Revistas
Revista:
SCIENCE ADVANCES
ISSN:
2375-2548
Año:
2023
Vol.:
9
N°:
33
Págs.:
eadf6692
CD137 (4-1BB) is a member of the TNFR family that mediates potent T cell costimulatory signals upon ligation by CD137L or agonist monoclonal antibodies (mAbs). CD137 agonists attain immunotherapeutic antitumor effects in cancer mouse models, and multiple agents of this kind are undergoing clinical trials. We show that cIAP1 and cIAP2 are physically associated with the CD137 signaling complex. Moreover, cIAPs are required for CD137 signaling toward the NF-?B and MAPK pathways and for costimulation of human and mouse T lymphocytes. Functional evidence was substantiated with SMAC mimetics that trigger cIAP degradation and by transfecting cIAP dominant-negative variants. Antitumor effects of agonist anti-CD137 mAbs are critically dependent on the integrity of cIAPs in cancer mouse models, and cIAPs are also required for signaling from CARs encompassing CD137's cytoplasmic tail.
Revista:
ANNALS OF NEUROLOGY
ISSN:
0364-5134
Año:
2023
Vol.:
93
N°:
3
Págs.:
431 - 445
Objective: Progressive supranuclear palsy (PSP) is a 4R-tauopathy showing heterogeneous tau cytopathology commencing in the globus pallidus (GP) and the substantia nigra (SN), regions also associated with age-related iron accumulation. Abnormal iron levels have been extensively associated with tau pathology in neurodegenerative brains, however, its role in PSP pathogenesis remains yet unknown. We perform the first cell type-specific evaluation of PSP iron homeostasis and the closely related oxygen homeostasis, in relation to tau pathology in human postmortem PSP brains. Methods: In brain regions vulnerable to PSP pathology (GP, SN, and putamen), we visualized iron deposition in tau-affected and unaffected neurons, astroglia, oligodendrocytes, and microglia, using a combination of iron staining with immunolabelling. To further explore molecular pathways underlying our observations, we examined the expression of key iron and oxygen homeostasis mRNA transcripts and proteins. Results: We found astrocytes as the major cell type accumulating iron in the early affected regions of PSP, highly associated with cellular tau pathology. The same regions are affected by dysregulated expression of alpha and beta hemoglobin and neuroglobin showing contrasting patterns. We discovered changes in iron and oxygen homeostasis-related gene expression associated with aging of the brain, and identified dysregulated expression of rare neurodegeneration with brain iron accumulation (NBIA) genes associated with tau pathology to distinguish PSP from the healthy aging brain. Interpretation: We present novel aspects of PSP pathophysiology highlighting an overlap with NBIA pathways. Our findings reveal potential novel targets for therapy development and have implications beyond PSP for other iron-associated neurodegenerative diseases.
Revista:
METHODS IN CELL BIOLOGY
ISSN:
0091-679X
Año:
2023
Vol.:
174
Págs.:
43 - 53
Multiplexed immunofluorescence imaging of formalin-fixed, paraffin-embedded (FFPE) specimens mounted on glass slides allow the identification of multiple cell phenotypes while retaining spatial and morphological context. Multiplex immunofluorescence protocols have already been developed and validated for mouse tissues. Immunophenotyping analysis reliably depicts the immune landscape of cancer tissues that has been demonstrated to influence cancer development and progression as well as to have an impact on therapy responsiveness and resistance. Here, we describe a method for multiplexed fluorescence image analysis, enabling analysis of mouse cancer morphology and cell phenotypes in FFPE sections.
Revista:
JOURNAL OF HEPATOLOGY
ISSN:
1600-0641
Año:
2023
Vol.:
78
N°:
1
Págs.:
e20 - e22
Autores:
Ortiz-Muñoz, G.; Brown, M.; Carbone, C. B.; et al.
Revista:
NATURE
ISSN:
0028-0836
Año:
2023
Vol.:
618
N°:
7966
Págs.:
827 - 833
The immune phenotype of a tumour is a key predictor of its response to immunotherapy1-4. Patients who respond to checkpoint blockade generally present with immune-inflamed5-7tumours that are highly infiltrated by T cells. However, not all inflamed tumours respond to therapy, and even lower response rates occur among tumours that lack T cells (immune desert) or that spatially exclude T cells to the periphery of the tumour lesion (immune excluded)8. Despite the importance of these tumour immune phenotypes in patients, little is known about their development, heterogeneity or dynamics owing to the technical difficulty of tracking these features in situ. Here we introduce skin tumour array by microporation (STAMP)-a preclinical approach that combines high-throughput time-lapse imaging with next-generation sequencing of tumour arrays. Using STAMP, we followed the development of thousands of arrayed tumours in vivo to show that tumour immune phenotypes and outcomes vary between adjacent tumours and are controlled by local factors within the tumour microenvironment. Particularly, the recruitment of T cells by fibroblasts and monocytes into the tumour core was supportive of T cell cytotoxic activity and tumour rejection. Tumour immune phenotypes were dynamic over time and an early conversion to an immune-inflamed phenotype was predictive of spontaneous or therapy-induced tumour rejection. Thus, STAMP captures the dynamic relationships of the spatial, cellular and molecular components of tumour rejection and has the potential to translate therapeutic concepts into successful clinical strategies.
Autores:
Nassiri, F.; Patil, V.; Yefet, L. S.; et al.
Revista:
NATURE MEDICINE
ISSN:
1078-8956
Año:
2023
Vol.:
29
N°:
6
Págs.:
1370 - 1378
Immune-mediated anti-tumoral responses, elicited by oncolytic viruses and augmented with checkpoint inhibition, may be an effective treatment approach for glioblastoma. Here in this multicenter phase 1/2 study we evaluated the combination of intratumoral delivery of oncolytic virus DNX-2401 followed by intravenous anti-PD-1 antibody pembrolizumab in recurrent glioblastoma, first in a dose-escalation and then in a dose-expansion phase, in 49 patients. The primary endpoints were overall safety and objective response rate. The primary safety endpoint was met, whereas the primary efficacy endpoint was not met. There were no dose-limiting toxicities, and full dose combined treatment was well tolerated. The objective response rate was 10.4% (90% confidence interval (CI) 4.2-20.7%), which was not statistically greater than the prespecified control rate of 5%. The secondary endpoint of overall survival at 12 months was 52.7% (95% CI 40.1-69.2%), which was statistically greater than the prespecified control rate of 20%. Median overall survival was 12.5 months (10.7-13.5 months). Objective responses led to longer survival (hazard ratio 0.20, 95% CI 0.05-0.87). A total of 56.2% (95% CI 41.1-70.5%) of patients had a clinical benefit defined as stable disease or better. Three patients completed treatment with durable responses and remain alive at 45, 48 and 60 months. Exploratory mutational, gene-expression and immunophenotypic analyses revealed that the balance between immune cell infiltration and expression of checkpoint inhibitors may potentially inform on response to treatment and mechanisms of resistance. Overall, the combination of intratumoral DNX-2401 followed by pembrolizumab was safe with notable survival benefit in select patients (ClinicalTrials.gov registration: NCT02798406).
Autores:
Malapelle, U.; Pepe, F.; Pisapia, P.; et al.
Revista:
JOURNAL OF CLINICAL PATHOLOGY
ISSN:
0021-9746
Año:
2023
Vol.:
76
N°:
1
Págs.:
47 - 52
Aims Gene fusions assays are key for personalised treatments of advanced human cancers. Their implementation on cytological material requires a preliminary validation that may make use of cell line slides mimicking cytological samples. In this international multi-institutional study, gene fusion reference standards were developed and validated. Methods Cell lines harbouring EML4(13)-ALK(20) and SLC34A2(4)-ROS1(32) gene fusions were adopted to prepare reference standards. Eight laboratories (five adopting amplicon-based and three hybridisation-based platforms) received, at different dilution points two sets of slides (slide A 50.0%, slide B 25.0%, slide C 12.5% and slide D wild type) stained by Papanicolaou (Pap) and May Grunwald Giemsa (MGG). Analysis was carried out on a total of 64 slides. Results Four (50.0%) out of eight laboratories reported results on all slides and dilution points. While 12 (37.5%) out of 32 MGG slides were inadequate, 27 (84.4%) out of 32 Pap slides produced libraries adequate for variant calling. The laboratories using hybridisation-based platforms showed the highest rate of inadequate results (13/24 slides, 54.2%). Conversely, only 10.0% (4/40 slides) of inadequate results were reported by laboratories adopting amplicon-based platforms. Conclusions Reference standards in cytological format yield better results when Pap staining and processed by amplicon-based assays. Further investigation is required to optimise these standards for MGG stained cells and for hybridisation-based approaches.
