Revistas
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2022
Vol.:
12
N°:
1
Págs.:
1777
Lobar selective internal radiation therapy (SIRT) is widely used to treat liver tumors inducing atrophy of the treated lobe and contralateral hypertrophy. The lack of animal model has precluded further investigations to improve this treatment. We developed an animal model of liver damage and atrophy-hypertrophy complex after SIRT. Three groups of 5-8 rabbits received transportal SIRT with Yttrium 90 resin microspheres of the cranial lobes with different activities (0.3, 0.6 and 1.2 GBq), corresponding to predicted absorbed radiation dose of 200, 400 and 800 Gy, respectively. Another group received non-loaded microspheres (sham group). Cranial and caudal lobes volumes were assessed using CT volumetry before, 15 and 30 days after SIRT. Liver biochemistry, histopathology and gene expression were evaluated. Four untreated rabbits were used as controls for gene expression studies. All animals receiving 1.2 GBq were euthanized due to clinical deterioration. Cranial SIRT with 0.6 GBq induced caudal lobe hypertrophy after 15 days (median increase 34% -ns-) but produced significant toxicity. Cranial SIRT with 0.3 GBq induced caudal lobe hypertrophy after 30 days (median increase 82%, p = 0.04). No volumetric changes were detected in sham group. Transient increase in serum transaminases was detected in all treated groups returning to normal values at 15 days. There was dose-dependent liver dysfunction with bilirubin elevation and albumin decrease. Histologically, 1.2 GBq group developed permanent severe liver damage with massive necrosis, 0.6 and 0.3 GBq groups developed moderate damage with inflammation and portal fibrosis at 15 days, partially recovering at 30 days. There was no difference in the expression of hepatocyte function and differentiation genes between 0.3 GBq and control groups. Cranial SIRT with 0.3 GBq of Y-90 resin microspheres in rabbits is a reliable animal model to analyse the atrophy-hypertrophy complex and liver damage without toxicity.
Autores:
Chen, C. B.; Wu, H. H.; Ye, H.; et al.
Revista:
CANCERS
ISSN:
2072-6694
Año:
2022
Vol.:
14
N°:
1
Págs.:
78
Polycystic liver disease (PLD) is a group of rare disorders that result from structural changes in the biliary tree development in the liver. In the present work, we studied alterations in molecular mechanisms and signaling pathways that might be responsible for these pathologies. We found that activation of the unfolded protein response, a process that occurs in response to an accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum, as well as the scarring of the liver tissue, contribute to the pathogenesis of PLD and the development of cancer. As a preclinical animal model we have used mutant mice of a specific signaling pathway, the c-Jun N-terminal kinase 1/2 (Jnk1/2). These mice resemble a perfect model for the study of PLD and early cancer development.
Revista:
CANCERS
ISSN:
2072-6694
Año:
2022
Vol.:
14
N°:
9
Págs.:
2048
Simple Summary Hepatocarcinogenesis is a long process which implies the loss of hepatic functions. Our effort is to understand the mechanisms implicated in this pathological process in order to contribute to the development of new diagnostic markers and therapeutic targets. In this study we have identified a set of lncRNAs significantly downregulated in hepatocellular carcinoma (HCC) in correlation with the grade of tumor dedifferentiation and patients' worse prognosis. Mechanistically, our results show that they are related with hepatic differentiation and at least a subset of those lncRNAs are essential to ensure the expression of other hepato-specific genes required for liver function. Moreover, we demonstrate that the expression of these lncRNAs in HCC is silenced by DNA methylation. All in all, we uncover connected epigenetic alterations involved in the progression of liver cancer and identify potential new biomarkers. Background: Long noncoding RNAs (lncRNAs) are emerging as key players in cancer, including hepatocellular carcinoma (HCC). Here we identify the mechanism implicated in the HCC inhibition of a set of lncRNAs, and their contribution to the process of hepatocarcinogenesis. Methods and Results: The top-ranked 35 lncRNAs downregulated in HCC (Top35 LNDH) were validated in several human HCC cohorts. We demonstrate that their inhibition is associated with promoter hypermethylation in HCC compared to control tissue, and in HCC human cell lines compared to primary hepatocytes. Moreover, demethylating treatment of HCC human cell lines induced the expression of these lncRNAs. The Top35 LNDH were preferentially expressed in the adult healthy liver compared to other tissues and fetal liver and were induced in well-differentiated HepaRG cells. Remarkably, their knockdown compromised the expression of other hepato-specific genes. Finally, the expression of the Top35 LNDH positively correlates with the grade of tumor differentiation and, more importantly, with a better patient prognosis. Conclusions: Our results demonstrate that the selected Top35 LNDH are not only part of the genes that compose the hepatic differentiated signature but participate in its establishment. Moreover, their downregulation through DNA methylation occurs during the process of hepatocarcinogenesis compromising hepatocellular differentiation and HCC patients' prognosis.
Autores:
Loi, E.; Zavattari, C.; Tommasi, A.; et al.
Revista:
BRITISH JOURNAL OF CANCER
ISSN:
0007-0920
Año:
2022
Vol.:
126
N°:
12
Págs.:
1783 - 1794
Background Biliary tract cancers (BTC) are rare but highly aggressive tumours with poor prognosis, usually detected at advanced stages. Herein, we aimed at identifying BTC-specific DNA methylation alterations. Methods Study design included statistical power and sample size estimation. A genome-wide methylation study of an explorative cohort (50 BTC and ten matched non-tumoral tissue samples) has been performed. BTC-specific altered CpG islands were validated in over 180 samples (174 BTCs and 13 non-tumoral controls). The final biomarkers, selected by a machine-learning approach, were validated in independent tissue (18 BTCs, 14 matched non-tumoral samples) and bile (24 BTCs, five non-tumoral samples) replication series, using droplet digital PCR. Results We identified and successfully validated BTC-specific DNA methylation alterations in over 200 BTC samples. The two-biomarker panel, selected by an in-house algorithm, showed an AUC > 0.97. The best-performing biomarker (chr2:176993479-176995557), associated with HOXD8, a pivotal gene in cancer-related pathways, achieved 100% sensitivity and specificity in a new series of tissue and bile samples. Conclusions We identified a novel fully efficient BTC biomarker, associated with HOXD8 gene, detectable both in tissue and bile by a standardised assay ready-to-use in clinical trials also including samples from non-invasive matrices.
Autores:
Marín, J. J. G. (Autor de correspondencia); Reviejo, M.; Soto, M.; et al.
Revista:
CANCERS
ISSN:
2072-6694
Año:
2022
Vol.:
14
N°:
1
Págs.:
18
Simple Summary Among the top ten deadly solid tumors are the two most frequent liver cancers, hepatocellular carcinoma, and intrahepatic cholangiocarcinoma, whose development and malignancy are favored by multifactorial conditions, which include aberrant maturation of pre-mRNA due to abnormalities in either the machinery involved in the splicing, i.e., the spliceosome and associated factors, or the nucleotide sequences of essential sites for the exon recognition process. As a consequence of cancer-associated aberrant splicing in hepatocytes- and cholangiocytes-derived cancer cells, abnormal proteins are synthesized. They contribute to the dysregulated proliferation and eventually transformation of these cells to phenotypes with enhanced invasiveness, migration, and multidrug resistance, which contributes to the poor prognosis that characterizes these liver cancers. The two most frequent primary cancers affecting the liver, whose incidence is growing worldwide, are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), which are among the five most lethal solid tumors with meager 5-year survival rates. The common difficulty in most cases to reach an early diagnosis, the aggressive invasiveness of both tumors, and the lack of favorable response to pharmacotherapy, either classical chemotherapy or modern targeted therapy, account for the poor outcome of these patients. Alternative splicing (AS) during pre-mRNA maturation results in changes that might affect proteins involved in different aspects of cancer biology, such as cell cycle dysregulation, cytoskeleton disorganization, migration, and adhesion, which favors carcinogenesis, tumor promotion, and progression, allowing cancer cells to escape from pharmacological treatments. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the available information regarding the impact of AS on liver carcinogenesis and the development of malignant characteristics of HCC and iCCA, whose understanding is required to develop novel therapeutical approaches aimed at manipulating the phenotype of cancer cells.
Revista:
JOURNAL OF EXPERIMENTAL AND CLINICAL CANCER RESEARCH
ISSN:
1756-9966
Año:
2022
Vol.:
41
N°:
1
Págs.:
183
Background Cholangiocarcinoma (CCA) is still a deadly tumour. Histological and molecular aspects of thioacetamide (TAA)-induced intrahepatic CCA (iCCA) in rats mimic those of human iCCA. Carcinogenic changes and therapeutic vulnerabilities in CCA may be captured by molecular investigations in bile, where we performed bile proteomic and metabolomic analyses that help discovery yet unknown pathways relevant to human iCCA. Methods Cholangiocarcinogenesis was induced in rats (TAA) and mice (Jnk(Delta hepa) + CCl4 + DEN model). We performed proteomic and metabolomic analyses in bile from control and CCA-bearing rats. Differential expression was validated in rat and human CCAs. Mechanisms were addressed in human CCA cells, including Huh28-KRAS(G12D) cells. Cell signaling, growth, gene regulation and [U-C-13]-D-glucose-serine fluxomics analyses were performed. In vivo studies were performed in the clinically-relevant iCCA mouse model. Results Pathways related to inflammation, oxidative stress and glucose metabolism were identified by proteomic analysis. Oxidative stress and high amounts of the oncogenesis-supporting amino acids serine and glycine were discovered by metabolomic studies. Most relevant hits were confirmed in rat and human CCAs (TCGA). Activation of interleukin-6 (IL6) and epidermal growth factor receptor (EGFR) pathways, and key genes in cancer-related glucose metabolic reprogramming, were validated in TAA-CCAs. In TAA-CCAs, G9a, an epigenetic pro-tumorigenic writer, was also increased. We show that EGFR signaling and mutant KRAS(G12D) can both activate IL6 production in CCA cells. Furthermore, phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in serine-glycine pathway, was upregulated in human iCCA correlating with G9a expression. In a G9a activity-dependent manner, KRAS(G12D) promoted PHGDH expression, glucose flow towards serine synthesis, and increased CCA cell viability. KRAS(G12D) CAA cells were more sensitive to PHGDH and G9a inhibition than controls. In mouse iCCA, G9a pharmacological targeting reduced PHGDH expression. Conclusions In CCA, we identified new pro-tumorigenic mechanisms: Activation of EGFR signaling or KRAS mutation drives IL6 expression in tumour cells; Glucose metabolism reprogramming in iCCA includes activation of the serine-glycine pathway; Mutant KRAS drives PHGDH expression in a G9a-dependent manner; PHGDH and G9a emerge as therapeutic targets in iCCA.
