Nuestros investigadores

Verónica Alcolea Devesa

Publicaciones científicas más recientes (desde 2010)

Autores: Martín-Montes, A.; Plano, Daniel; Martín-Escolano, R.; et al.
ISSN 0066-4804  Vol. 61  Nº 6  2017  págs. e02546-16
The in vitro leishmanicidal activities of a series of 48 recently synthesized selenium derivatives against Leishmania infantum and Leishmania braziliensis parasites were tested using promastigotes and intracellular amastigote forms. The cytotoxicity of the tested compounds for J774.2 macrophage cells was also measured in order to establish their selectivity. Six of the tested compounds (compounds 8, 10, 11, 15, 45, and 48) showed selectivity indexes higher than those of the reference drug, meglumine antimonate (Glucantime), for both Leishmania species; in the case of L. braziliensis, compound 20 was also remarkably selective. Moreover, data on infection rates and amastigote numbers per macrophage showed that compounds 8, 10, 11, 15, 45, and 48 were the most active against both Leishmania species studied. The observed changes in the excretion product profile of parasites treated with these six compounds were also consistent with substantial cytoplasmic alterations. On the other hand, the most active compounds were potent inhibitors of Fe superoxide dismutase (Fe-SOD) in the two parasite species considered, whereas their impact on human CuZn-SOD was low. The high activity, low toxicity, stability, low cost of the starting materials, and straightforward synthesis make these compounds appropriate molecules for the development of affordable antileishmanicidal agents.
Autores: Plano, Daniel; Alcolea, Verónica; Sanmartín, María del Carmen; et al.
ISSN 1354-3776  Vol. 27  Nº 5  2017 
Introduction: Colorectal cancer (CRC) is the fourth most common cancer worldwide. Targeted therapy drugs (TTDs) are a valid treatment, epithelial growth factor receptor (EGFR) inhibitors being one of the most commonly used for CRC patients. However, this treatment is only useful for patients with wild-type KRAS (wtKRAS) and is effective only on about 40 to 60% of this subset due to the high plasticity of ErbB network. Areas covered: The invention proposes the use of ErbB protein levels and ErbB receptor dimer formation as biomarkers for selecting, predicting and monitoring CRC patients showing sensitivity to the action of EGFR inhibitors to benefit from the combination therapy of EGFR and HER2 inhibitors. The in vitro data on Lim1215 cells suggest the over-activation of HER3 signaling pathway in response to the use of EGFR inhibitors on monotherapy; the use of HER2 or HER3 or MEK inhibitors in combination with EGFR inhibitors reversed this activation. Expert opinion: To assess the clinical applicability of this invention, further studies are needed since the conclusions are derived solely based on the data obtained from only one CRC cell line (Lim1215). Furthermore, other biofactors/mutations should be considered to assure the potential benefits of the combination therapies proposed.
Autores: Alcolea, Verónica; Palop, Juan Antonio; et al.
ISSN 1420-3049  Vol. 22  Nº 8  2017  págs. 1314
The physicochemical properties of a compound play a crucial role in the cancer development process. In this context, polymorphism can become an important obstacle for the pharmaceutical industry because it frequently leads to the loss of therapeutic effectiveness of some drugs. Stability under manufacturing conditions is also critical to ensure no undesired degradations or transformations occur. In this study, the thermal behaviour of 40 derivatives of a series of sulphur and selenium heteroaryl compounds with potential antitumoural activity were studied. In addition, the most promising cytotoxic derivatives were analysed by a combination of differential scanning calorimetry, X-ray diffraction and thermogravimetric techniques in order to investigate their polymorphism and thermal stability. Moreover, stability under acid, alkaline and oxidative media was tested. Degradation under stress conditions as well as the presence of polymorphism was found for the compounds VA6E and VA7J, which might present a hurdle to carrying on with formulation. On the contrary, these obstacles were not found for derivative VA4J.
Autores: Baquedano, Ylenia; Alcolea, Verónica; Toro, M. Á.; et al.
ISSN 0066-4804  Vol. 60  Nº 6  2016  págs. 3802 - 3812
A series of new selenocyanates and diselenides bearing interesting bioactive scaffolds (quinoline, quinoxaline, acridine, chromene, furane, isosazole, etc.) was synthesized, and their in vitro leishmanicidal activities against Leishmania infantum amastigotes along with their cytotoxicities in human THP-1 cells were determined. Interestingly, most tested compounds were active in the low micromolar range and led us to identify four lead compounds (1h, 2d, 2e, and 2f) with 50% effective dose (ED50) values ranging from 0.45 to 1.27 ¿M and selectivity indexes of >25 for all of them, much higher than those observed for the reference drugs. These active derivatives were evaluated against infected macrophages, and in order to gain preliminary knowledge about their possible mechanism of action, the inhibition of trypanothione reductase (TryR) was measured. Among these novel structures, compounds 1h (3,5-dimethyl-4-isoxazolyl selenocyanate) and 2d [3,3'-(diselenodiyldimethanediyl)bis(2-bromothiophene)] exhibited good association between TryR inhibitory activity and antileishmanial potency, pointing to 1h, for its excellent theoretical ADME (absorption, distribution, metabolism, and excretion) properties, as the most promising lead molecule for leishmancidal drug design.
Autores: Alcolea, Verónica; Plano, Daniel; Karelia, D. N.; et al.
ISSN 0223-5234  Vol. 113  2016  págs. 134 - 144
A series of novel selenourea derivatives and corresponding thiourea analogs were synthesized and tested against a panel of six human cancer cell lines: melanoma (1205Lu), lung carcinoma (A549), prostatic carcinoma (DU145), colorectal carcinoma (HCT116), pancreatic epithelioid carcinoma (PANC-1) and pancreatic adenocarcinoma (BxPC3). In general, we found that the selenium-containing derivatives were more potent than their isosteric sulfur analogs. Four selenourea derivatives (1e, 1f, 1g and 1i) showed IC50 values below 10 mM in all of tested cell lines at 72 h. On the basis of its potent activity, compound 1g was selected for further biological evaluation in different colon cancer cell lines. Our results indicated that compound 1g induced apoptosis by caspase activation, along with inhibition of anti-apoptotic proteins.
Autores: Alcolea, Verónica; Plano, Daniel; Encío, I.; et al.
ISSN 0223-5234  Vol. 123  2016  págs. 407 - 418
In this work, 27 novel hybrid derivatives containing diverse substituents with chalcogen atoms (selenium or sulfur) and several active heterocyclic scaffolds have been synthesized. Compounds were tested against two human cancer cells lines (MCF7 and PC-3) and a normal human mammary epithelial cell line (184B5) in order to determine their activity and selectivity against malignant cells. Ten compounds showed GI50 values below 10 mM in at least one of the cancer cell lines and six of them exhibited a selectivity index higher than 9. In general, selenium-containing compounds were more active than their corresponding sulfur analogs but we found some thiocyanate derivatives with comparable or higher activity and selectivity. Among the different substituents, the seleno- and thio-cyanate groups showed the most promising results. On the basis of their potent activity and high selectivity index, compounds 7e and 8f (containing a thiocyanate and a selenocyanate group, respectively) were selected for further biological evaluation. Both the compounds induced caspase-dependent cell death and cell cycle arrest in G2/M phase. In addition, these compounds do not violate any of the Lipinski's Rule of Five and thus possess good potential to become drugs, compound 7e being particularly promising.