Revista:
JCI INSIGHT
ISSN:
2379-3708
Año:
2023
Vol.:
8
N°:
2
Págs.:
e157837
Severe lung damage resulting from COVID-19 involves complex interactions between diverse populations of immune and stromal cells. In this study, we used a spatial transcriptomics approach to delineate the cells, pathways, and genes present across the spectrum of histopathological damage in COVID-19-affected lung tissue. We applied correlation network-based approaches to deconvolve gene expression data from 46 areas of interest covering more than 62,000 cells within well-preserved lung samples from 3 patients. Despite substantial interpatient heterogeneity, we discovered evidence for a common immune-cell signaling circuit in areas of severe tissue that involves crosstalk between cytotoxic lymphocytes and pro-inflammatory macrophages. Expression of IFNG by cytotoxic lymphocytes was associated with induction of chemokines, including CXCL9, CXCL10, and CXCL11, which are known to promote the recruitment of CXCR3+ immune cells. The TNF superfamily members BAFF (TNFSF13B) and TRAIL (TNFSF10) were consistently upregulated in the areas with severe tissue damage. We used published spatial and single-cell SARS-CoV-2 data sets to validate our findings in the lung tissue from additional cohorts of patients with COVID-19. The resulting model of severe COVID-19 immune-mediated tissue pathology may inform future therapeutic strategies.
Revista:
CELL REPORTS MEDICINE
ISSN:
2666-3791
Año:
2023
Vol.:
4
N°:
4
Págs.:
101009
Immune checkpoint-inhibitor combinations are the best therapeutic option for advanced hepatocellular car-cinoma (HCC) patients, but improvements in efficacy are needed to improve response rates. We develop a multifocal HCC model to test immunotherapies by introducing c-myc using hydrodynamic gene transfer along with CRISPR-Cas9-mediated disruption of p53 in mouse hepatocytes. Additionally, induced co -expression of luciferase, EGFP, and the melanosomal antigen gp100 facilitates studies on the underlying immunological mechanisms. We show that treatment of the mice with a combination of anti-CTLA-4 + anti-PD1 mAbs results in partial clearance of the tumor with an improvement in survival. However, the addi-tion of either recombinant IL-2 or an anti-CD137 mAb markedly improves both outcomes in these mice. Combining tumor-specific adoptive T cell therapy to the aCTLA-4/aPD1/rIL2 or aCTLA-4/aPD1/aCD137 reg-imens enhances efficacy in a synergistic manner. As shown by multiplex tissue immunofluorescence and intravital microscopy, combined immunotherapy treatments enhance T cell infiltration and the intratumoral performance of T lymphocytes.
Revista:
CANCER DISCOVERY
ISSN:
2159-8274
Año:
2022
Vol.:
12
N°:
9
Págs.:
2140 - 2157
Interleukin-8 (CXCL8) produced in the tumor microenvironment correlates with poor response to checkpoint inhibitors and is known to chemoattract and activate immunosuppressive myeloid leukocytes. In human cancer, IL8 mRNA levels correlate with IL1B and TNF transcripts. Both cytokines induced IL-8 functional expression from a broad variety of human cancer cell lines, primary colon carcinoma organoids, and fresh human tumor explants. Although IL8 is absent from the mouse genome, a similar murine axis in which TNF alpha and IL-1 beta upregulate CXCL1 and CXCL2 in tumor cells was revealed. Furthermore, intratumoral injection of TNF alpha and IL-1 beta induced IL-8 release from human malignant cells xenografted in immunodeficient mice. In all these cases, the clinically used TNF alpha blockers infliximab and etanercept or the IL-1 beta inhibitor anakinra was able to interfere with this pathogenic cytokine loop. Finally, in paired plasma samples of patients with cancer undergoing TNF alpha blockade with infliximab in a clinical trial, reductions of circulating IL-8 were substantiated. SIGNIFICANCE IL-8 attracts immunosuppressive protumor myeloid cells to the tumor microenvironment, and IL-8 levels correlate with poor response to checkpoint inhibitors. TNF alpha and IL-1 beta are identified as major inducers of IL-8 expression on malignant cells across cancer types and models in a manner that is druggable with clinically available neutralizing agents.
Autores:
Palomero, J.; Panisello, C.; Lozano-Rabella, M.; et al.
Revista:
JOURNAL FOR IMMUNOTHERAPY OF CANCER
ISSN:
2051-1426
Año:
2022
Vol.:
10
N°:
12
Págs.:
e005443
BackgroundDespite the growing interest in immunotherapeutic interventions for endometrial cancer (EC), the prevalence, phenotype, specificity and prognostic value of tumor infiltrating lymphocytes (TILs) in this tumor type remains unclear.MethodsTo better understand the role of TILs in EC, we analyzed the phenotypic traits of CD8(+) and CD4(+) EC(-)resident T cells from 47 primary tumors by high-dimensional flow cytometry. In addition, CD8(+) and CD4(+) TIL subpopulations were isolated based on the differential expression of programmed cell death protein-1 (PD-1) (negative, dim and high) and CD39 (positive or negative) by fluorescence activated cell sorting (FACS), expanded in vitro, and screened for autologous tumor recognition. We further investigated whether phenotypic markers preferentially expressed on CD8(+) and CD4(+) tumor-reactive TIL subsets were associated with the four distinct molecular subtypes of EC, tumor mutational burden and patient survival.ResultsWe found that CD8(+)TILs expressing high levels of PD-1 (PD-1hi) co-expressed CD39, TIM-3, HLA-DR and CXCL13, as compared with TILs lacking or displaying intermediate levels of PD-1 expression (PD-1(-) and PD-1(dim), respectively). Autologous tumor reactivity of sorted and in vitro expanded CD8+ TILs demonstrated that the CD8(+)PD-1(dim)CD39(+) and PD-1(hi)CD39(+) T cell subsets both contained tumor-reactive TILs and that a higher level of PD-1 expression was associated with increased CD39 and a superior frequency of tumor reactivity. With respect to CD4(+) T conventional (Tconv) TILs, co-expression of inhibitory and activation markers was more apparent on PD-1(hi) compared with PD-1(-) or PD-1(dim) T cells, and in fact, it was the CD4(+)PD-1(hi) subpopulation that accumulated the antitumor T cells irrespective of CD39 expression. Most importantly, detection of CD8(+)PD-1(hi)CD39+ and CD4(+)PD-1(hi) tumor-reactive T-cell subsets, but also markers specifically expressed by these subpopulations of TILs, that is, PD-1(hi), CD39, CXCL13 and CD103 by CD8(+) TILs and PD-1(hi) and CXCL13 by CD4(+) Tconv TILs, correlated with prolonged survival of patients with EC.ConclusionsOur results demonstrate that EC are frequently infiltrated by tumor-reactive TILs, and that expression of PD-1(hi) and CD39 or PD-1(hi) can be used to select and expand CD8(+) and CD4(+) tumor-reactive TILs, respectively. In addition, biomarkers preferentially expressed on tumor-reactive TILs, rather than the frequency of CD3(+), CD8(+) and CD4(+) lymphocytes, hold prognostic value suggesting their protective role in antitumor immunity.
Revista:
CANCER RESEARCH
ISSN:
1538-7445
Año:
2022
Vol.:
82
N°:
23
Págs.:
4373 - 4385
The ability of conventional type-1 dendritic cells (cDC1) to cross-present tumor antigens to CD8+ T cells is critical for the induction of antitumor cytotoxic T lymphocytes. Mice that are constitutively deficient in cDC1 cells have been reported to fail to respond to immunotherapy strategies based on checkpoint inhibitors. However, further work is needed to clarify the precise time during immunotherapy treatment that cDC1 cells are required for the beneficial effect of treatment. Here, we used a refined XCR1-DTR-Venus transgenic mouse model to acutely deplete cDC1 cells and trace their behavior using intravital microscopy. Diphtheria toxin-mediated cDC1 depletion prior to immunotherapy treatment with anti-PD-1 and/or anti-CD137 immunostimulatory monoclonal antibodies (mAbs) completely ablated anti-tumor efficacy. The efficacy of adoptive T-cell therapy was also hampered by prior cDC1 depletion. After the onset of immunotherapy treatment, depletion of cDC1s only moderately reduced the therapeutic efficacy of anti-PD-1 and anti-CD137 mAbs. Intravital microscopy of liver-engrafted tumors revealed changes in the intratumoral behavior of cDC1 cells in mice receiving immunotherapy, and treatment with diphtheria toxin to deplete cDC1s impaired tumor T-cell infiltration and function. These results reveal that the functional integrity of the cDC1 compartment is required at the onset of various immunotherapies to successfully treat established tumors.
Revista:
JCI INSIGHT
ISSN:
2379-3708
Año:
2022
Vol.:
7
N°:
7
Págs.:
e154812
Diffuse intrinsic pontine gliomas (DIPGs) are aggressive pediatric brain tumors, and patient survival has not changed despite many therapeutic efforts, emphasizing the urgent need for effective treatments. Here, we evaluated the anti-DIPG effect of the oncolytic adenovirus Delta-24-ACT, which was engineered to express the costimulatory ligand 4-1BBL to potentiate the antitumor immune response of the virus. Delta-24-ACT induced the expression of functional 4-1BBL on the membranes of infected DIPG cells, which enhanced the costimulation of CD8(+) T lymphocytes. In vivo, Delta-24-ACT treatment of murine DIPG orthotopic tumors significantly improved the survival of treated mice, leading to long-term survivors that developed immunological memory against these tumors. In addition, Delta-24-ACT was safe and caused no local or systemic toxicity. Mechanistic studies showed that Delta-24-ACT modulated the tumor-immune content, not only increasing the number, but also improving the functionality of immune cells. All of these data highlight the safety and potential therapeutic benefit of Delta-24-ACT the treatment of patients with DIPG.