Revista:
GUT
ISSN:
0017-5749
Año:
2022
Vol.:
71
N°:
6
Págs.:
1141 - 1151
Objective Despite significant progresses in imaging and pathological evaluation, early differentiation between benign and malignant biliary strictures remains challenging. Endoscopic retrograde cholangiopancreatography (ERCP) is used to investigate biliary strictures, enabling the collection of bile. We tested the diagnostic potential of next-generation sequencing (NGS) mutational analysis of bile cell-free DNA (cfDNA). Design A prospective cohort of patients with suspicious biliary strictures (n=68) was studied. The performance of initial pathological diagnosis was compared with that of the mutational analysis of bile cfDNA collected at the time of first ERCP using an NGS panel open to clinical laboratory implementation, the Oncomine Pan-Cancer Cell-Free assay. Results An initial pathological diagnosis classified these strictures as of benign (n=26), indeterminate (n=9) or malignant (n=33) origin. Sensitivity and specificity of this diagnosis were 60% and 100%, respectively, as on follow-up 14 of the 26 and eight of the nine initially benign or indeterminate strictures resulted malignant. Sensitivity and specificity for malignancy of our NGS assay, herein named Bilemut, were 96.4% and 69.2%, respectively. Importantly, one of the four Bilemut false positives developed pancreatic cancer after extended follow-up. Remarkably, the sensitivity for malignancy of Bilemut was 100% in patients with an initial diagnosis of benign or indeterminate strictures. Analysis of 30 paired bile and tissue samples also demonstrated the superior performance of Bilemut. Conclusion Implementation of Bilemut at the initial diagnostic stage for biliary strictures can significantly improve detection of malignancy, reduce delays in the clinical management of patients and assist in selecting patients for targeted therapies.
Autores:
Melderis, S.; Warkotsch, M. T.; Dang, J.; et al.
Revista:
JOURNAL OF AUTOIMMUNITY
ISSN:
0896-8411
Año:
2022
Vol.:
129
Págs.:
102829
Systemic lupus erythematosus (SLE) is a common autoimmune disorder with a complex and poorly understood immuno-pathogenesis. Lupus nephritis (LN) is a frequent and difficult to treat complication, which causes high morbidity and mortality. The multifunctional cytokine amphiregulin (AREG) has been implicated in SLE pathogenesis, but its function in LN currently remains unknown. We thus studied the model of pristane-induced LN and found increasing renal and systemic AREG expression during the course of disease. Importantly, renal injury was significantly aggravated in the absence of AREG, revealing a net anti-inflammatory role. Analyses of immune responses showed dual effects. On the one hand, AREG enhanced activation of pro-inflammatory myeloid cells, which however did not play a major role for the course of LN. More importantly, on the other hand, AREG strongly suppressed pathogenic cytokine production by T helper effector cells. This effect was more general in nature and could be reproduced in response to antigen immunization. Since AREG has been postulated to downregulate T cell responses via enhancing Treg suppressive capacity, we followed up on this aspect. Interestingly, however, in vitro studies revealed potential direct and Treg independent effects of AREG on T helper effector cells. In favor of this notion, we found significantly enhanced T cell responses and consecutive aggravation of LN, only if epidermal growth factor receptor (EGFR) signaling was abrogated in total T cells, but not if the EGFR was absent on Tregs alone. Finally, we also found enhanced AREG expression in plasma and renal biopsies of patients with LN, supporting the relevance of our findings for human disease. In summary, our data identify AREG as an anti-inflammatory mediator of LN via broad downregulation of pathogenic T cell immunity. These findings further highlight the AREG/EGFR axis as a potential therapeutic target.
Autores:
Mirra, S.; Gavalda Navarro, A.; Manso, Y.; et al.
Revista:
CANCERS
ISSN:
2072-6694
Año:
2021
Vol.:
13
N°:
5
Págs.:
1110
Simple Summary An excess fat in the liver enhances the susceptibility to hepatic cancer. We found that Armcx3, a protein only known to date to play a role in neural development, is strongly increased in mouse liver in response to lipid availability and proliferation-inducing insults. In patients, the levels of hepatic Armcx3 are also increased in conditions of high exposure of the liver to fat. We wanted to determine the role of Armcx3 in the hepatocarcinogenesis favored by a high-fat diet. We generated mice with genetically driven suppression of Armcx3, and we found that they were protected against experimentally induced hepatic cancer, especially in conditions of a high-fat diet. Armcx3 was also found to promote hepatic cell proliferation through the interaction with Sox9, a known proliferation factor in hepatocellular carcinoma. Armcx3 is identified as a novel factor in meditating propensity to liver cancer in conditions of high hepatic lipid insults. ARMCX3 is encoded by a member of the Armcx gene family and is known to be involved in nervous system development and function. We found that ARMCX3 is markedly upregulated in mouse liver in response to high lipid availability, and that hepatic ARMCX3 is upregulated in patients with NAFLD and hepatocellular carcinoma (HCC). Mice were subjected to ARMCX3 invalidation (inducible ARMCX3 knockout) and then exposed to a high-fat diet and diethylnitrosamine-induced hepatocarcinogenesis. The effects of experimental ARMCX3 knockdown or overexpression in HCC cell lines were also analyzed. ARMCX3 invalidation protected mice against high-fat-diet-induced NAFLD and chemically induced hepatocarcinogenesis. ARMCX3 invalidation promoted apoptotic cell death and macrophage infiltration in livers of diethylnitrosamine-treated mice maintained on a high-fat diet. ARMCX3 downregulation reduced the viability, clonality and migration of HCC cell lines, whereas ARMCX3 overexpression caused the reciprocal effects. SOX9 was found to mediate the effects of ARMCX3 in hepatic cells, with the SOX9 interaction required for the effects of ARMCX3 on hepatic cell proliferation. In conclusion, ARMCX3 is identified as a novel molecular actor in liver physiopathology and carcinogenesis. ARMCX3 downregulation appears to protect against hepatocarcinogenesis, especially under conditions of high dietary lipid-mediated hepatic insult.
Revista:
HEPATOLOGY
ISSN:
0270-9139
Año:
2021
Vol.:
73
N°:
6
Págs.:
2380 - 2396
Background and Aims Cholangiocarcinoma (CCA) is a devastating disease often detected at advanced stages when surgery cannot be performed. Conventional and targeted systemic therapies perform poorly, and therefore effective drugs are urgently needed. Different epigenetic modifications occur in CCA and contribute to malignancy. Targeting epigenetic mechanisms may thus open therapeutic opportunities. However, modifications such as DNA and histone methylation often coexist and cooperate in carcinogenesis. We tested the therapeutic efficacy and mechanism of action of a class of dual G9a histone-methyltransferase and DNA-methyltransferase 1 (DNMT1) inhibitors. Approach and Results Expression of G9a, DNMT1, and their molecular adaptor, ubiquitin-like with PHD and RING finger domains-1 (UHRF1), was determined in human CCA. We evaluated the effect of individual and combined pharmacological inhibition of G9a and DNMT1 on CCA cell growth. Our lead G9a/DNMT1 inhibitor, CM272, was tested in human CCA cells, patient-derived tumoroids and xenograft, and a mouse model of cholangiocarcinogenesis with hepatocellular deletion of c-Jun-N-terminal-kinase (Jnk)-1/2 and diethyl-nitrosamine (DEN) plus CCl4 treatment (Jnk(Delta hepa) + DEN + CCl4 mice). We found an increased and correlative expression of G9a, DNMT1, and UHRF1 in CCAs. Cotreatment with independent pharmacological inhibitors G9a and DNMT1 synergistically inhibited CCA cell growth. CM272 markedly reduced CCA cell proliferation and synergized with Cisplatin and the ERBB-targeted inhibitor, Lapatinib. CM272 inhibited CCA tumoroids and xenograft growth and significantly antagonized CCA progression in Jnk(Delta hepa) + DEN + CCl4 mice without apparent toxicity. Mechanistically, CM272 reprogrammed the tumoral metabolic transcriptome and phenotype toward a differentiated and quiescent status. Conclusions Dual targeting of G9a and DNMT1 with epigenetic small molecule inhibitors such as CM272 is a potential strategy to treat CCA and/or enhance the efficacy of other systemic therapies.
