90 minutes uptake in benign or low grade lesions.
Revista:
CELL TRANSPLANTATION
ISSN:
0963-6897
Año:
2011
Vol.:
20
N°:
2
Págs.:
259 - 269
There is a need for comparative studies to determine which cell types are better candidates to remedy ischemia. Here, we compared human AC133(+) cells and multipotent adult progenitor cells (hMAPC) in a mouse model reminiscent of critical limb ischemia. hMAPC or hAC133(+) cell transplantation induced a significant improvement in tissue perfusion (measured by microPET) 15 days posttransplantation compared to controls. This improvement persisted for 30 days in hMAPC-treated but not in hAC133(+)-injected animals. While transplantation of hAC133(+) cells promoted capillary growth, hMAPC transplantation also induced collateral expansion, decreased muscle necrosis/fibrosis, and improved muscle regeneration. Incorporation of differentiated MC 133(+) or hMAPC progeny into new vessels was limited; however, a paracrine angio/arteriogenic effect was demonstrated in animals treated with hMAPC. Accordingly, hMAPC-conditioned, but not hAC133(+)-conditioned, media stimulated vascular cell proliferation and prevented myoblast, endothelial, and smooth muscle cell apoptosis in vitro. Our study suggests that although hAC133(+) cell and hMAPC transplantation both contribute to vascular regeneration in ischemic limbs, hMAPC exert a more robust effect through trophic mechanisms, which translated into collateral and muscle fiber regeneration. This, in turn, conferred tissue protection and regeneration with longer term functional improvement.
Revista:
Molecular Imaging and Biology
ISSN:
1536-1632
Año:
2011
Vol.:
13
N°:
6
Págs.:
1215 - 1223
Purpose: Study by molecular imaging the biodistribution of poly(anhydride) nanoparticles after oral administration.
Procedures: Poly (anhydride) nanoparticles (NP) and cyclodextrin-tagged nanoparticles (CD-NP) were radiolabelled with Tc-99m. Radiochemical purity was measured with a double-solvent chromatography system and the absence of undesirable components was confirmed by size and polydispersion measurement of the technetium-labelled nanoparticles by photon correlation spectroscopy. Single photon emission computed tomography (SPECT) fused computed tomography (CT) in vivo molecular imaging was used for biodistribution studies in small animals.
Results: SPECT-CT images revealed activity only in the gastrointestinal tract. Thirteen percent of the given dose of CD-NP and 3% of the given dose of conventional NP were found in the stomach at 8 h.
Conclusion: No evidence of translocation or distribution out of gastrointestinal tract was found. CD-NP moved significantly more slowly inside the gut than conventional NP, probably due to their physico-chemical structure that allows stronger interactions with the gut mucosa.
Revista:
The Journal of Immunology
ISSN:
0022-1767
Año:
2011
Vol.:
187
N°:
11
Págs.:
6130 - 6142
Twenty-four patients with metastatic cancer received two cycles of four daily immunizations with monocyte-derived dendritic cells (DC). DC were incubated with preheated autologous tumor lysate and subsequently with IFN-alpha, TNF-alpha, and polyinosinic:polycytidylic acid to attain type 1 maturation. One DC dose was delivered intranodally, under ultrasound control, and the rest intradermally in the opposite thigh. Cyclophosphamide (day -7), GM-CSF (days 1-4), and pegIFN alpha-2a (days 1 and 8) completed each treatment cycle. Pretreatment with cyclophosphamide decreased regulatory T cells to levels observed in healthy subjects both in terms of percentage and in absolute counts in peripheral blood. Treatment induced sustained elevations of IL-12 in serum that correlated with the output of IL-12p70 from cultured DC from each individual. NK activity in peripheral blood was increased and also correlated with the serum concentration of IL-12p70 in each patient. Circulating endothelial cells decreased in 17 of 18 patients, and circulating tumor cells markedly dropped in 6 of 19 cases. IFN-gamma-ELISPOT responses to DC plus tumor lysate were observed in 4 of 11 evaluated cases. Tracing DC migration with [(111)In] scintigraphy showed that intranodal injections reached deeper lymphatic chains in 61% of patients, whereas with intradermal injections a small fraction of injected DC was almost constantly shown to reach draining inguinal lymph nodes. Five patients experienced disease stabilization, but no objective responses were documented. This combinatorial immunotherapy strategy is safe and feasible, and its immunobiological effects suggest potential activity in patients with minimal residual disease. A randomized trial exploring this hypothesis is currently ongoing.
Revista:
Radiation Measurements
ISSN:
1350-4487
Año:
2011
Vol.:
46
N°:
11
Págs.:
1307 - 1309
This study focuses on the occupational doses of technologists working at an Animal Research Unit using PET radiotracers and on the environmental dose rates produced by the animals (mice, rats and monkeys). In particular, whole body and extremity monitoring is reported and related with the workload. The study shows that doses not only depend on the amount of activity injected but also on the type of animals and radiotracers managed. The extremities, with a great variability of the doses received, are the limiting organs as far as regulatory dose limits for workers are concerned. Mean H¿(10) rates in contact and at 20 cm from the animals, when they are handled by the technologist, range from around 1 mSv/h to 20 ¿Sv/h, respectively.
Revista:
European Journal of Nuclear Medicine & Molecular Imaging
ISSN:
1619-7070
Año:
2011
Vol.:
38
N°:
12
Págs.:
2228 - 2237
This study demonstrates that any difference detected with SPM analysis of MOSAIC PET images of rat brain is detected also by the gold standard autoradiographic technique, confirming that this methodology provides reliable results, although partial volume effects might make it difficult to detect slight differences in small regions.