Autores:
Onieva, J. L.; Xiao, Q.; Berciano-Guerrero, M. A.; et al.
Revista:
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
ISSN:
1422-0067
Año:
2022
Vol.:
23
N°:
16
Págs.:
9124
Resistance to Immune Checkpoint Blockade (ICB) constitutes the current limiting factor for the optimal implementation of this novel therapy, which otherwise demonstrates durable responses with acceptable toxicity scores. This limitation is exacerbated by a lack of robust biomarkers. In this study, we have dissected the basal TME composition at the gene expression and cellular levels that predict response to Nivolumab and prognosis. BCR, TCR and HLA profiling were employed for further characterization of the molecular variables associated with response. The findings were validated using a single-cell RNA-seq data of metastatic melanoma patients treated with ICB, and by multispectral immunofluorescence. Finally, machine learning was employed to construct a prediction algorithm that was validated across eight metastatic melanoma cohorts treated with ICB. Using this strategy, we have unmasked a major role played by basal intratumoral Plasma cells expressing high levels of IGKC in efficacy. IGKC, differentially expressed in good responders, was also identified within the Top response-related BCR clonotypes, together with IGK variants. These results were validated at gene, cellular and protein levels; CD138+ Plasma-like and Plasma cells were more abundant in good responders and correlated with the same RNA-seq-defined fraction. Finally, we generated a 15-gene prediction model that outperformed the current reference score in eight ICB-treated metastatic melanoma cohorts. The evidenced major contribution of basal intratumoral IGKC and Plasma cells in good response and outcome in ICB in metastatic melanoma is a groundbreaking finding in the field beyond the role of T lymphocytes.
Revista:
MEDICAL IMAGE ANALYSIS
ISSN:
1361-8415
Año:
2022
Vol.:
78
Págs.:
102384
Understanding the spatial interactions between the elements of the tumor microenvironment -i.e. tumor cells. fibroblasts, immune cells- and how these interactions relate to the diagnosis or prognosis of a tumor is one of the goals of computational pathology. We present NaroNet, a deep learning framework that models the multi-scale tumor microenvironment from multiplex-stained cancer tissue images and provides patient-level interpretable predictions using a seamless end-to-end learning pipeline. Trained only with multiplex-stained tissue images and their corresponding patient-level clinical labels, NaroNet unsupervisedly learns which cell phenotypes, cell neighborhoods, and neighborhood interactions have the highest influence to predict the correct label. To this end, NaroNet incorporates several novel and state-of-the-art deep learning techniques, such as patch-level contrastive learning, multi-level graph embeddings, a novel max-sum pooling operation, or a metric that quantifies the relevance that each microenvironment element has in the individual predictions. We validate NaroNet using synthetic data simulating multiplex-immunostained images where a patient label is artificially associated to the -adjustable- probabilistic incidence of different microenvironment elements. We then apply our model to two sets of images of human cancer tissues: 336 seven-color multiplex-immunostained images from 12 high-grade endometrial cancer patients; and 382 35-plex mass cytometry images from 215 breast cancer patients. In both synthetic and real datasets, NaroNet provides outstanding predictions of relevant clinical information while associating those predictions to the presence of specific microenvironment elements.
Keywords: Cellular neighborhoods; Deep learning; Imaging mass cytometry; Interpretable machine learning; Multiplex imaging; Self supervised learning; Spatial biology; Tumor microenvironment; Weakly supervised learning.
Revista:
CHEST
ISSN:
0012-3692
Año:
2022
Vol.:
162
N°:
5
Págs.:
1006 - 1016
BACKGROUND: Excessive inflammation is pathogenic in the pneumonitis associated with severe COVID-19. Neutrophils are among the most abundantly present leukocytes in the inflammatory infiltrates and may form neutrophil extracellular traps (NETs) under the local influence of cytokines. NETs constitute a defense mechanism against bacteria, but have also been shown to mediate tissue damage in a number of diseases. RESEARCH QUESTION: Could NETs and their tissue-damaging properties inherent to neutrophil- associated functions play a role in the respiratory failure seen in patients with severe COVID-19, and how does this relate to the SARS-CoV-2 viral loads, IL-8 (CXCL8) chemokine expression, and cytotoxic T-lymphocyte infiltrates? STUDY DESIGN AND METHODS: Sixteen lung biopsy samples obtained immediately after death were analyzed methodically as exploratory and validation cohorts. NETs were analyzed quantitatively by multiplexed immunofluorescence and were correlated with local levels of IL-8 messenger RNA (mRNA) and the density of CD8+ T-cell infiltration. SARS-CoV-2 presence in tissue was quantified by reverse-transcriptase polymerase chain reaction and immunohistochemistry analysis. RESULTS: NETs were found in the lung interstitium and surrounding the bronchiolar epithelium with interindividual and spatial heterogeneity. NET density did not correlate with SARS-CoV-2 tissue viral load. NETs were associated with local IL-8 mRNA levels. NETs were also detected in pulmonary thrombi and in only one of eight liver tissues. NET focal presence correlated negatively with CD8+ T-cell infiltration in the lungs. INTERPRETATION: Abundant neutrophils undergoing NETosis are found in the lungs of patients with fatal COVID-19, but no correlation was found with viral loads. The strong association between NETs and IL-8 points to this chemokine as a potentially causative factor. The function of cytotoxic T-lymphocytes in the immune responses against SARS-CoV-2 may be interfered with by the presence of NETs.
Revista:
NEW ENGLAND JOURNAL OF MEDICINE
ISSN:
0028-4793
Año:
2022
Vol.:
386
N°:
26
Págs.:
2471 - 2481
Background: Pediatric patients with diffuse intrinsic pontine glioma (DIPG) have a poor prognosis, with a median survival of less than 1 year. Oncolytic viral therapy has been evaluated in patients with pediatric gliomas elsewhere in the brain, but data regarding oncolytic viral therapy in patients with DIPG are lacking.
Methods: We conducted a single-center, dose-escalation study of DNX-2401, an oncolytic adenovirus that selectively replicates in tumor cells, in patients with newly diagnosed DIPG. The patients received a single virus infusion through a catheter placed in the cerebellar peduncle, followed by radiotherapy. The primary objective was to assess the safety and adverse-event profile of DNX-2401. The secondary objectives were to evaluate the effect of DNX-2401 on overall survival and quality of life, to determine the percentage of patients who have an objective response, and to collect tumor-biopsy and peripheral-blood samples for correlative studies of the molecular features of DIPG and antitumor immune responses.
Results: A total of 12 patients, 3 to 18 years of age, with newly diagnosed DIPG received 1×1010 (the first 4 patients) or 5×1010 (the subsequent 8 patients) viral particles of DNX-2401, and 11 received subsequent radiotherapy. Adverse events among the patients included headache, nausea, vomiting, and fatigue. Hemiparesis and tetraparesis developed in 1 patient each. Over a median follow-up of 17.8 months (range, 5.9 to 33.5), a reduction in tumor size, as assessed on magnetic resonance imaging, was reported in 9 patients, a partial response in 3 patients, and stable disease in 8 patients. The median survival was 17.8 months. Two patients were alive at the time of preparation of the current report, 1 of whom was free of tumor progression at 38 months. Examination of a tumor sample obtained during autopsy from 1 patient and peripheral-blood studies revealed alteration of the tumor microenvironment and T-cell repertoire.
Conclusions: Intratumoral infusion of oncolytic virus DNX-2401 followed by radiotherapy in pediatric patients with DIPG resulted in changes in T-cell activity and a reduction in or stabilization of tumor size in some patients but was associated with adverse events. (Funded by the European Research Council under the European Union's Horizon 2020 Research and Innovation Program and others; EudraCT number, 2016-001577-33; ClinicalTrials.gov number, NCT03178032.).
Autores:
Malapelle, U.; Pepe, F.; Pisapia, P.; et al.
Revista:
JOURNAL OF CLINICAL PATHOLOGY
ISSN:
0021-9746
Año:
2022
Vol.:
75
N°:
6
Págs.:
416 - 421
Aim Next generation sequencing (NGS) represents a key diagnostic tool to identify clinically relevant gene alterations for treatment-decision making in cancer care. However, the complex manual workflow required for NGS has limited its implementation in routine clinical practice. In this worldwide study, we validated the clinical performance of the TargetPlex FFPE-Direct DNA Library Preparation Kit for NGS analysis. Impressively, this new assay obviates the need for separate, labour intensive and time-consuming pre-analytical steps of DNA extraction, purification and isolation from formalin-fixed paraffin embedded (FFPE) specimens in the NGS workflow. Methods The TargetPlex FFPE-Direct DNA Library Preparation Kit, which enables NGS analysis directly from FFPE, was specifically developed for this study by TargetPlex Genomics Pleasanton, California. Eleven institutions agreed to take part in the study coordinated by the Molecular Cytopathology Meeting Group (University of Naples Federico II, Naples, Italy). All participating institutions received a specific Library Preparation Kit to test eight FFPE samples previously assessed with standard protocols. The analytical parameters and mutations detected in each sample were then compared with those previously obtained with standard protocols. Results Overall, 92.8% of the samples were successfully analysed with the TargetPlex FFPE-Direct DNA Library Preparation Kit on Thermo Fisher Scientific and Illumina platforms. Altogether, in comparison with the standard workflow, the TargetPlex FFPE-Direct DNA Library Preparation Kit was able to detect 90.5% of the variants. Conclusion The TargetPlex FFPE-Direct DNA Library Preparation Kit combined with the SiRe panel constitutes a convenient, practical and robust cost-saving solution for FFPE NGS analysis in routine practice.