Revista:
GUT
ISSN:
0017-5749
Año:
2021
Vol.:
70
N°:
2
Págs.:
388 - 400
Objective Hepatic stellate cells (HSC) transdifferentiation into myofibroblasts is central to fibrogenesis. Epigenetic mechanisms, including histone and DNA methylation, play a key role in this process. Concerted action between histone and DNA-mehyltransferases like G9a and DNMT1 is a common theme in gene expression regulation. We aimed to study the efficacy of CM272, a first-in-class dual and reversible G9a/DNMT1 inhibitor, in halting fibrogenesis. Design G9a and DNMT1 were analysed in cirrhotic human livers, mouse models of liver fibrosis and cultured mouse HSC. G9a and DNMT1 expression was knocked down or inhibited with CM272 in human HSC (hHSC), and transcriptomic responses to transforming growth factor-beta 1 (TGF beta 1) were examined. Glycolytic metabolism and mitochondrial function were analysed with Seahorse-XF technology. Gene expression regulation was analysed by chromatin immunoprecipitation and methylation-specific PCR. Antifibrogenic activity and safety of CM272 were studied in mouse chronic CCl4 administration and bile duct ligation (BDL), and in human precision-cut liver slices (PCLSs) in a new bioreactor technology. Results G9a and DNMT1 were detected in stromal cells in areas of active fibrosis in human and mouse livers. G9a and DNMT1 expression was induced during mouse HSC activation, and TGF beta 1 triggered their chromatin recruitment in hHSC. G9a/DNMT1 knockdown and CM272 inhibited TGF beta 1 fibrogenic responses in hHSC. TGF beta 1-mediated profibrogenic metabolic reprogramming was abrogated by CM272, which restored gluconeogenic gene expression and mitochondrial function through on-target epigenetic effects. CM272 inhibited fibrogenesis in mice and PCLSs without toxicity. Conclusions Dual G9a/DNMT1 inhibition by compounds like CM272 may be a novel therapeutic strategy for treating liver fibrosis.
Autores:
Moron Ros, S.; Uriarte, I.; Berasain, C; et al.
Revista:
MOLECULAR METABOLISM
ISSN:
2212-8778
Año:
2021
Vol.:
43
Págs.:
101113
Objective: To determine the role of enterokine FGF15/19 in adipose tissue thermogenic adaptations. Methods: Circulating FGF19 and gene expression (qRT-PCR) levels were assessed in subcutaneous adipose tissue from obese human patients. Effects of experimentally increased FGF15 and FGF19 levels in vivo were determined in mice using adenoviral and adeno-associated vectors. Adipose tissues were characterized in FGF15-null mice under distinct cold-related thermogenic challenges. The analyses spanned metabolic profiling, tissue characterization, histology, gene expression, and immunoblot assays. Results: In humans, FGF19 levels are directly associated with UCP1 gene expression in subcutaneous adipose tissue. Experimental increases in FGF15 or FGF19 induced white fat browning in mice as demonstrated by the appearance of multilocular beige cells and markers indicative of a beige phenotype, including increased UCP1 protein levels. Mice lacking FGF15 showed markedly impaired white adipose tissue browning and a mild reduction in parameters indicative of BAT activity in response to cold-induced environmental thermogenic challenges. This was concomitant with signs of altered systemic metabolism, such as reduced glucose tolerance and impaired cold-induced insulin sensitization. Conclusions: Enterokine FGF15/19 is a key factor required for adipose tissue plasticity in response to thermogenic adaptations. (C) 2020 The Authors. Published by Elsevier GmbH.
Revista:
ELIFE
ISSN:
2050-084X
Año:
2021
Vol.:
10
Págs.:
e68263
Hepatocellular carcinoma, the most common type of liver malignancy, is one of the most lethal forms of cancer. We identified a long non-coding RNA, Gm19705, that is overexpressed in hepatocellular carcinoma and mouse embryonic stem cells. We named this RNA Pluripotency and Hepatocyte Associated RNA Overexpressed in HCC, or PHAROH. Depletion of PHAROH impacts cell proliferation and migration, which can be rescued by ectopic expression of PHAROH. RNA-seq analysis of PHAROH knockouts revealed that a large number of genes with decreased expression contain a Myc motif in their promoter. MYC is decreased in knockout cells at the protein level, but not the mRNA level. RNA-antisense pulldown identified nucleolysin TIAR, a translational repressor, to bind to a 71-nt hairpin within PHAROH, sequestration of which increases MYC translation. In summary, our data suggest that PHAROH regulates MYC translation by sequestering TIAR and as such represents a potentially exciting diagnostic or therapeutic target in hepatocellular carcinoma.
Revista:
HEPATOLOGY
ISSN:
0270-9139
Año:
2021
Vol.:
74
N°:
5
Págs.:
2791 - 2807
Background and Aims Hepatocellular dedifferentiation is emerging as an important determinant in liver disease progression. Preservation of mature hepatocyte identity relies on a set of key genes, predominantly the transcription factor hepatocyte nuclear factor 4 alpha (HNF4 alpha) but also splicing factors like SLU7. How these factors interact and become dysregulated and the impact of their impairment in driving liver disease are not fully understood. Approach and Results Expression of SLU7 and that of the adult and oncofetal isoforms of HNF4 alpha, driven by its promoter 1 (P1) and P2, respectively, was studied in diseased human and mouse livers. Hepatic function and damage response were analyzed in wild-type and Slu7-haploinsufficient/heterozygous (Slu7(+/-)) mice undergoing chronic (CCl4) and acute (acetaminophen) injury. SLU7 expression was restored in CCl4-injured mice using SLU7-expressing adeno-associated viruses (AAV-SLU7). The hepatocellular SLU7 interactome was characterized by mass spectrometry. Reduced SLU7 expression in human and mouse diseased livers correlated with a switch in HNF4 alpha P1 to P2 usage. This response was reproduced in Slu7(+/-) mice, which displayed increased sensitivity to chronic and acute liver injury, enhanced oxidative stress, and marked impairment of hepatic functions. AAV-SLU7 infection prevented liver injury and hepatocellular dedifferentiation. Mechanistically we demonstrate a unique role for SLU7 in the preservation of HNF4 alpha 1 protein stability through its capacity to protect the liver against oxidative stress. SLU7 is herein identified as a key component of the stress granule proteome, an essential part of the cell's antioxidant machinery. Conclusions Our results place SLU7 at the highest level of hepatocellular identity control, identifying SLU7 as a link between stress-protective mechanisms and liver differentiation. These findings emphasize the importance of the preservation of hepatic functions in the protection from liver injury.
Revista:
NUCLEIC ACIDS RESEARCH
ISSN:
0305-1048
Año:
2021
Vol.:
49
N°:
15
Págs.:
8592 - 8609
Gene expression is finely and dynamically controlled through the tightly coordinated and interconnected activity of epigenetic modulators, transcription and splicing factors and post-translational modifiers. We have recently identified the splicing factor SLU7 as essential for maintaining liver cell identity and genome integrity and for securing cell division both trough transcriptional and splicing mechanisms. Now we uncover a new function of SLU7 controlling gene expression at the epigenetic level. We show that SLU7 is required to secure DNMT1 protein stability and a correct DNA methylation. We demonstrate that SLU7 is part in the chromatome of the protein complex implicated in DNA methylation maintenance interacting with and controlling the integrity of DNMT1, its adaptor protein UHRF1 and the histone methyl-transferase G9a at the chromatin level. Mechanistically, we found that SLU7 assures DNMT1 stability preventing its acetylation and degradation by facilitating its interaction with HDAC1 and the desubiquitinase USP7. Importantly, we demonstrate that this DNMT1 dependency on SLU7 occurs in a large panel of proliferating cell lines of different origins and in in vivo models of liver proliferation. Overall, our results uncover a novel and non-redundant role of SLU7 in DNA methylation and present SLU7 as a holistic regulator of gene expression.
Revista:
CMGH
ISSN:
2352-345X
Año:
2021
Vol.:
11
N°:
1
Págs.:
291 - 293
Autores:
Melderis, S. ; Hagenstein, J. ; Warkotsch, M. T.; et al.
Revista:
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY
ISSN:
1046-6673
Año:
2020
Vol.:
31
N°:
9
Págs.:
1996 - 2012
Background Recent studies have identified the EGF receptor (EGFR) ligand amphiregulin (AREG) as an important mediator of inflammatory diseases. Both pro- and anti-inflammatory functions have been described, but the role of AREG in GN remains unknown. Methods The nephrotoxic nephritis model of GN was studied in AREG(-/-) mice after bone marrow transplantation, and in mice with myeloid cell-specific EGFR deficiency. Therapeutic utility of AREG neutralization was assessed. Furthermore, AREG's effects on renal cells and monocytes/macrophages (M/M) were analyzed. Finally, we evaluated AREG expression in human renal biopsies. Results Renal AREG mRNA was strongly upregulated in murine GN. Renal resident cells were the most functionally relevant source of AREG. Importantly, the observation that knockout mice showed significant amelioration of disease indicates that AREG is pathogenic in GN. AREG enhanced myeloid cell responses via inducing chemokine and colony stimulating factor 2 (CSF2) expression in kidney resident cells. Furthermore, AREG directly skewed M/M to a proinflammatory M1 phenotype and protected them from apoptosis. Consequently, anti-AREG antibody treatment dose-dependently ameliorated GN. Notably, selective abrogation of EGFR signaling in myeloid cells was sufficient to protect against nephritis. Finally, strong upregulation of AREG expression was also detected in kidneys of patients with two forms of crescentic GN. Conclusions AREG is a proinflammatory mediator of GN via (1) enhancing renal pathogenic myeloid cell infiltration and (2) direct effects on M/M polarization, proliferation, and cytokine secretion. The AREG/EGFR axis is a potential therapeutic target for acute GN.
