Revista:
SENSORS
ISSN:
1424-8220
Año:
2023
Vol.:
23
N°:
17
Págs.:
7448
Traditionally, freight wagon technology has lacked digitalization and advanced monitoring capabilities. This article presents recent advancements in freight wagon digitalization, covering the system's definition, development, and field tests on a commercial line in Sweden. A number of components and systems were installed on board on the freight wagon, leading to the intelligent freight wagon. The digitalization includes the integration of sensors for different functions such as train composition, train integrity, asset monitoring and continuous wagon positioning. Communication capabilities enable data exchange between components, securely stored and transferred to a remote server for access and visualization. Three digitalized freight wagons operated on the Nassjo-Falkoping line, equipped with strategically placed monitoring sensors to collect valuable data on wagon performance and railway infrastructure. The field tests showcase the system's potential for detecting faults and anomalies, signifying a significant advancement in freight wagon technology, and contributing to an improvement in freight wagon digitalization and monitoring. The gathered insights demonstrate the system's effectiveness, setting the stage for a comprehensive monitoring solution for railway infrastructures. These advancements promise real-time analysis, anomaly detection, and proactive maintenance, fostering improved efficiency and safety in the domain of freight transportation, while contributing to the enhancement of freight wagon digitalization and supervision.
Revista:
REMOTE SENSING
ISSN:
2072-4292
Año:
2023
Vol.:
15
N°:
1
Págs.:
99 - *
Due to their ability to provide a worldwide absolute outdoor positioning, Global Navigation Satellite Systems (GNSS) have become a reference technology in terms of navigation technologies. Transportation-related sectors make use of this technology in order to obtain a position, velocity, and time solution for different outdoor tasks and applications. However, the performance of GNSS-based navigation is degraded when employed in urban areas in which satellite visibility is not good enough or nonexistent, as the ranging signals become obstructed or reflected by any of the numerous surrounding objects. For these situations, Ultra-Wideband (UWB) technology is a perfect candidate to complement GNSS as a navigation solution, as its anchor trilateration-based radiofrequency positioning resembles GNSS's principle. Nevertheless, this fusion is vulnerable to interferences affecting both systems, since multiple signal-degrading error sources can be found in urban environments. Moreover, an inadequate location of the augmenting UWB transmitters can introduce additional errors to the system due to its vulnerability to the multipath effect. Therefore, the misbehavior of an augmentation system could lead to unexpected and critical faults instead of improving the performance of the standalone GNSS. Accordingly, this research work presents the performance improvement caused by the application of Fault Detection and Exclusion methods when applied to a UWB-augmented low-cost GNSS system in urban environments.