Revista:
JOURNAL FOR IMMUNOTHERAPY OF CANCER
ISSN:
2051-1426
Año:
2022
Vol.:
10
N°:
8
Págs.:
e004479
Background One of the main difficulties of adoptive cell therapies with chimeric antigen receptor (CAR)-T cells in solid tumors is the identification of specific target antigens. The tumor microenvironment can present suitable antigens for CAR design, even though they are not expressed by the tumor cells. We have generated a CAR specific for the splice variant extra domain A (EDA) of fibronectin, which is highly expressed in the tumor stroma of many types of tumors but not in healthy tissues. Methods EDA expression was explored in RNA-seq data from different human tumor types and by immunohistochemistry in paraffin-embedded tumor biopsies. Murine and human anti-EDA CAR-T cells were prepared using recombinant retro/lentiviruses, respectively. The functionality of EDA CAR-T cells was measured in vitro in response to antigen stimulation. The antitumor activity of EDA CAR-T cells was measured in vivo in C57BL/6 mice challenged with PM299L-EDA hepatocarcinoma cell line, in 129Sv mice-bearing F9 teratocarcinoma and in NSG mice injected with the human hepatocarcinoma cell line PLC. Results EDA CAR-T cells recognized and killed EDA-expressing tumor cell lines in vitro and rejected EDA-expressing tumors in immunocompetent mice. Notably, EDA CAR-T cells showed an antitumor effect in mice injected with EDA-negative tumor cells lines when the tumor stroma or the basement membrane of tumor endothelial cells express EDA. Thus, EDA CAR-T administration delayed tumor growth in immunocompetent 129Sv mice challenged with teratocarcinoma cell line F9. EDA CAR-T treatment exerted an antiangiogenic effect and significantly reduced gene signatures associated with epithelial-mesenchymal transition, collagen synthesis, extracellular matrix organization as well as IL-6-STAT5 and KRAS pathways. Importantly, the human version of EDA CAR, that includes the human 41BB and CD3 zeta endodomains, exerted strong antitumor activity in NSG mice challenged with the human hepatocarcinoma cell line PLC, which expresses EDA in the tumor stroma and the endothelial vasculature. EDA CAR-T cells exhibited a tropism for EDA-expressing tumor tissue and no toxicity was observed in tumor bearing or in healthy mice. Conclusions These results suggest that targeting the tumor-specific fibronectin splice variant EDA with CAR-T cells is feasible and offers a therapeutic option that is applicable to different types of cancer.
Revista:
JOURNAL OF PATHOLOGY
ISSN:
0022-3417
Año:
2022
Vol.:
258
N°:
4
Págs.:
426 - 436
Endometrial tumors show substantial heterogeneity in their immune microenvironment. This heterogeneity could be used to improve the accuracy of current outcome prediction tools. We assessed the immune microenvironment of 235 patients diagnosed with low-grade, early-stage endometrial cancer. Multiplex quantitative immunofluorescence was carried out to measure CD8, CD68, FOXP3, PD-1, and PD-L1 markers, as well as cytokeratin (CK), on tissue microarrays. Clustering results revealed five robust immune response patterns, each associated with specific immune populations, cell phenotypes, and cell spatial clustering. Most samples (69%) belonged to the immune-desert subtype, characterized by low immune cell densities. Tumor-infiltrating lymphocyte (TIL)-rich samples (4%) displayed high CD8(+) T-cell infiltration, as well as a high percentage of CD8/PD-1(+) cells. Immune-exclusion samples (19%) displayed the lowest CD8(+) infiltration combined with high PD-L1 expression levels in CK+ tumor cells. In addition, they demonstrated high tumor cell spatial clustering as well as increased spatial proximity of CD8(+)/PD-1(+) and CK/PD-L1(+) cells. FOXP3 and macrophage-rich phenotypes (3% and 4% of total samples) displayed relatively high levels of FOXP3(+) regulatory T-cells and CD68(+) macrophages, respectively. These phenotypes correlated with clinical outcomes, with immune-exclusion tumors showing an association with tumor relapse. When compared with prediction models built using routine pathological variables, models optimized with immune variables showed increased outcome prediction capacity (AUC = 0.89 versus 0.78) and stratification potential. The improved prediction capacity was independent of mismatch repair protein status and adjuvant radiotherapy treatment. Further, immunofluorescence results could be partially recapitulated using single-marker immunohistochemistry (IHC) performed on whole tissue sections. TIL-rich tumors demonstrated increased CD8(+) T-cells by IHC, while immune-exclusion tumors displayed a lack of CD8(+) T-cells and frequent expression of PD-L1 in tumor cells. Our results demonstrate the capability of the immune microenvironment to improve standard prediction tools in low-grade, early-stage endometrial carcinomas.
Revista:
CANCER DISCOVERY
ISSN:
2159-8274
Año:
2022
Vol.:
12
N°:
5
Págs.:
1356 - 1377
Locoregional failure (LRF) in breast cancer patients post-surgery and post-irradiation (IR) is linked to a dismal prognosis. In a refined new model, we identified Enpp1 (Ectonucleotide pyrophosphatase /phosphodiesterase 1/CD203a) to be closely associated with LRF. Enpp1high circulating tumor cells (CTC) contribute to relapse by a self-seeding mechanism. This process requires the infiltration of PMN-MDSC and neutrophil extracellular traps (NET) formation. Genetic and pharmacological Enpp1 inhibition or NET blockade extend relapse-free survival. Furthermore, in combination with fractionated irradiation (FD), Enpp1 abrogation obliterates LRF. Mechanistically, Enpp1-generated adenosinergic metabolites enhance Haptoglobin (Hp) expression. This inflammatory mediator elicits myeloid invasiveness and promotes NET formation. Accordingly, a significant increase in ENPP1 and NET formation is detected in relapsed human breast cancer tumors. Moreover, high ENPP1 or HP levels are associated with poor prognosis. These findings unveil the ENPP1/HP axis as an unanticipated mechanism exploited by tumor cells linking inflammation to immune remodeling favoring local relapse.
Revista:
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY
ISSN:
2296-634X
Año:
2021
Vol.:
9
Págs.:
670185
The invasive tumor front (the tumor-host interface) is vitally important in malignant cell progression and metastasis. Tumor cell interactions with resident and infiltrating host cells and with the surrounding extracellular matrix and secreted factors ultimately determine the fate of the tumor. Herein we focus on the invasive tumor front, making an in-depth characterization of reticular fiber scaffolding, infiltrating immune cells, gene expression, and epigenetic profiles of classified aggressive primary uterine adenocarcinomas (24 patients) and leiomyosarcomas (11 patients). Sections of formalin-fixed samples before and after microdissection were scanned and studied. Reticular fiber architecture and immune cell infiltration were analyzed by automatized algorithms in colocalized regions of interest. Despite morphometric resemblance between reticular fibers and high presence of macrophages, we found some variance in other immune cell populations and distinctive gene expression and cell adhesion-related methylation signatures. Although no evident overall differences in immune response were detected at the gene expression and methylation level, impaired antimicrobial humoral response might be involved in uterine leiomyosarcoma spread. Similarities found at the invasive tumor front of uterine adenocarcinomas and leiomyosarcomas could facilitate the use of common biomarkers and therapies. Furthermore, molecular and architectural characterization of the invasive front of uterine malignancies may provide additional prognostic information beyond established prognostic factors.
Revista:
CANCERS
ISSN:
2072-6694
Año:
2021
Vol.:
13
N°:
11
Págs.:
2849
We have studied blood levels of cytokines/chemokines in patients with metastatic renal cell carcinoma treated with sunitinib or pazopanib, with the goal of identifying biomarkers that can predict efficacy and survival. We have found that high levels of CXCL10, CXCL11, HGF and IL-6 before treatment associate with poor prognosis in these patients. Moreover, these factors are correlated in patients with renal carcinoma, suggesting a coordinated expression and secretion. We have developed a prognostic signature including these factors that predicts very accurately prognosis. Our results may help defining better the group of renal cell carcinoma patients who may benefit from sunitinib/pazopanib.