Revista:
CANCERS
ISSN:
2072-6694
Año:
2020
Vol.:
12
N°:
12
Págs.:
3748
Simple Summary Chronic liver injury and inflammation leads to excessive deposition of extracellular matrix, known as liver fibrosis, and the distortion of the hepatic parenchyma. Liver fibrosis may progress to cirrhosis, a condition in which hepatic function is impaired and most cases of liver tumors occur. Currently, there are no effective therapies to inhibit and reverse the progression of liver fibrosis, and therefore, chronic liver disease remains a global health problem. In this study we have tested the efficacy of a new class of molecules that simultaneously target two molecular pathways known to be involved in the pathogenesis of hepatic fibrosis. In a clinically relevant mouse model of liver injury and inflammation we show that the combined inhibition of histones deacetylases and the cyclic guanosine monophosphate (cGMP) phosphodiesterase phosphodiesterase 5 (PDE5) results in potent anti-inflammatory and anti-fibrotic effects. Our findings open new avenues for the treatment of liver fibrosis and therefore, the prevention of hepatic carcinogenesis. Liver fibrosis, a common hallmark of chronic liver disease (CLD), is characterized by the accumulation of extracellular matrix secreted by activated hepatic fibroblasts and stellate cells (HSC). Fibrogenesis involves multiple cellular and molecular processes and is intimately linked to chronic hepatic inflammation. Importantly, it has been shown to promote the loss of liver function and liver carcinogenesis. No effective therapies for liver fibrosis are currently available. We examined the anti-fibrogenic potential of a new drug (CM414) that simultaneously inhibits histone deacetylases (HDACs), more precisely HDAC1, 2, and 3 (Class I) and HDAC6 (Class II) and stimulates the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway activity through phosphodiesterase 5 (PDE5) inhibition, two mechanisms independently involved in liver fibrosis. To this end, we treated Mdr2-KO mice, a clinically relevant model of liver inflammation and fibrosis, with our dual HDAC/PDE5 inhibitor CM414. We observed a decrease in the expression of fibrogenic markers and collagen deposition, together with a marked reduction in inflammation. No signs of hepatic or systemic toxicity were recorded. Mechanistic studies in cultured human HSC and cholangiocytes (LX2 and H69 cell lines, respectively) demonstrated that CM414 inhibited pro-fibrogenic and inflammatory responses, including those triggered by transforming growth factor beta (TGF beta). Our study supports the notion that simultaneous targeting of pro-inflammatory and fibrogenic mechanisms controlled by HDACs and PDE5 with a single molecule, such as CM414, can be a new disease-modifying strategy.
Revista:
CANCERS
ISSN:
2072-6694
Año:
2020
Vol.:
12
N°:
6
Págs.:
1644
Cholangiocarcinoma (CCA) and pancreatic adenocarcinoma (PDAC) may lead to the development of extrahepatic obstructive cholestasis. However, biliary stenoses can also be caused by benign conditions, and the identification of their etiology still remains a clinical challenge. We performed metabolomic and proteomic analyses of bile from patients with benign (n= 36) and malignant conditions, CCA (n= 36) or PDAC (n= 57), undergoing endoscopic retrograde cholangiopancreatography with the aim of characterizing bile composition in biliopancreatic disease and identifying biomarkers for the differential diagnosis of biliary strictures. Comprehensive analyses of lipids, bile acids and small molecules were carried out using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (H-1-NMR) in all patients. MS analysis of bile proteome was performed in five patients per group. We implemented artificial intelligence tools for the selection of biomarkers and algorithms with predictive capacity. Our machine-learning pipeline included the generation of synthetic data with properties of real data, the selection of potential biomarkers (metabolites or proteins) and their analysis with neural networks (NN). Selected biomarkers were then validated with real data. We identified panels of lipids (n= 10) and proteins (n= 5) that when analyzed with NN algorithms discriminated between patients with and without cancer with an unprecedented accuracy.
Revista:
NATURE COMMUNICATIONS
ISSN:
2041-1723
Año:
2019
Vol.:
10
N°:
3126
Alcoholic hepatitis (AH) is a life-threatening condition characterized by profound hepatocellular dysfunction for which targeted treatments are urgently needed. Identification of molecular drivers is hampered by the lack of suitable animal models. By performing RNA sequencing in livers from patients with different phenotypes of alcohol-related liver disease (ALD), we show that development of AH is characterized by defective activity of liver-enriched transcription factors (LETFs). TGF beta 1 is a key upstream transcriptome regulator in AH and induces the use of HNF4 alpha P2 promoter in hepatocytes, which results in defective metabolic and synthetic functions. Gene polymorphisms in LETFs including HNF4 alpha are not associated with the development of AH. In contrast, epigenetic studies show that AH livers have profound changes in DNA methylation state and chromatin remodeling, affecting HNF4 alpha-dependent gene expression. We conclude that targeting TGF beta 1 and epigenetic drivers that modulate HNF4 alpha-dependent gene expression could be beneficial to improve hepatocellular function in patients with AH.
Revista:
HEPATOLOGY
ISSN:
0270-9139
Año:
2019
Vol.:
69
N°:
2
Págs.:
587 - 603
Epigenetic modifications such as DNA and histone methylation functionally cooperate in fostering tumor growth, including that of hepatocellular carcinoma (HCC). Pharmacological targeting of these mechanisms may open new therapeutic avenues. We aimed to determine the therapeutic efficacy and potential mechanism of action of our dual G9a histone-methyltransferase and DNA-methyltransferase 1 (DNMT1) inhibitor in human HCC cells and their crosstalk with fibrogenic cells. The expression of G9a and DNMT1, along with that of their molecular adaptor ubiquitin-like with PHD and RING finger domains-1 (UHRF1), was measured in human HCCs (n = 268), peritumoral tissues (n = 154), and HCC cell lines (n = 32). We evaluated the effect of individual and combined inhibition of G9a and DNMT1 on HCC cell growth by pharmacological and genetic approaches. The activity of our lead compound, CM-272, was examined in HCC cells under normoxia and hypoxia, human hepatic stellate cells and LX2 cells, and xenograft tumors formed by HCC or combined HCC+LX2 cells. We found a significant and correlative overexpression of G9a, DNMT1, and UHRF1 in HCCs in association with poor prognosis. Independent G9a and DNMT1 pharmacological targeting synergistically inhibited HCC cell growth. CM-272 potently reduced HCC and LX2 cells proliferation and quelled tumor growth, particularly in HCC+LX2 xenografts. Mechanistically, CM-272 inhibited the metabolic adaptation of HCC cells to hypoxia and induced a differentiated phenotype in HCC and fibrogenic cells. The expression of the metabolic tumor suppressor gene fructose-1,6-bisphosphatase (FBP1), epigenetically repressed in HCC, was restored by CM-272. Conclusion: Combined targeting of G9a/DNMT1 with compounds such as CM-272 is a promising strategy for HCC treatment. Our findings also underscore the potential of differentiation therapy in HCC.
Revista:
NUCLEIC ACIDS RESEARCH
ISSN:
0305-1048
Año:
2019
Vol.:
47
N°:
7
Págs.:
3450 - 3466
Genome instability is related to disease development and carcinogenesis. DNA lesions are caused by genotoxic compounds but also by the dysregulation of fundamental processes like transcription, DNA replication and mitosis. Recent evidence indicates that impaired expression of RNA-binding proteins results in mitotic aberrations and the formation of transcription-associated RNA-DNA hybrids (R-loops), events strongly associated with DNA injury. We identify the splicing regulator SLU7 as a key mediator of genome stability. SLU7 knockdown results in R-loops formation, DNA damage, cell-cycle arrest and severe mitotic derangements with loss of sister chromatid cohesion (SCC). We define a molecular pathway through which SLU7 keeps in check the generation of truncated forms of the splicing factor SRSF3 (SRp20) (SRSF3-TR). Behaving as dominant negative, or by gain-of-function, SRSF3-TR impair the correct splicing and expression of the splicing regulator SRSF1 (ASF/SF2) and the crucial SCC protein sororin. This unique function of SLU7 was found in cancer cells of different tissue origin and also in the normal mouse liver, demonstrating a conserved and fundamental role of SLU7 in the preservation of genome integrity. Therefore, the dowregulation of SLU7 and the alterations of this pathway that we observe in the cirrhotic liver could be involved in the process of hepatocarcinogenesis.
Revista:
CMGH
ISSN:
2352-345X
Año:
2019
Vol.:
7
N°:
2
Págs.:
293 - 294
Revista:
HEPATOLOGY
ISSN:
0270-9139
Año:
2019
Vol.:
69
N°:
4
Págs.:
1632 - 1647
Intrahepatic accumulation of bile acids (BAs) causes hepatocellular injury. Upon liver damage, a potent protective response is mounted to restore the organ's function. Epidermal growth factor receptor (EGFR) signaling is essential for regeneration after most types of liver damage, including cholestatic injury. However, EGFR can be activated by a family of growth factors induced during liver injury and regeneration. We evaluated the role of the EGFR ligand, amphiregulin (AREG), during cholestatic liver injury and regulation of AREG expression by BAs. First, we demonstrated increased AREG levels in livers from patients with primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). In two murine models of cholestatic liver injury, bile duct ligation (BDL) and alpha-naphthyl-isothiocyanate (ANIT) gavage, hepatic AREG expression was markedly up-regulated. Importantly, Areg(-/-) mice showed aggravated liver injury after BDL and ANIT administration compared to Areg(+/+) mice. Recombinant AREG protected from ANIT and BDL-induced liver injury and reduced BA-triggered apoptosis in liver cells. Oral BA administration induced ileal and hepatic Areg expression, and, interestingly, cholestyramine feeding reduced postprandial Areg up-regulation in both tissues. Most interestingly, Areg(-/-) mice displayed high hepatic cholesterol 7 alpha-hydroxylase (CYP7A1) expression, reduced serum cholesterol, and high BA levels. Postprandial repression of Cyp7a1 was impaired in Areg(-/-) mice, and recombinant AREG down-regulated Cyp7a1 mRNA in hepatocytes. On the other hand, BAs promoted AREG gene expression and protein shedding in hepatocytes. This effect was mediated through the farnesoid X receptor (FXR), as demonstrated in Fxr(-/-) mice, and involved EGFR transactivation. Finally, we show that hepatic EGFR expression is indirectly induced by BA-FXR through activation of suppressor of cytokine signaling-3 (SOC3). Conclusion: AREG-EGFR signaling protects from cholestatic injury and participates in the physiological regulation of BA synthesis.