Revista:
JOURNAL OF NUCLEAR MEDICINE
ISSN:
0161-5505
Año:
2011
Vol.:
52
N°:
6
Págs.:
865-72
Compared with standard (18)F-FDG PET studies, quantitative dual-time-point (18)F-FDG PET can improve sensitivity for the identification and volume delineation of high-grade brain tumors.
Revista:
Cancer Gene Therapy (Print)
ISSN:
0929-1903
Año:
2010
Vol.:
17
N°:
12
Págs.:
837 - 843
Revista:
BMCCANCER
ISSN:
1471-2407
Año:
2010
Vol.:
10
N°:
188
Págs.:
1 - 10
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2010
Vol.:
5
N°:
6
Págs.:
e10962
BACKGROUND:
Leptin and nitric oxide (NO) on their own participate in the control of non-shivering thermogenesis. However, the functional interplay between both factors in this process has not been explored so far. Therefore, the aim of the present study was to analyze the impact of the absence of the inducible NO synthase (iNOS) gene in the regulation of energy balance in ob/ob mice.
METHODS AND FINDINGS:
Double knockout (DBKO) mice simultaneously lacking the ob and iNOS genes were generated, and the expression of molecules involved in the control of brown fat cell function was analyzed by real-time PCR, western-blot and immunohistochemistry. Twelve week-old DBKO mice exhibited reduced body weight (p<0.05), decreased amounts of total fat pads (p<0.05), lower food efficiency rates (p<0.05) and higher rectal temperature (p<0.05) than ob/ob mice. Ablation of iNOS also improved the carbohydrate and lipid metabolism of ob/ob mice. DBKO showed a marked reduction in the size of brown adipocytes compared to ob/ob mutants. In this sense, in comparison to ob/ob mice, DBKO rodents showed an increase in the expression of PR domain containing 16 (Prdm16), a transcriptional regulator of brown adipogenesis. Moreover, iNOS deletion enhanced the expression of mitochondria-related proteins, such as peroxisome proliferator-activated receptor gamma coactivator-1 alpha (Pgc-1alpha), sirtuin-1 (Sirt-1) and sirtuin-3 (Sirt-3). Accordingly, mitochondrial uncoupling proteins 1 and 3 (Ucp-1 and Ucp-3) were upregulated in brown adipose tissue (BAT) of DBKO mice as compared to ob/ob rodents.
CONCLUSION:
Ablation of iNOS improved the energy balance of ob/ob mice by decreasing food efficiency through an increase in thermogenesis. These effects may be mediated, in part, through the recovery of the BAT phenotype and brown fat cell function improvement.
Revista:
Applied Radiation and Isotopes
ISSN:
0969-8043
Año:
2010
Vol.:
68
N°:
12
Págs.:
2298 - 301
Revista:
Molecular Imaging and Biology
ISSN:
1536-1632
Año:
2010
Vol.:
12
N°:
2
Págs.:
210 - 217
Revista:
Molecular Therapy
ISSN:
1525-0016
Año:
2010
Vol.:
18
N°:
4
Págs.:
754 - 765
Revista:
Neurobiology of Disease
ISSN:
0969-9961
Año:
2010
Vol.:
38
N°:
3
Págs.:
456 - 463
Revista:
BJU INTERNATIONAL
ISSN:
1464-4096
Año:
2010
Vol.:
106
N°:
11
Págs.:
1578 - 1593
center dot A critical, non-structured review of the literature of the role of PET and PET/CT in urological oncology was conducted.
center dot PET and PET/CT can play a role in the management of urological malignancies. For prostate cancer, the advances in radiotracers seems promising, with novel radiotracers yielding better diagnostic and staging results than 18F-fluorodeoxyglucose (18F-FDG). In kidney cancer, PET and PET/CT allow a proper diagnosis before the pathological examination of the surgical specimen. For testis cancer, PET and PET/CT have been shown to be useful in the management of seminoma tumours. In bladder cancer, these scans allow a better initial diagnosis for invasive cancer, while detecting occult metastases.
center dot PET and its combined modality PET/CT have shown their potential in the diagnosis of urological malignancies. However, further studies are needed to establish the role of PET in the management of these diseases. Future applications of PET may involve fusion techniques such as magnetic resonance imaging with PET.
Revista:
CELL TRANSPLANTATION
ISSN:
0963-6897
Año:
2010
Vol.:
19
N°:
3
Págs.:
313 - 328
The aim of this study is to assess the long-term effect of mesenchymal stem cells (MSC) transplantation in a rat model of chronic myocardial infarction (MI) in comparison with the effect of bone marrow mononuclear cells (BM-MNC) transplant. Five weeks after induction of MI, rats were allocated to receive intramyocardial injection of 10(6) GFP-expressing cells (BM-MNC or MSC) or medium as control. Heart function (echocardiography and (18)F-FDG-microPET) and histological studies were performed 3 months after transplantation and cell fate was analyzed along the experiment (1 and 2 weeks and 1 and 3 months). The main findings of this study were that both BM-derived populations, BM-MNC and MSC, induced a long-lasting (3 months) improvement in LVEF (BM-MNC: 26.61 +/- 2.01% to 46.61 +/- 3.7%, p <0.05; MSC: 27.5 +/- 1.28% to 38.8 +/- 3.2%, p < 0.05) but remarkably, only MSC improved tissue metabolism quantified by (18)F-FDG uptake (71.15 +/- 1.27 to 76.31 +/- 1.11, p<0.01), which was thereby associated with a smaller infarct size and scar collagen content and also with a higher revascularization degree. Altogether, results show that MSC provides a long-term superior benefit than whole BM-MNC transplantation in a rat model of chronic MI.