Revista:
CLINICAL CANCER RESEARCH
ISSN:
1078-0432
Año:
2021
Vol.:
27
N°:
6
Págs.:
1807 - 1820
Purpose: Atypical teratoid/rhabdoid tumors (AT/RT) and central nervous system primitive neuroectodermal tumors (CNS-PNET) are pediatric brain tumors with poor survival and life-long negative side effects. Here, the aim was to characterize the efficacy and safety of the oncolytic adenovirus, Delta-24-RGD, which selectively replicates in and kills tumor cells. Experimental Design: Delta-24-RGD determinants for infection and replication were evaluated in patient expression datasets. Viral replication and cytotoxicity were assessed in vitro in a battery of CNS-PNET and AT/RT cell lines. In vivo, efficacy was determined in different orthotopic mouse models, including early and established tumor models, a disseminated AT/RT lesion model, and immunocompetent humanized mouse models (hCD34(+)-NSG-SGM3). Results: Delta-24-RGD infected and replicated efficiently in all the cell lines tested. In addition, the virus induced dose-dependent cytotoxicity [IC50 value below 1 plaque-forming unit (PFU)/cell] and the release of immunogenic markers. In vivo, a single intratumoral Delta-24-RGD injection (10(7) or 10(8) PFU) significantly increased survival and led to long-term survival in AT/RT and PNET models. Delta-24-RGD hindered the dissemination of AT/RTs and increased survival, leading to 70% of long-term survivors. Of relevance, viral administration to established tumor masses (30 days after engraftment) showed therapeutic benefit. In humanized immunocompetent models, Delta-24-RGD significantly extended the survival of mice bearing AT/RTs or PNETs (ranging from 11 to 27 days) and did not display any toxicity associated with inflammation. Immunophenotyping of Delta-24-RGD-treated tumors revealed increased CD8(+) T-cell infiltration. Conclusions: Delta-24-RGD is a feasible therapeutic option for AT/RTs and CNS-PNETs. This work constitutes the basis for potential translation to the clinical setting.
Revista:
JOURNAL OF PATHOLOGY
ISSN:
0022-3417
Año:
2021
Vol.:
255
N°:
2
Págs.:
190 - 201
Neutrophil extracellular traps (NETs) are webs of extracellular nuclear DNA extruded by dying neutrophils infiltrating tissue. NETs constitute a defence mechanism to entrap and kill fungi and bacteria. Tumours induce the formation of NETs to the advantage of the malignancy via a variety of mechanisms shown in mouse models. Here, we investigated the presence of NETs in a variety of human solid tumours and their association with IL-8 (CXCL8) protein expression and CD8(+) T-cell density in the tumour microenvironment. Multiplex immunofluorescence panels were developed to identify NETs in human cancer tissues by co-staining with the granulocyte marker CD15, the neutrophil marker myeloperoxidase and citrullinated histone H3 (H3Cit), as well as IL-8 protein and CD8(+) T cells. Three ELISA methods to detect and quantify circulating NETs in serum were optimised and utilised. Whole tumour sections and tissue microarrays from patients with non-small cell lung cancer (NSCLC; n = 14), bladder cancer (n = 14), melanoma (n = 11), breast cancer (n = 31), colorectal cancer (n = 20) and mesothelioma (n = 61) were studied. Also, serum samples collected retrospectively from patients with metastatic melanoma (n = 12) and NSCLC (n = 34) were ELISA assayed to quantify circulating NETs and IL-8. NETs were detected in six different human cancer types with wide individual variation in terms of tissue density and distribution. At least in NSCLC, bladder cancer and metastatic melanoma, NET density positively correlated with IL-8 protein expression and inversely correlated with CD8(+) T-cell densities. In a series of serum samples from melanoma and NSCLC patients, a positive correlation between circulating NETs and IL-8 was found. In conclusion, NETs are detectable in formalin-fixed human biopsy samples from solid tumours and in the circulation of cancer patients with a considerable degree of individual variation. NETs show a positive association with IL-8 and a trend towards a negative association with CD8(+) tumour-infiltrating lymphocytes. (c) 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Autores:
Downes, D. J.; Cross, A. R.; Hua, P.; et al.
Revista:
NATURE GENETICS
ISSN:
1061-4036
Año:
2021
Vol.:
53
N°:
11
Págs.:
1606 - 1615
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) pandemic has caused millions of deaths worldwide. Genome-wide association studies identified the 3p21.31 region as conferring a twofold increased risk of respiratory failure. Here, using a combined multiomics and machine learning approach, we identify the gain-of-function risk A allele of an SNP, rs17713054G>A, as a probable causative variant. We show with chromosome conformation capture and gene-expression analysis that the rs17713054-affected enhancer upregulates the interacting gene, leucine zipper transcription factor like 1 (LZTFL1). Selective spatial transcriptomic analysis of lung biopsies from patients with COVID-19 shows the presence of signals associated with epithelial-mesenchymal transition (EMT), a viral response pathway that is regulated by LZTFL1. We conclude that pulmonary epithelial cells undergoing EMT, rather than immune cells, are likely responsible for the 3p21.31-associated risk. Since the 3p21.31 effect is conferred by a gain-of-function, LZTFL1 may represent a therapeutic target. SNP rs17713054 in the 3p21.31 COVID-19 risk locus is identified as a probable causative variant for disease association. Chromatin conformation and gene expression data indicate that LZTFL1 is impacted by rs17713054 in pulmonary epithelial cells.
Revista:
JOURNAL FOR IMMUNOTHERAPY OF CANCER
ISSN:
2051-1426
Año:
2021
Vol.:
9
N°:
11
Págs.:
e002953
Background BO-112 is a nanoplexed form of polyinosinic:polycytidylic acid that acting on toll-like receptor 3 (TLR3), melanoma differentiation-associated protein 5 (MDA5) and protein kinase RNA-activated (PKR) elicits rejection of directly injected transplanted tumors, but has only modest efficacy against distant untreated tumors. Its clinical activity has also been documented in early phase clinical trials. The 5,6-dimethylxanthenone-4-acetic acid (DMXAA) stimulator of interferon genes (STING) agonist shows a comparable pattern of efficacy when used via intratumoral injections. Methods Mice subcutaneously engrafted with bilateral MC38 and B16.OVA-derived tumors were treated with proinflammatory immunotherapy agents known to be active when intratumorally delivered. The combination of BO-112 and DMXAA was chosen given its excellent efficacy and the requirements for antitumor effects were studied on selective depletion of immune cell types and in gene-modified mouse strains lacking basic leucine zipper ATF-like transcription factor 3 (BATF3), interferon-alpha/beta receptor (IFNAR) or STING. Spatial requirements for the injections were studied in mice bearing three tumor lesions. Results BO-112 and DMXAA when co-injected in one of the lesions of mice bearing concomitant bilateral tumors frequently achieved complete local and distant antitumor efficacy. Synergistic effects were contingent on CD8 T cell lymphocytes and dependent on conventional type 1 dendritic cells, responsiveness to type I interferon (IFN) and STING function in the tumor-bearing host. Efficacy was preserved even if BO-112 and DMXAA were injected in separate lesions in a manner able to control another untreated third-party tumor. Efficacy could be further enhanced on concurrent PD-1 blockade. Conclusion Clinically feasible co-injections of BO-112 and a STING agonist attain synergistic efficacy able to eradicate distant untreated tumor lesions.
Revista:
CANCERS
ISSN:
2072-6694
Año:
2021
Vol.:
13
N°:
4
Págs.:
794
Simple Summary Low-grade, early-stage endometrial cancer (EC) is the most frequent malignant tumor of the uterine corpus. Our study aimed to assess dysregulated pathways in this specific subset of EC through proteomic analysis. We describe and validate the dysregulation of the SLIT/ROBO signaling pathway, as well as cellular death processes such as necroptosis and ferroptosis. We identify several immune-related pathways, with a dominance of innate immune response associated pathways. Our findings reveal the singular biology of low-grade, early-stage ECs and could guide future research in the field. Low-grade, early-stage endometrial carcinoma (EC) is the most frequent malignant tumor of the uterine corpus. However, the molecular alterations that underlie these tumors are far from being fully understood. The purpose of this study is to describe dysregulated molecular pathways from EC patients. Sixteen samples of tumor tissue and paired healthy controls were collected and both were subjected to mass spectrometry (MS)/MS proteomic analysis. Gene ontology and pathway analysis was performed to discover dysregulated pathways and/or proteins using different databases and bioinformatic tools. Dysregulated pathways were cross-validated in an independent external cohort. Cell signaling, immune response, and cell death-associated pathways were robustly identified. The SLIT/ROBO signaling pathway demonstrated dysregulation at the proteomic and transcriptomic level. Necroptosis and ferroptosis were cell death-associated processes aberrantly regulated, in addition to apoptosis. Immune response-associated pathways showed a dominance of innate immune responses. Tumor immune infiltrates measured by immunofluorescence demonstrated diverse lymphoid and myeloid populations. Our results suggest a role of SLIT/ROBO, necroptosis, and ferroptosis, as well as a prominent role of innate immune response in low-grade, early-stage EC. These results could guide future research in this group of tumors.