Revista:
TRENDS IN ENDOCRINOLOGY AND METABOLISM
ISSN:
1043-2760
Año:
2018
Vol.:
29
N°:
10
Págs.:
668 - 670
The pleiotropic liver kinase B1 (LKB1) controls metabolism, cell polarity, and proliferation in an apparently cell-and context-specific manner. A recent study in Cell Reports has demonstrated that LKB1 is essential to maintain the characteristic quiescence of the liver and to secure genomic integrity during liver regeneration independently of AMPK.
Autores:
Fernandez-Ramos, D. ; Fernandez-Tussy, P.; Lopitz-Otsoa, F.; et al.
Revista:
CELL DEATH AND DISEASE
ISSN:
2041-4889
Año:
2018
Vol.:
9
N°:
958
Glycine N-methyltransferase (GNMT) is the most abundant methyltransferase in the liver and a master regulator of the transmethylation flux. GNMT downregulation leads to loss of liver function progressing to fibrosis, cirrhosis, and hepatocellular carcinoma. Moreover, GNMT deficiency aggravates cholestasis-induced fibrogenesis. To date, little is known about the mechanisms underlying downregulation of GNMT levels in hepatic fibrosis and cirrhosis. On this basis, microRNAs are epigenetic regulatory elements that play important roles in liver pathology. In this work, we aim to study the regulation of GNMT by microRNAs during liver fibrosis and cirrhosis. Luciferase assay on the 3'UTR-Gnmt was used to confirm in silico analysis showing that GNMT is potentially targeted by the microRNA miR-873-5p. Correlation between GNMT and miR-873-5p in human cholestasis and cirrhosis together with miR-873-5p inhibition in vivo in different mouse models of liver cholestasis and fibrosis [bile duct ligation and Mdr2 (Abcb4)(-/-) mouse] were then assessed. The analysis of liver tissue from cirrhotic and cholestatic patients, as well as from the animal models, showed that miR-873-5p inversely correlated with the expression of GNMT. Importantly, high circulating miR-873-5p was also detected in cholestastic and cirrhotic patients. Preclinical studies with anti-miR-873-5p treatment in bile duct ligation and Mdr2(-/-) mice recovered GNMT levels in association with ameliorated inflammation and fibrosis mainly by counteracting hepatocyte apoptosis and cholangiocyte proliferation. In conclusion, miR-873-5p emerges as a novel marker for liver fibrosis, cholestasis, and cirrhosis and therapeutic approaches based on anti-miR-873-5p may be effective treatments for liver fibrosis and cholestatic liver disease.
Autores:
Monte, M. J.; Alonso-Pena, M.; Briz, O.; et al.
Revista:
JOURNAL OF HEPATOLOGY
ISSN:
0168-8278
Año:
2017
Vol.:
66
N°:
3
Págs.:
581 - 588
Background & Aims: Acyl-CoA oxidase (ACOX2) is involved in the shortening of C27 cholesterol derivatives to generate C24 bile acids. Inborn errors affecting the rest of peroxisomal enzymes involved in bile acid biosynthesis have been described. Here we aimed at investigating the case of an adolescent boy with persistent hypertransaminasemia of unknown origin and suspected dysfunction in bile acid metabolism. Methods: Serum and urine samples were taken from the patient, his sister and parents and underwent HPLC-MS/MS and HPLC-TOF analyses. Coding exons in genes of interest were amplified by high-fidelity PCR and sequenced. Wild-type or mutated (mutACOX2) variants were overexpressed in human hepatoblastoma HepG2 cells to determine ACOX2 enzymatic activity, expression and subcellular location. Results: The patient's serum and urine showed negligible amounts of C24 bile acids, but augmented levels of C27 intermediates, mainly tauroconjugated trihydroxycholestanoic acid (THCA). Genetic analysis of enzymes potentially involved revealed a homozygous missense mutation (c.673C>T; R225W) in ACOX2. His only sister was also homozygous for this mutation and exhibited similar alterations in bile acid profiles. Both parents were heterozygous and presented normal C24 and C27 bile acid levels. Immunofluorescence studies showed similar protein size and peroxisomal localization for both normal and mutated variants. THCA biotransformation into cholic acid was enhanced in cells overexpressing ACOX2, but not in those overexpressing mutACOX2. Both cell types showed similar sensitivity to oxidative stress caused by C24 bile acids. In contrast, THCA-induced oxidative stress and cell death were reduced by overexpressing ACOX2, but not mutACOX2. Conclusion: ACOX2 deficiency, a condition characterized by accumulation of toxic C27 bile acid intermediates, is a novel cause of isolated persistent hypertransaminasemia. Lay summary: Elevation of serum transaminases is a biochemical sign of liver damage due to multiplicity of causes (viruses, toxins, autoimmunity, metabolic disorders). In rare cases the origin of this alteration remains unknown. We have identified by the first time in a young patient and his only sister a familiar genetic defect of an enzyme called ACOX2, which participates in the transformation of cholesterol into bile acids as a cause of increased serum transaminases in the absence of any other symptomatology. This treatable condition should be considered in the diagnosis of those patients where the cause of elevated transaminases remains obscure. (C) 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Revista:
CELL DEATH AND DISEASE
ISSN:
2041-4889
Año:
2017
Vol.:
8
N°:
10
Págs.:
e3083
The liver displays a remarkable regenerative capacity triggered upon tissue injury or resection. However, liver regeneration can be overwhelmed by excessive parenchymal destruction or diminished by pre-existing conditions hampering repair. Fibroblast growth factor 19 (FGF19, rodent FGF15) is an enterokine that regulates liver bile acid and lipid metabolism, and stimulates hepatocellular protein synthesis and proliferation. FGF19/15 is also important for liver regeneration after partial hepatectomy (PH). Therefore recombinant FGF19 would be an ideal molecule to stimulate liver regeneration, but its applicability may be curtailed by its short half-life. We developed a chimaeric molecule termed Fibapo in which FGF19 is covalently coupled to apolipoprotein A-I. Fibapo retains FGF19 biological activities but has significantly increased half-life and hepatotropism. Here we evaluated the pro-regenerative activity of Fibapo in two clinically relevant models where liver regeneration may be impaired: acetaminophen (APAP) poisoning, and PH in aged mice. The only approved therapy for APAP intoxication is N-acetylcysteine (NAC) and no drugs are available to stimulate liver regeneration. We demonstrate that Fibapo reduced liver injury and boosted regeneration in APAP-intoxicated mice. Fibapo improved survival of APAP-poisoned mice when given at later time points, when NAC is ineffective. Mechanistically, Fibapo accelerated recovery of hepatic glutathione levels, potentiated cell growth-related pathways and increased functional liver mass. When Fibapo was administered to old mice prior to PH, liver regeneration was markedly increased. The exacerbated injury developing in these mice upon PH was attenuated, and the hepatic biosynthetic capacity was enhanced. Fibapo reversed metabolic and molecular alterations that impede regeneration in aged livers. It reduced liver steatosis and downregulated p21 and hepatocyte nuclear factor 4 a (Hnf4a) levels, whereas it stimulated Foxm1b gene expression. Together our findings indicate that FGF19 variants retaining the metabolic and growth-promoting effects of this enterokine may be valuable for the stimulation of liver regeneration.
Revista:
DIGESTIVE DISEASES
ISSN:
0257-2753
Año:
2017
Vol.:
35
N°:
3
Págs.:
158 - 165
Background: Advanced hepatocellular carcinoma (HCC) is a neoplastic disease with a very bad prognosis and increasing worldwide incidence. HCCs are resistant to conventional chemotherapy and the multikinase inhibitor sorafenib is the only agent that has shown some clinical efficacy. It is therefore important to identify key molecular mechanisms driving hepatocarcinogenesis for the development of more efficacious therapies. However, HCCs are heterogeneous tumors and different molecular subclasses have been characterized. This heterogeneity may underlie the poor performance of most of the targeted therapies so far tested in HCC patients. The fibroblast growth factor 15/19 (FGF15/19), FGF receptor 4 (FGFR4) and beta-Klotho (KLB) correceptor signaling system, a key regulator of bile acids (BA) synthesis and intermediary metabolism, is emerging as an important player in hepatocarcinogenesis. Key Messages: Aberrant signaling through the FGF15/19-FGFR4 pathway participates in the neoplastic behavior of HCC cells, promotes HCC development in mice and its overexpression has been characterized in a subset of HCC tumors from patients with poorer prognosis. Pharmacological interference with FGF15/19-FGFR4 signaling inhibits experimental hepatocarcinogenesis, and specific FGFR4 inhibitors are currently being tested in selected HCC patients with tumoral FGF19-FGFR4/KLB expression. Conclusions: Interference with FGF19-FGFR4 signaling represents a novel strategy in HCC therapy. Selection of candidate patients based on tumoral FGF19-FGFR4/KLB levels as biomarkers may result in increased efficacy of FGFR4-targeted drugs. Nevertheless, attention should be paid to the potential on target toxic effects of FGFR4 inhibitors due to the key role of this signaling system in BA metabolism. (C) 2017 S. Karger AG, Basel
Revista:
GUT
ISSN:
0017-5749
Año:
2017
Vol.:
66
N°:
10
Págs.:
1818 - 1828
Objective Fibroblast growth factor 15/19 (FGF15/19), an enterokine that regulates synthesis of hepatic bile acids (BA), has been proposed to influence fat metabolism. Without FGF15/19, mouse liver regeneration after partial hepatectomy (PH) is severely impaired. We studied the role of FGF15/19 in response to a high fat diet (HFD) and its regulation by saturated fatty acids. We developed a fusion molecule encompassing FGF19 and apolipoprotein A-I, termed Fibapo, and evaluated its pharmacological properties in fatty liver regeneration.
