Revistas
Revista:
GLIA
ISSN:
0894-1491
Año:
2023
Vol.:
71
N°:
3
Págs.:
571 - 587
Inflammation is a common feature in neurodegenerative diseases that contributes to neuronal loss. Previously, we demonstrated that the basal inflammatory tone differed between brain regions and, consequently, the reaction generated to a pro-inflammatory stimulus was different. In this study, we assessed the innate immune reaction in the midbrain and in the striatum using an experimental model of Parkinson's disease. An adeno-associated virus serotype 9 expressing the alpha-synuclein and mCherry genes or the mCherry gene was administered into the substantia nigra. Myeloid cells (CD11b(+)) and astrocytes (ACSA2(+)) were purified from the midbrain and striatum for bulk RNA sequencing. In the parkinsonian midbrain, CD11b(+) cells presented a unique anti-inflammatory transcriptomic profile that differed from degenerative microglia signatures described in experimental models for other neurodegenerative conditions. By contrast, striatal CD11b(+) cells showed a pro-inflammatory state and were similar to disease-associated microglia. In the midbrain, a prominent increase of infiltrated monocytes/macrophages was observed and, together with microglia, participated actively in the phagocytosis of dopaminergic neuronal bodies. Although striatal microglia presented a phagocytic transcriptomic profile, morphology and cell density was preserved and no active phagocytosis was detected. Interestingly, astrocytes presented a pro-inflammatory fingerprint in the midbrain and a low number of differentially displayed transcripts in the striatum. During alpha-synuclein-dependent degeneration, microglia and astrocytes experience context-dependent activation states with a different contribution to the inflammatory reaction. Our results point towards the relevance of selecting appropriate cell targets to design neuroprotective strategies aimed to modulate the innate immune system during the active phase of dopaminergic degeneration.
Revista:
JOURNAL OF NEUROINFLAMMATION
ISSN:
1742-2094
Año:
2019
Vol.:
16
N°:
1
Págs.:
233
Background Inflammation is a critical process for the progression of neuronal death in neurodegenerative disorders. Microglia play a central role in neuroinflammation and may affect neuron vulnerability. Next generation sequencing has shown the molecular heterogeneity of microglial cells; however, the variability in their response to pathological inputs remains unknown. Methods To determine the effect of an inflammatory stimulus on microglial cells, lipopolysaccharide (LPS) was administered peripherally to mice and the inflammatory status of the cortex, hippocampus, midbrain, and striatum was assessed. Microglial activation and interaction with the immune system were analyzed in single cell suspensions obtained from the different brain regions by fluorescence-activated cell sorting, next generation RNA sequencing, real-time PCR, and immunohistochemical techniques. Antigen-presenting properties of microglia were evaluated by the ability of isolated cells to induce a clonal expansion of CD4(+) T cells purified from OT-II transgenic mice. Results Under steady-state conditions, the midbrain presented a high immune-alert state characterized by the presence of two unique microglial subpopulations, one expressing the major histocompatibility complex class II (MHC-II) and acting as antigen-presenting cells and another expressing the toll-like receptor 4 (TLR4), and by the presence of a higher proportion of infiltrating CD4(+) T cells. This state was not detected in the cortex, hippocampus, or striatum. Systemic LPS administration induced a general increase in classic pro-inflammatory cytokines, in co-inhibitory programmed death ligand 1 (PD-L1), and in cytotoxic T lymphocyte antigen 4 (CTLA-4) receptors, as well as a decrease in infiltrating effector T cells in all brain regions. Interestingly, a specific immune-suppressive response was observed in the midbrain which was characterized by the downregulation of MHC-II microglial expression, the upregulation of the anti-inflammatory cytokines IL10 and TGF beta, and the increase in infiltrating regulatory T cells. Conclusions These data show that the midbrain presents a high immune-alert state under steady-state conditions that elicits a specific immune-suppressive response when exposed to an inflammatory stimulus. This specific inflammatory tone and response may have an impact in neuronal viability.
Nacionales y Regionales
Título:
SinPARK. Identificación de patrones de neuroinflamación específicos en la muerte neuronal dependiente de alfa-sinucleína en modelos de enfermedad de Parkinson
Código de expediente:
0011-1383-2019-000005 PC60
Investigador principal:
María Soledad Aymerich Soler
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2019 GN Centros
Fecha de inicio:
01/12/2018
Fecha fin:
30/11/2019
Importe concedido:
70.700,00€
Otros fondos:
-
Título:
Identificación de dianas terapéuticas para la enfermedad de Parkinson basadas en la interacción de la neuroinflamación y la expresión de sinucleína. SinPARK-II
Código de expediente:
0011-1383-2020-000010 PC192 UNAV SinPARK-II
Investigador principal:
María Soledad Aymerich Soler
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2020 GN Proyectos Colaborativos
Fecha de inicio:
01/06/2020
Fecha fin:
30/11/2022
Importe concedido:
196.835,25€
Otros fondos:
-
Título:
Modulación de las interacciones glia/systema immune mediante cannabinoides para identificar nuevas dianas terapeúticas en la enfermedad de Parkinson.
Código de expediente:
PI20/01063
Investigador principal:
María Soledad Aymerich Soler
Financiador:
INSTITUTO DE SALUD CARLOS III
Convocatoria:
2020 AES Proyectos de investigación
Fecha de inicio:
01/01/2021
Fecha fin:
31/12/2023
Importe concedido:
183.920,00€
Otros fondos:
Fondos FEDER