Revista:
JOURNAL FOR IMMUNOTHERAPY OF CANCER
ISSN:
2051-1426
Año:
2021
Vol.:
9
N°:
3
Págs.:
e001496
Introduction The use of immune-checkpoint inhibitors has drastically improved the management of patients with non-small cell lung cancer (NSCLC), but innate and acquired resistances are hurdles needed to be solved. Immunomodulatory drugs that can reinvigorate the immune cytotoxic activity, in combination with antiprogrammed cell death 1 (PD-1) antibody, are a great promise to overcome resistance. We evaluated the impact of the SRC family kinases (SFKs) on NSCLC prognosis, and the immunomodulatory effect of the SFK inhibitor dasatinib, in combination with anti-PD-1, in clinically relevant mouse models of NSCLC. Methods A cohort of patients from University Clinic of Navarra (n=116) was used to study immune infiltrates by multiplex immunofluorescence (mIF) and YES1 protein expression in tumor samples. Publicly available resources (TCGA, Km Plotter, and CIBERSORT) were used to study patient's survival based on expression of SFKs and tumor infiltrates. Syngeneic NSCLC mouse models 393P and UNSCC680AJ were used for in vivo drug testing. Results Among the SFK members, YES1 expression showed the highest association with poor prognosis. Patients with high YES1 tumor levels also showed high infiltration of CD4+/FOXP3+ cells (regulatory T cells (Tregs)), suggesting an immunosuppressive phenotype. After testing for YES1 expression in a panel of murine cell lines, 393P and UNSCC680AJ were selected for in vivo studies. In the 393P model, dasatinib+anti-PD-1 treatment resulted in synergistic activity, with 87% tumor regressions and development of immunological memory that impeded tumor growth when mice were rechallenged. In vivo depletion experiments further showed that CD8+ and CD4+ cells are necessary for the therapeutic effect of the combination. The antitumor activity was accompanied by a very significant decrease in the number of Tregs, which was validated by mIF in tumor sections. In the UNSCC680AJ model, the antitumor effects of dasatinib+anti-PD-1 were milder but similar to the 393P model. In in vitro assays, we demonstrated that dasatinib blocks proliferation and transforming growth factor beta-driven conversion of effector CD4+ cells into Tregs through targeting of phospholymphocyte-specific protein tyrosine kinase and downstream effectors pSTAT5 and pSMAD3. Conclusions YES1 protein expression is associated with increased numbers of Tregs in patients with NSCLC. Dasatinib synergizes with anti-PD-1 to impair tumor growth in NSCLC experimental models. This study provides the preclinical rationale for the combined use of dasatinib and PD-1/programmed death-ligand 1 blockade to improve outcomes of patients with NSCLC.
Revista:
BRITISH JOURNAL OF CANCER
ISSN:
0007-0920
Año:
2021
Vol.:
124
N°:
6
Págs.:
1138 - 1149
Background Adoptive immunotherapy with tumour-infiltrating lymphocytes (TIL) may benefit from the use of selective markers, such as PD-1, for tumour-specific T-cell enrichment, and the identification of predictive factors that help identify those patients capable of rendering tumour-reactive TILs. We have investigated this in ovarian cancer (OC) patients as candidates for TIL therapy implementation. Methods PD-1(-) and PD-1(+) CD8 TILs were isolated from ovarian tumours and expanded cells were tested against autologous tumour cells. Baseline tumour samples were examined using flow cytometry, multiplexed immunofluorescence and Nanostring technology, for gene expression analyses, as well as a next-generation sequencing gene panel, for tumour mutational burden (TMB) calculation. Results Tumour-reactive TILs were detected in half of patients and were exclusively present in cells derived from the PD-1(+) fraction. Importantly, a high TIL density in the fresh tumour, the presence of CD137(+) cells within the PD-1(+)CD8(+) TIL subset and their location in the tumour epithelium, together with a baseline T-cell-inflamed genetic signature and/or a high TMB, are features that identify patients rendering tumour-reactive TIL products. Conclusion We have demonstrated that PD-1 identifies ovarian tumour-specific CD8 TILs and has uncovered predictive factors that identify OC patients who are likely to render tumour-specific cells from PD-1(+) TILs.
Revista:
CYTOPATHOLOGY
ISSN:
0956-5507
Año:
2021
Vol.:
32
N°:
5
Págs.:
611 - 616
Objective Understanding the immune environment of non-small cell lung cancer (NSCLC) is important for designing effective anticancer immunotherapies. We describe the use of multiplex immunofluorescence (mIF) assays to enable characterisation of the tumour-infiltrating immune cells and their interactions, both across and within immune subtypes. Methods Six cytological samples of NSCLC taken by transoesophageal ultrasound-guided fine needle aspiration were tested with an mIF assay designed to detect the expression of key immune cell markers such as CD3, CD8, CD20, CD11b, and CD68. Pan-cytokeratin was used to detect the NSCLC cells. Fluorescence images were acquired on a Vectra-Polaris Automated Quantitative Pathology Imaging System (Akoya Biosciences). Results MIF assay was able to reliably detect and quantify the myeloid cell markers CD11b, CD68, CD3+ and CD8+ T cells, and CD20+ B lymphocytes on cytological samples of NSCLC. Whole-tissue analysis and its correlation with the corresponding H&E stains allowed a better understanding of the tissue morphology and the relationship between tumour and stroma compartments. Additionally, a uniform, specific, and correct staining pattern was seen for every immune marker. Conclusion The implementation of mIF assay on cytological samples taken with minimally invasive methods seems feasible and can be used to explore the immune environment of NSCLC.
Revista:
TRANSLATIONAL LUNG CANCER RESEARCH
ISSN:
2218-6751
Año:
2021
Vol.:
10
N°:
3
Págs.:
1327 - +
Background: Tobacco is the main risk factor for developing lung cancer. Yet, some heavy smokers do not develop lung cancer at advanced ages while others develop it at young ages. Here, we assess for the first time the genetic background of these clinically relevant extreme phenotypes using whole exome sequencing (WES).
Methods: We performed WES of germline DNA from heavy smokers who either developed lung adenocarcinoma at an early age ( extreme cases, n=50) or did not present lung adenocarcinoma or other tumors at an advanced age (extreme controls, n=50). We selected non-synonymous variants located in exonic regions and consensus splice sites of the genes that showed significantly different allelic frequencies between both cohorts. We validated our results in all the additional extreme cases (i.e., heavy smokers who developed lung adenocarcinoma at an early age) available from The Cancer Genome Atlas (TCGA).
Results: The mean age for the extreme cases and controls was respectively 49.7 and 77.5 years. Mean tobacco consumption was 43.6 and 56.8 pack-years. We identified 619 significantly different variants between both cohorts, and we validated 108 of these in extreme cases selected from TCGA. Nine validated variants, located in relevant cancer related genes, such as PARP4, HLA-A or NQO1, among others, achieved statistical significance in the False Discovery Rate test. The most significant validated variant (P=4.48x10(-5)) was located in the tumor-suppressor gene ALPK2.
Conclusions: We describe genetic variants associated with extreme phenotypes of high and low risk for the development of tobacco-induced lung adenocarcinoma. Our results and our strategy may help to identify high-risk subjects and to develop new therapeutic strategies.
Revista:
DIAGNOSTIC CYTOPATHOLOGY
ISSN:
8755-1039
Año:
2020
Vol.:
48
N°:
9
Págs.:
827 - 832
Desmoplastic small round cell tumor (DSRCT) is rare and a highly aggressive neoplasm that typically involves the soft tissues of the abdomen or pelvis in children or young adults, showing a male predilection. Although it can occurs over a wide age range, the peak incidence is in the third decade of life. DSRCT usually shows widespread abdominal serosal involvement, and overall patient survival is poor. On the other hand, extra-abdominal DSRCT is very rare. DSRCT in major salivary glands has been reported, but it is extremely rare. In the majority of reported series diagnosis is made by the histological analysis of FFPE tissues together with immunohistochemistry (IHC) and molecular analysis, particularly the demonstration of chromosomal translocation involving EWSR1. Very few cases have been diagnosed so far by Fine Needle Aspiration (FNA) cytology. Moreover ancillary studies have been performed in all reported cases in FFPE samples. There is still controversy and lack of consensus regarding the suitability of cytological samples especially smears for immunocytochemical (ICC) and fluorescence in situ hybridization (FISH), what makes its standardization difficult. We report a case of a primary DSRCT of parotid gland in a 17-year-old male diagnosed by FNA cytology. The cytomorphological diagnosis was coupled with ICC and FISH analysis performed on stained smears. We emphasize the feasibility and reliability of cytological smears for the application of immunocytochemical and molecular techniques.
Revista:
IMMUNITY
ISSN:
1074-7613
Año:
2020
Vol.:
52
N°:
5
Págs.:
856 - 871.E8
Neutrophils are expanded and abundant in cancer-bearing hosts. Under the influence of CXCR1 and CXCR2 chemokine receptor agonists and other chemotactic factors produced by tumors, neutrophils, and granulocytic myeloid-derived suppressor cells (MDSCs) from cancer patients extrude their neutrophil extracellular traps (NETs). In our hands, CXCR1 and CXCR2 agonists proved to be the major mediators of cancer-promoted NETosis. NETs wrap and coat tumor cells and shield them from cytotoxicity, as mediated by CD8+ T cells and natural killer (NK) cells, by obstructing contact between immune cells and the surrounding target cells. Tumor cells protected from cytotoxicity by NETs underlie successful cancer metastases in mice and the immunotherapeutic synergy of protein arginine deiminase 4 (PAD4) inhibitors, which curtail NETosis with immune checkpoint inhibitors. Intravital microscopy provides evidence of neutrophil NETs interfering cytolytic cytotoxic T lymphocytes (CTLs) and NK cell contacts with tumor cells.