Design Fgf15¿/¿ mice were fed a HFD. Liver fat and the expression of fat metabolism and endoplasmic reticulum (ER) stress-related genes were measured. Influence of palmitic acid (PA) on FGF15/19 expression was determined in mice and in human liver cell lines. In vivo half-life and biological activity of Fibapo and FGF19 were compared. Hepatoprotective and proregenerative activities of Fibapo were evaluated in obese db/db mice undergoing PH.
Results Hepatosteatosis and ER stress were exacerbated in HFD-fed Fgf15¿/¿ mice. Hepatic expression of Ppar¿2 was elevated in Fgf15¿/¿ mice, being reversed by FGF19 treatment. PA induced FGF15/19 expression in mouse ileum and human liver cells, and FGF19 protected from PA-mediated ER stress and cytotoxicity. Fibapo reduced liver BA and lipid accumulation, inhibited ER stress and showed enhanced half-life. Fibapo provided increased db/db mice survival and improved regeneration upon PH.
Conclusions FGF15/19 is essential for hepatic metabolic adaptation to dietary fat being a physiological regulator of Ppar¿2 expression. Perioperative administration of Fibapo improves fatty liver regeneration.
Revista:
GUT
ISSN:
0017-5749
Año:
2017
Vol.:
66
N°:
8
Págs.:
1352 - 1354
Revista:
HEPATOLOGY
ISSN:
0270-9139
Año:
2016
Vol.:
63
N°:
2
Págs.:
371 - 374
Revista:
HEPATOLOGY
ISSN:
0270-9139
Año:
2016
Vol.:
64
N°:
2
Págs.:
336 - 339
Autores:
Simile, M. M. ; Latte, G.; Demartis, M. I.; et al.
Revista:
ONCOTARGET
ISSN:
1949-2553
Año:
2016
Vol.:
7
N°:
31
Págs.:
49194 - 49216
Previous studies showed that YAP1 is over-expressed in hepatocellular carcinoma (HCC). Here we observed higher expression of Yap1/Ctgf axis in dysplastic nodules and HCC chemically-induced in F344 rats, genetically susceptible to hepatocarcinogenesis, than in lesions induced in resistant BN rats. In BN rats, highest increase in Yap1-tyr357, p73 phosphorylation and Caspase 3 cleavage occurred. In human HCCs with poorer prognosis (<3 years survival after partial liver resection, HCCP), levels of YAP1, CTGF, 14-3-3, and TEAD proteins, and YAP1-14-3-3 and YAP1-TEAD complexes were higher than in HCCs with better outcome (>3 years survival; HCCB). In the latter, higher levels of phosphorylated YAP1-ser127, YAP1-tyr357 and p73, YAP1 ubiquitination, and Caspase 3 cleavage occurred. Expression of stemness markers NANOG, OCT-3/4, and CD133 were highest in HCCP and correlated with YAP1 and YAP1-TEAD levels. In HepG2, Huh7, and Hep3B cells, forced YAP1 over-expression led to stem cell markers expression and increased cell viability, whereas inhibition of YAP1 expression by specific siRNA, or transfection of mutant YAP1 which does not bind to TEAD, induced opposite alterations. These changes were associated, in Huh7 cells transfected with YAP1 or YAP1 siRNA, with stimulation or inhibition of cell migration and invasivity, respectively. Furthermore, transcriptome analysis showed that YAP1 transfection in Huh7 cells induces over-expression of genes involved in tumor stemness. In conclusion, Yap1 post-translational modifications favoring its ubiquitination and apoptosis characterize HCC with better prognosis, whereas conditions favoring the formation of YAP1-TEAD complexes are associated with aggressiveness and acquisition of stemness features by HCC cells.
Revista:
ONCOGENE
ISSN:
0950-9232
Año:
2016
Vol.:
35
N°:
36
Págs.:
4719 - 4729
Resisting death is a central hallmark of cancer cells. Tumors rely on a number of genetic mechanisms to avoid apoptosis, and alterations in mRNA alternative splicing are increasingly recognized to have a role in tumorigenesis. In this study, we identify the splicing regulator SLU7 as an essential factor for the preservation of hepatocellular carcinoma (HCC) cells viability. Compared with hepatocytes, SLU7 expression is reduced in HCC cells; however, further SLU7 depletion triggered autophagy-related cellular apoptosis in association with the overproduction of reactive oxygen species. Remarkably, these responses were not observed in primary human hepatocytes or in the well-differentiated HepaRG cell line. Mechanistically, we demonstrate that SLU7 binds the C13orf25 primary transcript in which the polycistronic oncomir miR-17-92 cluster is encompassed, and is necessary for its processing and expression. SLU7 knockdown altered the splicing of the C13orf25 primary transcript, and markedly reduced the expression of its miR-17, miR-20 and miR-92a constituents. This led to the upregulation of CDKN1A (P21) and BCL2L11 (BIM) expression, two bona fide targets of the miR-17-92 cluster and recognized mediators of its pro-survival and tumorigenic activity. Interestingly, altered splicing of miR-17-92 and downregulation of miR-17 and miR-20 were not observed upon SLU7 knockdown in non-transformed hepatocytes, but was found in other (HeLa, H358) but not in all (Caco2) non-hepatic tumor cells. The functional relevance of miR-17-92 dysregulation upon SLU7 knockdown was established when oxidative stress, autophagy and apoptosis were reversed by co-transfection of HCC cells with a miR-17 mimic. Together, these findings indicate that SLU7 is co-opted by HCC cells and other tumor cell types to maintain survival, and identify this splicing regulator as a new determinant for the expression of the oncogenic miR-17-92 cluster. This novel mechanism may be exploited for the development of antitumoral strategies in cancers displaying such SLU7-miR-17-92 crosstalk.
Revista:
INTERNATIONAL JOURNAL OF CANCER
ISSN:
0020-7136
Año:
2015
Vol.:
136
N°:
10
Págs.:
2469 - 2475
Fibroblast growth factor 15 (FGF15), FGF19 in humans, is a gut-derived hormone and a key regulator of bile acids and carbohydrate metabolism. FGF15 also participates in liver regeneration after partial hepatectomy inducing hepatocellular proliferation. FGF19 is overexpressed in a significant proportion of human hepatocellular carcinomas (HCC), and activation of its receptor FGFR4 promotes HCC cell growth. Here we addressed for the first time the role of endogenous Fgf15 in hepatocarcinogenesis. Fgf15(+/+) and Fgf15(-/-) mice were subjected to a clinically relevant model of liver inflammation and fibrosis-associated carcinogenesis. Fgf15(-/-) mice showed less and smaller tumors, and histological neoplastic lesions were also smaller than in Fgf15(+/+) animals. Importantly, ileal Fgf15 mRNA expression was enhanced in mice undergoing carcinogenesis, but at variance with human HCC it was not detected in liver or HCC tissues, while circulating FGF15 protein was clearly upregulated. Hepatocellular proliferation was also reduced in Fgf15(-/-) mice, which also expressed lower levels of the HCC marker alpha-fetoprotein (AFP). Interestingly, lack of FGF15 resulted in attenuated fibrogenesis. However, in vitro experiments showed that liver fibrogenic stellate cells were not direct targets for FGF15/FGF19. Conversely we demonstrate that FGF15/FGF19 induces the expression of the pro-fibrogenic and pro-tumorigenic connective tissue growth factor (CTGF) in hepatocytes. These findings suggest the existence of an FGF15-triggered CTGF-mediated paracrine action on stellate cells, and an amplification mechanism for the hepatocarcinogenic effects of FGF15 via CTGF production. In summary, our observations indicate that ileal FGF15 may contribute to HCC development in a context of chronic liver injury and fibrosis. What's new? Fibroblast growth factor-19 (FGF19), in rodents called FGF15, is a gut-derived hormone recently implicated as a driver gene in liver carcinogenesis. Here, the authors show that Fgf15(-/-) mice develop less hepatocellular carcinoma and less liver fibrosis as compared to Fgf15(+/+) littermates, underscoring the important role of the factor in liver damage and cancer development. Interestingly, Fgf15 expression is not detected in injured liver or carcinoma tissue, but is upregulated in the ileum and blood, pointing to a new gut-liver axis involved in hepatocarcinogenesis.
Revista:
HEPATOLOGY
ISSN:
0270-9139
Año:
2015
Vol.:
61
N°:
5
Págs.:
1755 - 1757
Revista:
HEPATOLOGY
ISSN:
0270-9139
Año:
2015
Vol.:
62
N°:
1
Págs.:
166 - 178
Matrix metalloproteinases (MMPs) participate in tissue repair after acute injury, but also participate in cancer by promoting a protumorigenic microenvironment. Previously, we reported on a key role for MMP10 in mouse liver regeneration. Herein, we investigated MMP10 expression and function in human hepatocellular carcinoma (HCC) and diethylnitrosamine (DEN)-induced mouse hepatocarcinogenesis. MMP10 was induced in human and murine HCC tissues and cells. MMP10-deficient mice showed less HCC incidence, smaller histological lesions, reduced tumor vascularization, and less lung metastases. Importantly, expression of the protumorigenic, C-X-C chemokine receptor-4 (CXCR4), was reduced in DEN-induced MMP10-deficient mice livers. Human HCC cells stably expressing MMP10 had increased CXCR4 expression and migratory capacity. Pharmacological inhibition of CXCR4 significantly reduced MMP10-stimulated HCC cell migration. Furthermore, MMP10 expression in HCC cells was induced by hypoxia and the CXCR4 ligand, stromal-derived factor-1 (SDF1), through the extracellular signal-regulated kinase 1/2 pathway, involving an activator protein 1 site in MMP10 gene promoter.
CONCLUSION:
MMP10 contributes to HCC development, participating in tumor angiogenesis, growth, and dissemination. We identified a new reciprocal crosstalk between MMP10 and the CXCR4/SDF1 axis contributing to HCC progression and metastasis. To our knowledge, this is the first report addressing the role of a MMP in hepatocarcinogenesis in the corresponding genetic mouse model.