Revista:
MODERN PATHOLOGY
ISSN:
0893-3952
Año:
2020
Vol.:
33
N°:
12
Págs.:
2507 - 2519
The precise nature of the local immune responses in lung tuberculosis (TB) granulomas requires a comprehensive understanding of their environmental complexities. At its most basic level, a granuloma is a compact, organized immune aggregate of macrophages surrounded by myeloid, B and T cells. We established two complementary multiplex immunolabeling panels to simultaneously evaluate the myeloid and lymphocytic contexture of 14 human lung TB granulomas in formalin-fixed paraffin-embedded tissue samples. We observed diverse CD3+ and CD8+ T-cell and CD20+ B lymphocyte compositions of the granuloma immune environment and a relatively homogeneous distribution of all myeloid cells. We also found significant associations between CD8+ T-cell densities and the myeloid marker CD11b and phagocytic cell marker CD68. In addition, significantly more CD68+ macrophages and CD8+ T cells were found inMycobacterium tuberculosis-infected granulomas, as detected by Ziehl-Neelsen staining. FOXP3 expression was predominately found in a small subset of CD4+ T cells in different granulomas. As the success or failure of each granuloma is determined by the immune response within that granuloma at a local and not a systemic level, we attempted to identify the presence of reactive T cells based on expression of the T-cell activation marker CD137 (4-1BB) and programmed cell death-1 (PD-1). Only a small fraction of the CD4+ and CD8+ T cells expressed PD-1. CD137 expression was found only in a very small fra
Revista:
ONCOIMMUNOLOGY
ISSN:
2162-402X
Año:
2020
Vol.:
9
N°:
1
Págs.:
e1760676
Checkpoint inhibitors have improved the survival of patients with advanced tumors and show a manageable toxicity profile. However, auto-immune colitis remains a relevant side effect, and combinations of anti-PD1/PDL1 and anti-CTLA-4 increase its incidence and severity. Here, we report the case of a 50-year-old patient diagnosed with stage IV cervical cancer that relapsed following radical surgery, external radiation/brachytherapy and standard chemotherapy. She was subsequently treated with Nivolumab and Ipilimumab combination and developed grade 2 colitis presenting a dissociation between endoscopic and pathological findings. At cycle 10 the patient reported grade 3 diarrhea and abdominal discomfort, without blood or mucus in the stools. Immunotherapy was withheld and a colonoscopy was performed, showing normal mucosa in the entire colon. Puzzlingly, histologic evaluation of randomly sampled mucosal biopsy of the distal colon showed an intense intraepithelial lymphocyte infiltration with crypt loss and some regenerating crypts with a few apoptotic bodies set in a chronically inflamed lamina propria, consistent with the microscopic diagnosis of colitis. Treatment with methylprednisolone 2 mg/kg was initiated which led to a decrease in the number of stools to grade 1. Additional investigations to exclude other causes of diarrhea rendered negative results. The patient experienced a major partial response and, following the resolution of diarrhea, she was re-challenged again with
Revista:
THORAX
ISSN:
0040-6376
Año:
2020
Vol.:
75
N°:
12
Págs.:
1116 - 1118
In December 2019, an outbreak of severe acute respiratory syndrome associated to SARS-CoV2 was reported in Wuhan, China. To date, little is known on histopathological findings in patients infected with the new SARS-CoV2. Lung histopathology shows features of acute and organising diffuse alveolar damage. Subtle cellular inflammatory infiltrate has been found in line with the cytokine storm theory. Medium-size vessel thrombi were frequent, but capillary thrombi were not present. Despite the elevation of biochemical markers of cardiac injury, little histopathological damage could be confirmed. Viral RNA from paraffin sections was detected at least in one organ in 90% patients.
Revista:
THERANOSTICS
ISSN:
1838-7640
Año:
2020
Vol.:
10
N°:
10
Págs.:
4481 - 4489
Activation-induced cell death (AICD) is a complex immunoregulatory mechanism that causes the demise of a fraction of T-lymphocytes upon antigen-driven activation. In the present study we investigated the direct role of TNF in AICD of CD8 T lymphocytes. Methods: Human peripheral mononuclear cells were isolated from healthy donors and fresh tumor-infiltrating lymphocytes were obtained from cancer patients undergoing surgery. T cells were activated with anti-CD3/CD28 mAbs or with a pool of virus peptides, in combination with clinical-grade TNF blocking agents. Results: A portion of CD8 T cells undergoes apoptosis upon CD3/CD28 activation in a manner that is partially prevented by the clinically used anti-TNF agents infliximab and etanercept. TNF-mediated AICD was also observed upon activation of virus-specific CD8 T cells and tumor-infiltrating CD8 T lymphocytes. The mechanism of TNF-driven T cell death involves TNFR2 and production of mitochondrial oxygen free radicals which damage DNA. Conclusion: The use of TNF blocking agents reduces oxidative stress, hyperpolarization of mitochondria, and the generation of DNA damage in CD8 T celss undergoing activation. The fact that TNF mediates AICD in human tumor-reactive CD8 T cells suggests that the use of TNF-blocking agents can be exploited in immunotherapy strategies.
Revista:
CANCERS
ISSN:
2072-6694
Año:
2020
Vol.:
12
N°:
11
Págs.:
31-69
Revista:
NATURE CANCER
ISSN:
2662-1347
Año:
2020
Vol.:
1
Págs.:
75 - 85
Harnessing the immune system by blocking the programmed cell death protein 1 (PD-1) pathway has been a major breakthrough in non-small-cell lung cancer treatment. Nonetheless, many patients fail to respond to PD-1 inhibition. Using three syngeneic models, we demonstrate that short-term starvation synergizes with PD-1 blockade to inhibit lung cancer progression and metastasis. This antitumor activity was linked to a reduction in circulating insulin-like growth factor 1 (IGF-1) and a downregulation of IGF-1 receptor (IGF-1R) signaling in tumor cells. A combined inhibition of IGF-1R and PD-1 synergistically reduced tumor growth in mice. This effect required CD8 cells, boosted the intratumoral CD8/Treg ratio and led to the development of tumor-specific immunity. In patients with non-small-cell lung cancer, high plasma levels of IGF-1 or high IGF-1R expression in tumors was associated with resistance to anti-PD-1¿programmed death-ligand 1 immunotherapy. In conclusion, our data strongly support the clinical evaluation of IGF-1 modulators in combination with PD-1 blockade.
Autores:
Failmezger, H.; Muralidhar, S.; Rullan, A. ; et al.
Revista:
CANCER RESEARCH
ISSN:
0008-5472
Año:
2020
Vol.:
80
N°:
5
Págs.:
1199 - 1209
Despite the advent of immunotherapy, metastatic melanoma represents an aggressive tumor type with a poor survival outcome. The successful application of immunotherapy requires in-depth understanding of the biological basis and immunosuppressive mechanisms within the tumor microenvironment. In this study, we conducted spatially explicit analyses of the stromal-immune interface across 400 melanoma hematoxylin and eosin (H&E) specimens from The Cancer Genome Atlas. A computational pathology pipeline (CRImage) was used to classify cells in the H&E specimen into stromal, immune, or cancer cells. The estimated proportions of these cell types were validated by independent measures of tumor purity, pathologists' estimate of lymphocyte density, imputed immune cell subtypes, and pathway analyses. Spatial interactions between these cell types were computed using a graph-based algorithm (topological tumor graphs, TTG). This approach identified two stromal features, namely stromal clustering and stromal barrier, which represented the melanoma stromal microenvironment. Tumors with increased stromal clustering and barrier were associated with reduced intratumoral lymphocyte distribution and poor overall survival independent of existing prognostic factors. To explore the genomic basis of these TTG-derived stromal phenotypes, we used a deep learning approach integrating genomic (copy number) and transcriptomic data, thereby inferring a compressed representation of copy number-driven alterations in gene expression. This integrative analysis revealed that tumors with high stromal clustering and barrier had reduced expression of pathways involved in naive CD4 signaling, MAPK, and PI3K signaling. Taken together, our findings support the immunosuppressive role of stromal cells and T-cell exclusion within the vicinity of melanoma cells. Significance: Computational histology-based stromal phenotypes within the tumor microenvironment are significantly associated with prognosis and immune exclusion in melanoma.
Revista:
ANNALS OF NEUROLOGY
ISSN:
0364-5134
Año:
2019
Vol.:
86
N°:
4
Págs.:
539 - 551
Objective Alzheimer disease (AD) is the leading cause of dementia, and although its etiology remains unclear, it seems that type 2 diabetes mellitus (T2DM) and other prediabetic states of insulin resistance could contribute to the appearance of sporadic AD. As such, we have assessed whether tau and beta-amyloid (A beta) deposits might be present in pancreatic tissue of subjects with AD, and whether amylin, an amyloidogenic protein deposited in the pancreas of T2DM patients, might accumulate in the brain of AD patients. Methods We studied pancreatic and brain tissue from 48 individuals with no neuropathological alterations and from 87 subjects diagnosed with AD. We examined A beta and tau accumulation in the pancreas as well as that of amylin in the brain. Moreover, we performed proximity ligation assays to ascertain whether tau and/or A beta interact with amylin in either the pancreas or brain of these subjects. Results Cytoplasmic tau and A beta protein deposits were detected in pancreatic beta cells of subjects with AD as well as in subjects with a normal neuropathological examination but with a history of T2DM and in a small cohort of control subjects without T2DM. Furthermore, we found amylin deposits in the brain of these subjects, providing histological evidence that amylin can interact with A beta and tau in both the pancreas and hippocampus. Interpretation The presence of both tau and A beta inclusions in pancreatic beta cells, and of amylin deposits in the brain, provides new evidence of a potential overlap in the mechanisms underlying the pathogenesis of T2DM and AD. ANN NEUROL 2019
Autores:
Pisapia, P.; Malapelle, U.; Roma, G.; et al.