Revista:
LIVER INTERNATIONAL
ISSN:
1478-3223
Año:
2015
Vol.:
35
N°:
5
Págs.:
1590 - 96
BACKGROUND & AIMS:
Radioembolization may rarely induce liver disease resulting in a syndrome that is similar to veno-occlusive disease complicating bone marrow transplantation where inflammation, endothelial cell activation and thrombosis are likely involved. We hypothesized that similar mechanisms could be implicated in radioembolization-induced liver disease (REILD). Moreover, lobar radioembolization may induce hypertrophy of the non-treated hemiliver most probably by inducing liver regeneration.
METHODS:
In patients with hepatocellular carcinoma, we prospectively studied serum levels of markers of liver regeneration, oxidative stress, pro-inflammatory pathways, endothelial activation and coagulation parameters over 2 months after radioembolization.
RESULTS:
Although REILD did not occur among 14 treated patients, a decrease in effective liver blood flow was observed. Radioembolization was followed by a persistent increase in pro-inflammatory (interleukin 6 and 8) and oxidative stress (malondyaldehide) markers, an induction of endothelial injury markers (vW factor and PAI-1) and an activation of the coagulation cascade (factor VIII, PAI-1, D-Dimer) as well as a significant increase in factors related to liver regeneration (FGF-19 and HGF).
CONCLUSION:
Radioembolization activates liver regeneration, produces oxidative stress, activates inflammatory cytokines and induces endothelial injury with partial activation of the coagulation cascade. These findings may have implicati
Revista:
SEMINARS IN CELL AND DEVELOPMENTAL BIOLOGY
ISSN:
1084-9521
Amphiregulin (AREG) is a ligand of the epidermal growth factor receptor (EGFR), a widely expressed transmembrane tyrosine kinase. AREG is synthesized as a membrane-anchored precursor protein that can engage in juxtacrine signaling on adjacent cells. Alternatively, after proteolytic processing by cell membrane proteases, mainly TACE/ADAM17, AREG is secreted and behaves as an autocrine or paracrine factor. AREG gene expression and release is induced by a plethora of stimuli including inflammatory lipids, cytokines, hormones, growth factors and xenobiotics. Through EGFR binding AREG activates major intracellular signaling cascades governing cell survival, proliferation and motility. Physiologically, AREG plays an important role in the development and maturation of mammary glands, bone tissue and oocytes. Chronic elevation of AREG expression is increasingly associated with different pathological conditions, mostly of inflammatory and/or neoplastic nature. Here we review the essential aspects of AREG structure, function and regulation, discuss the basis for its differential role within the EGFR family of ligands, and identify emerging aspects in AREG research with translational potential.
Revista:
HEPATOLOGY
ISSN:
0270-9139
Año:
2014
Vol.:
59
N°:
6
Págs.:
2080 - 2082
Revista:
JOURNAL OF CLINICAL INVESTIGATION
ISSN:
0021-9738
Año:
2014
Vol.:
124
N°:
7
Págs.:
2909-2920
A precise equilibrium between cellular differentiation and proliferation is fundamental for tissue homeostasis. Maintaining this balance is particularly important for the liver, a highly differentiated organ with systemic metabolic functions that is endowed with unparalleled regenerative potential. Carcinogenesis in the liver develops as the result of hepatocellular de-differentiation and uncontrolled proliferation. Here, we identified SLU7, which encodes a pre-mRNA splicing regulator that is inhibited in hepatocarcinoma, as a pivotal gene for hepatocellular homeostasis. SLU7 knockdown in human liver cells and mouse liver resulted in profound changes in pre-mRNA splicing and gene expression, leading to impaired glucose and lipid metabolism, refractoriness to key metabolic hormones, and reversion to a fetal-like gene expression pattern. Additionally, loss of SLU7 also increased hepatocellular proliferation and induced a switch to a tumor-like glycolytic phenotype. Slu7 governed the splicing and/or expression of multiple genes essential for hepatocellular differentiation, including serine/arginine-rich splicing factor 3 (Srsf3) and hepatocyte nuclear factor 4¿ (Hnf4¿), and was critical for cAMP-regulated gene transcription. Together, out data indicate that SLU7 is central regulator of hepatocyte identity and quiescence.
Revista:
GUT
ISSN:
0017-5749
Año:
2013
Vol.:
62
N°:
12
Págs.:
1674 - 1675
Autores:
Uriarte, Iker; Fernandez-Barrena, M. G.; Monte, M. J.; et al.
Revista:
GUT
ISSN:
0017-5749
Año:
2013
Vol.:
62
N°:
6
Págs.:
899 - 910
Objective Cholestasis is associated with increased liver injury and morbidity after partial hepatectomy (PH), yet bile acids (BAs) are emerging as important mediators of liver regeneration. Fibroblast growth factor 15 (Fgf15, human FGF19) is a BA-induced ileum-derived enterokine that governs BA metabolism. We evaluated the relevance of Fgf15 in the preservation of BA homeostasis after PH and its potential role in the regenerative process.
Design Liver regeneration after PH was studied in Fgf15(-/-) and Fgf15(+/+) mice. The effects of the BA sequestrant cholestyramine and adenovirally delivered Fgf15 were examined in this model. The role of Fgf15 in BA-induced liver growth was tested in Fgf15-/- mice upon cholic acid (CA) feeding. The direct mitogenic effect of Fgf15 was evaluated in cultured mouse hepatocytes and cholangiocytes.
Results Fgf15(-/-) mice showed marked liver injury and mortality after PH accompanied by persistently elevated intrahepatic BA levels. Cholestyramine feeding and adenovirally delivered Fgf15 reduced BA levels and significantly prevented this lethal outcome. Fgf15 also reduced mortality after extensive hepatectomy in Fgf15(+/+) animals. Liver growth elicited by CA feeding was significantly diminished in Fgf15(-/-) mice. Proliferation of hepatocytes and cholangiocytes was also noticeably reduced in CA-fed Fgf15(-/-) mice. Fgf15 induced intracellular signalling and proliferation of cultured hepatocytes and cholangiocytes.
Conclusions Fgf15 is necessary to maintain BA homeostasis and prevent liver injury during liver regeneration. Moreover, Fgf15 is an essential mediator of the liver growth-promoting effects of BA. Preoperative administration of this enterokine to patients undergoing liver resection might be useful to reduce damage and foster regeneration.
Revista:
LIVER INTERNATIONAL
ISSN:
1478-3223
Año:
2013
Vol.:
34
N°:
7
Págs.:
e257 - e270
Background & Aims Upon tissue injury, the liver mounts a potent reparative and regenerative response. A role for proteases, including serine and matrix metalloproteinases ( MMPs), in this process is increasingly recognized. We have evaluated the expression and function of MMP10 (stromelysin-2) in liver wound healing and regeneration. Methods The hepatic expression of MMP10 was examined in two murine models: liver regeneration after two-thirds partial hepatectomy (PH) and bile duct ligation (BDL). MMP10 was detected in liver tissues by qPCR, western blotting and immunohistochemistry. The effect of growth factors and toll-like receptor 4 (TLR4) agonists on MMP10 expression was studied in cultured parenchymal and biliary epithelial cells and macrophages respectively. The role of MMP10 was evaluated by comparing the response of Mmp10+/+ and Mmp10¿/¿ mice to PH and BDL. The intrahepatic turnover of the extracellular matrix proteins fibrin (ogen) and fibronectin was examined. Results MMP10 mRNA was readily induced after PH and BDL. MMP10 protein was detected in hepatocytes, cholangiocytes and macrophages. In cultured liver epithelial cells, MMP10 expression was additively induced by transforming growth factor-ß and epidermal growth factor receptor ligands. TLR4 ligands also stimulated MMP10 expression in macrophages. Lack of MMP10 resulted in increased liver injury upon PH and BDL. Resolution of necrotic areas was impaired, and Mmp10¿/¿ mice showed increased fibrogenesis and defective turnover of fibrin (ogen) and fibronectin. Conclusions MMP10 expression is induced during mouse liver injury and participates in the hepatic wound healing response. The profibrinolytic activity of MMP10 may be essential in this novel hepatoprotective role.
Revista:
HEPATOLOGY
ISSN:
0270-9139
Año:
2013
Vol.:
58
N°:
3
Págs.:
853 - 855
Revista:
DIGESTIVE DISEASES
ISSN:
0257-2753
Año:
2012
Vol.:
30
N°:
5
Págs.:
524-531
Background/Aims: Hepatocellular carcinoma (HCC) is a chemoresistant tumor strongly associated with chronic hepatitis. Identification of molecular links connecting inflammation with cell growth/survival, and characterization of pro-tumorigenic intracellular pathways is therefore of therapeutic interest. The epidermal growth factor receptor (EGFR) signaling system stands at a crossroad between inflammatory signals and intracellular pathways associated with hepatocarcinogenesis. We investigated the regulation and activity of different components of the EGFR system, including the EGFR ligand amphiregulin (AR) and its sheddase ADAM17, and the modulation of intracellular EGFR signaling by a novel mechanism involving protein methylation. Methods: ADAM17 protein expression was examined in models of liver injury and carcinogenesis. Crosstalk between tumor necrosis factor (TNF)-alpha, AR and EGFR signaling was evaluated in human HCC cells and mouse hepatocytes. Modulation of EGFR signaling and biological responses by methylation reactions was evaluated in AML12 mouse hepatocytes. Results: ADAM17 was upregulated in liver injury and hepatocarcinogenesis. TNF-alpha triggered AR shedding and EGFR transactivation in HCC cells. AR was necessary for TNF-alpha activation of ERK1/2 and Akt signaling in hepatocytes. Inhibition of methylation reactions increased the ERK1/2 signal amplitude triggered by AR/EGFR and reduced DNA synthesis in AML12 cells. Conclusions: Increased ADAM17 in preneoplastic liver injury further supports its implication in hepatocarcinogenesis. AR release and EGFR transactivation by TNF-alpha constitutes a novel link between inflammatory signals and pro-tumorigenic mechanisms in liver cells. Finally, the identification of a new mechanism controlling growth factor signaling, and biological responses, involving methylation reactions within the RAS/RAF/MEK/ERK pathway, exposes a new target for antineoplastic intervention. Copyright (C) 2012 S. Karger AG, Basel
Revista:
JOURNAL OF HEPATOLOGY
ISSN:
0168-8278
Año:
2012
Vol.:
56
N°:
2
Págs.:
367 - 373
Background & Aims Bile acids (BA) are increasingly recognized as important modulators of liver regeneration. Increased enterohepatic BA flux has been proposed to generate specific signals that activate hepatocyte proliferation after partial hepatectomy (PH). We have investigated the role of the BA membrane transporter Mrp3 (Abcc3), which is expressed in the liver and gut, in the hepatic growth response elicited by BA and in liver regeneration after PH.
Methods Liver growth and regeneration, and the expression of growth-related genes, were studied in Mrp3+/+ and Mrp3¿/¿ mice fed a cholic acid (CA) supplemented diet and after 2/3 PH. Activation of the BA receptor FXR was measured in mice after in vivo transduction of the liver with a FXR-Luciferase reporter plasmid. BA levels were measured in portal serum and liver tissue by high performance liquid chromatography-tandem mass spectrometry.
Results Liver growth elicited by CA feeding was significantly reduced in Mrp3¿/¿ mice. These animals showed reduced FXR activation in the liver after CA administration and decreased portal serum levels of BA. Liver regeneration after PH was significantly delayed in Mrp3-deficient mice. Proliferation-related gene expression and peak DNA synthesis in Mrp3¿/¿ mice occurred later than in wild types, coinciding with a retarded elevation in intra-hepatic BA levels.
Conclusions Lack of Abcc3 expression markedly impairs liver growth in response to BA and after PH. Our data suggest that Mrp3 plays a non-redundant role in the regulation of BA flux during liver regeneration.
Revista:
VACCINE
ISSN:
0264-410X
Año:
2012
Vol.:
12
N°:
10
Págs.:
867 - 871
This work shows that class II-linked humoral lack of response to an antigen can be overcome by joint immunization with the antigen and a T-helper cell determinant (TDh) well recognized by class II molecules of a non-responder individual. Thus, SJL/J mice (H-2s), which are non-responders to the S region of hepatitis B virus surface antigen (HBsAg), were rendered responders by joint immunization with a recombinant surface antigen, only composed of the S region, and a short synthetic TDh peptide well recognized by the H-2s restriction. By contrast, when this peptide is not recognized as TDh, as in B10M mice (H-2f restricted and also non-responders to the S region), no humoral response could be induced against the S region. These results have important implications for therapy and vaccination against hepatitis B virus as well as in enhancing the immunogenicity of other antigens.
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2012
Vol.:
7
N°:
12
Págs.:
e52711
Hepatocellular carcinoma (HCC) is the most prevalent liver tumor and a deadly disease with limited therapeutic options. Dysregulation of cell signaling pathways is a common denominator in tumorigenesis, including hepatocarcinogenesis. The epidermal growth factor receptor (EGFR) signaling system is commonly activated in HCC, and is currently being evaluated as a therapeutic target in combination therapies. We and others have identified a central role for the EGFR ligand amphiregulin (AR) in the proliferation, survival and drug resistance of HCC cells. AR expression is frequently up-regulated in HCC tissues and cells through mechanisms not completely known. Here we identify the ß-catenin signaling pathway as a novel mechanism leading to transcriptional activation of the AR gene in human HCC cells. Activation of ß-catenin signaling, or expression of the T41A ß-catenin active mutant, led to the induction of AR expression involving three specific ß-catenin-Tcf responsive elements in its proximal promoter. We demonstrate that HCC cells expressing the T41A ß-catenin active mutant show enhanced proliferation that is dependent in part on AR expression and EGFR signaling. We also demonstrate here a novel cross-talk of the EGFR system with fibroblast growth factor 19 (FGF19). FGF19 is a recently identified driver gene in hepatocarcinogenesis and an activator of ß-catenin signaling in HCC and colon cancer cells. We show that FGF19 induced AR gene expression through the ß-catenin pathway in human HCC cells. Importantly, AR up-regulation and EGFR signaling participated in the induction of cyclin D1 and cell proliferation elicited by FGF19. Finally, we demonstrate a positive correlation between FGF19 and AR expression in human HCC tissues, therefore supporting in clinical samples our experimental observations. These findings identify the AR/EGFR system as a key mediator of FGF19 responses in HCC cells involving ß-catenin signaling, and suggest that combined targeting of FGF19 and AR/EGFR may enhance therapeutic efficacy.
Revista:
Hepatology
ISSN:
0270-9139
Año:
2011
Vol.:
54
N°:
6
Págs.:
2149 - 2158
The identification of molecular mechanisms involved in the maintenance of the transformed phenotype of hepatocellular carcinoma (HCC) cells is essential for the elucidation of therapeutic strategies. Here, we show that human HCC cells display an autocrine
Revista:
CANCERS
ISSN:
2072-6694
Año:
2011
Vol.:
3
N°:
2
Págs.:
2444 - 2461
Hepatocarcinogenesis is a complex multistep process in which many different molecular pathways have been implicated. Hepatocellular carcinoma (HCC) is refractory to conventional chemotherapeutic agents, and the new targeted therapies are meeting with limited success. Interreceptor crosstalk and the positive feedback between different signaling systems are emerging as mechanisms of targeted therapy resistance. The identification of such interactions is therefore of particular relevance to improve therapeutic efficacy. Among the different signaling pathways activated in hepatocarcinogenesis the epidermal growth factor receptor (EGFR) system plays a prominent role, being recognized as a ¿signaling hub¿ where different extracellular growth and survival signals converge. EGFR can be transactivated in response to multiple heterologous ligands through the physical interaction with multiple receptors, the activity of intracellular kinases or the shedding of EGFR-ligands. In this article we review the crosstalk between the EGFR and other signaling pathways that could be relevant to liver cancer development and treatment.
Revista:
Journal of Hepatology
ISSN:
0168-8278
Año:
2011
Vol.:
55
N°:
4
Págs.:
828 - 837
Revista:
WORLD JOURNAL OF GASTROENTEROLOGY
ISSN:
1007-9327
Año:
2010
Vol.:
16
N°:
25
Págs.:
3091 - 3102
Pre-mRNA splicing is an essential step in the process of gene expression in eukaryotes and consists of the removal of introns and the linking of exons to generate mature mRNAs. This is a highly regulated mechanism that allows the alternative usage of exons, the retention of intronic sequences and the generation of exonic sequences of variable length. Most human genes undergo splicing events, and disruptions of this process have been associated with a variety of diseases, including cancer. Hepatocellular carcinoma (HCC) is a molecularly heterogeneous type of tumor that usually develops in a cirrhotic liver. Alterations in pre-mRNA splicing of some genes have been observed in liver cancer, and although still scarce, the available data suggest that splicing defects may have a role in hepatocarcinogenesis. Here we briefly review the general mechanisms that regulate pre-mRNA splicing, and discuss some examples that illustrate how this process is impaired in liver tumorigenesis, and may contribute to HCC development. We believe that a more thorough examination of pre-mRNA splicing is still needed to accurately draw the molecular portrait of liver cancer. This will surely contribute to a better understanding of the disease and to the development of new effective therapies. (C) 2010 Baishideng. All rights reserved.
Revista:
Journal of Hepatology
ISSN:
0168-8278
Año:
2010
Vol.:
52
N°:
5
Págs.:
633 - 634
Revista:
PLoS One
ISSN:
1932-6203
Año:
2010
Vol.:
5
N°:
12
Págs.:
e15690
Background: Inflammation and fibrogenesis are directly related to chronic liver disease progression, including hepatocellular carcinoma (HCC) development. Currently there are few therapeutic options available to inhibit liver fibrosis. We have evaluated the hepatoprotective and anti-fibrotic potential of orally-administered 59-methylthioadenosine (MTA) in Mdr2(-/-) mice, a clinically relevant model of sclerosing cholangitis and spontaneous biliary fibrosis, followed at later stages by HCC development.
Methodology: MTA was administered daily by gavage to wild type and Mdr2(-/-) mice for three weeks. MTA anti-inflammatory and anti-fibrotic effects and potential mechanisms of action were examined in the liver of Mdr2(-/-) mice with ongoing fibrogenesis and in cultured liver fibrogenic cells (myofibroblasts).
Principal Findings: MTA treatment reduced hepatomegaly and liver injury. alpha-Smooth muscle actin immunoreactivity and collagen deposition were also significantly decreased. Inflammatory infiltrate, the expression of the cytokines IL6 and Mcp-1, pro-fibrogenic factors like TGF beta 2 and tenascin-C, as well as pro-fibrogenic intracellular signalling pathways were reduced by MTA in vivo. MTA inhibited the activation and proliferation of isolated myofibroblasts and down-regulated cyclin D1 gene expression at the transcriptional level. The expression of JunD, a key transcription factor in liver fibrogenesis, was also reduced by MTA in activated myofibroblasts.
Conclusions/Significance: Oral MTA administration was well tolerated and proved its efficacy in reducing liver inflammation and fibrosis. MTA may have multiple molecular and cellular targets. These include the inhibition of inflammatory and profibrogenic cytokines, as well as the attenuation of myofibroblast activation and proliferation. Downregulation of JunD and cyclin D1 expression in myofibroblasts may be important regarding the mechanism of action of MTA. This compound could be a good candidate to be tested for the treatment of (biliary) liver fibrosis.