Revista:
CANCER CYTOPATHOLOGY
ISSN:
1934-662X
Año:
2019
Vol.:
127
N°:
5
Págs.:
285 - 296
Background Artificial genomic reference standards in a cytocentrifuge/cytospin format with well-annotated genomic data are useful for validating next-generation sequencing (NGS) on routine cytopreparations. Here, reference standards were optimized to be stained by different laboratories before DNA extraction and to contain a lower number of cells (2 x 10(5)). This was done to better reflect the clinical challenge of working with insufficient cytological material. Methods A total of 17 worldwide laboratories analyzed customized reference standard slides (slides A-D). Each laboratory applied its standard workflow. The sample slides were engineered to harbor epidermal growth factor receptor (EGFR) c.2235_2249del15 p.E746_A750delELREA, EGFR c.2369C>T p.T790M, Kirsten rat sarcoma viral oncogene homolog (KRAS) c.38G>A p.G13D, and B-Raf proto-oncogene, serine/threonine kinase (BRAF) c.1798_1799GT>AA p.V600K mutations at various allele frequencies (AFs). Results EGFR and KRAS mutation detection showed excellent interlaboratory reproducibility, especially on slides A and B (10% and 5% AFs). On slide C (1% AF), either the EGFR mutation or the KRAS mutation was undetected by 10 of the 17 laboratories (58.82%). A reassessment of the raw data in a second-look analysis highlighted the mutations (n = 10) that had been missed in the first-look analysis. BRAF c.1798_1799GT>AA p.V600K showed a lower concordance rate for mutation detection and AF quantification. Conclusions The data show that the detection of low-abundance mutations is still clinically challenging and may require a visual inspection of sequencing reads to detect. Genomic reference standards in a cytocentrifuge/cytospin format are a valid tool for regular quality assessment of laboratories performing molecular studies on cytology with low-AF mutations.
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2019
Vol.:
9
Págs.:
15400
Finding novel targets in non-small cell lung cancer (NSCLC) is highly needed and identification of synthetic lethality between two genes is a new approach to target NSCLC. We previously found that TMPRSS4 promotes NSCLC growth and constitutes a prognostic biomarker. Here, through large-scale analyses across 5 public databases we identified consistent co-expression between TMPRSS4 and DDR1. Similar to TMPRSS4, DDR1 promoter was hypomethylated in NSCLC in 3 independent cohorts and hypomethylation was an independent prognostic factor of disease-free survival. Treatment with 5-azacitidine increased DDR1 levels in cell lines, suggesting an epigenetic regulation. Cells lacking TMPRSS4 were highly sensitive to the cytotoxic effect of the DDR1 inhibitor dasatinib. TMPRSS4/DDR1 double knock-down (KD) cells, but not single KD cells suffered a G0/G1 cell cycle arrest with loss of E2F1 and cyclins A and B, increased p21 levels and a larger number of cells in apoptosis. Moreover, double KD cells were highly sensitized to cisplatin, which caused massive apoptosis (similar to 40%). In vivo studies demonstrated tumor regression in double KD-injected mice. In conclusion, we have identified a novel vulnerability in NSCLC resulting from a synthetic lethal interaction between DDR1 and TMPRSS4.
Revista:
NATURE MEDICINE
ISSN:
1078-8956
Año:
2019
Vol.:
25
N°:
3
Págs.:
470 - 476
Glioblastoma is the most common primary central nervous system malignancy and has a poor prognosis. Standard first-line treatment, which includes surgery followed by adjuvant radio-chemotherapy, produces only modest benefits to survival1,2. Here, to explore the feasibility, safety and immunobiological effects of PD-1 blockade in patients undergoing surgery for glioblastoma, we conducted a single-arm phase II clinical trial (NCT02550249) in which we tested a presurgical dose of nivolumab followed by postsurgical nivolumab until disease progression or unacceptable toxicity in 30 patients (27 salvage surgeries for recurrent cases and 3¿cases of primary surgery for newly diagnosed patients). Availability of tumor tissue pre- and post-nivolumab dosing and from additional patients who did not receive nivolumab allowed the evaluation of changes in the tumor immune microenvironment using multiple molecular and cellular analyses. Neoadjuvant nivolumab resulted in enhanced expression of chemokine transcripts, higher immune cell infiltration and augmented TCR clonal diversity among tumor-infiltrating T lymphocytes, supporting a local immunomodulatory effect of treatment. Although no obvious clinical benefit was substantiated following salvage surgery, two of the three patients treated with nivolumab before and after primary surgery remain alive 33 and 28 months later.
Revista:
CANCER CYTOPATHOLOGY
ISSN:
1934-662X
Año:
2019
Vol.:
127
N°:
7
Págs.:
470 - 480
Background Programmed death-ligand 1 (PD-L1) expression, as assessed by immunohistochemistry (IHC), is used to select patients with non-small cell lung cancer (NSCLC) for anti-programmed cell death protein 1 (PD-1)/PD-L1 therapy. The current study evaluated the feasibility and efficacy of PD-L1 immunostaining and quantitation on direct Papanicolaou-stained cytological smears compared with formalin-fixed paraffin-embedded samples (cytological cell blocks and surgical resection specimens) in NSCLC cases using 2 commercially available assays: the PD-L1 IHC 22C3 pharmDx assay (Agilent Technologies/Dako, Carpinteria, CA, USA) and the Ventana SP263 Assay (Ventana Medical Systems Inc, Tucson, Arizona). Methods PD-L1 immunostaining using either both or one of the assays was tested in 117 sets of paired samples obtained from 62 NSCLC cases. The tumor proportion score was reported in every case following the recommendations of the International Association for the Study of Lung Cancer (IASLC). Results In 57 sets of samples, both PD-L1 assays were used. Due to the availability of samples, only 1 assay was performed in 3 sets of samples and in 2 cases, only cytology smears were used and tested for both assays. A total of 113 sets of paired samples finally were evaluated; 4 cases could not be studied due to intense nonspecific background staining. A significant concordance between the 2 assays on cytological smears was found. Concordance between paired cytological smears and formalin-fixed paraffin-embedded samples was observed in 97.3% of the cases. Conclusions The quantification of PD-L1 expression on direct Papanicolaou-stained cytology smears is feasible and reliable for both PD-L1 assays.
Revista:
NATURE
ISSN:
0028-0836
Año:
2019
Vol.:
569
N°:
7756
Págs.:
428 - 432
Combined PD-1 and CTLA-4-targeted immunotherapy with nivolumab and ipilimumab is effective against melanoma, renal cell carcinoma and non-small-cell lung cancer1-3. However, this comes at the cost of frequent, serious immune-related adverse events, necessitating a reduction in the recommended dose of ipilimumab that is given to patients4. In mice, co-treatment with surrogate anti-PD-1 and anti-CTLA-4 monoclonal antibodies is effective in transplantable cancer models, but also exacerbates autoimmune colitis. Here we show that treating mice with clinically available TNF inhibitors concomitantly with combined CTLA-4 and PD-1 immunotherapy ameliorates colitis and, in addition, improves anti-tumour efficacy. Notably, TNF is upregulated in the intestine of patients suffering from colitis after dual ipilimumab and nivolumab treatment. We created a model in which Rag2-/-Il2rg-/- mice were adoptively transferred with human peripheral blood mononuclear cells, causing graft-versus-host disease that was further exacerbated by ipilimumab and nivolumab treatment. When human colon cancer cells were xenografted into these mice, prophylactic blockade of human TNF improved colitis and hepatitis in xenografted mice, and moreover, immunotherapeutic control of xenografted tumours was retained. Our results provide clinically feasible strategies to dissociate efficacy and toxicity in the use of combined immune checkpoint blockade for cancer immunotherapy.
Revista:
JOURNAL OF CLINICAL MEDICINE
ISSN:
2077-0383
Año:
2019
Vol.:
8
N°:
12
Págs.:
E2134
Relapse rates in surgically resected non-small-cell lung cancer (NSCLC) patients are between 30% and 45% within five years of diagnosis, which shows the clinical need to identify those patients at high risk of recurrence. The eighth TNM staging system recently refined the classification of NSCLC patients and their associated prognosis, but molecular biomarkers could improve the heterogeneous outcomes found within each stage. Here, using two independent cohorts (MDA and CIMA-CUN) and the eighth TNM classification, we show that TMPRSS4 protein expression is an independent prognostic factor in NSCLC, particularly for patients at stage I: relapse-free survival (RFS) HR, 2.42 (95% CI, 1.47-3.99), p < 0.001; overall survival (OS) HR, 1.99 (95% CI, 1.25-3.16), p = 0.004). In stage IA, high levels of this protein remained associated with worse prognosis (p = 0.002 for RFS and p = 0.001 for OS). As TMPRSS4 expression is epigenetically regulated, methylation status could be used in circulating tumor DNA from liquid biopsies to monitor patients. We developed a digital droplet PCR (ddPCR) method to quantify absolute copy numbers of methylated and unmethylated CpGs within the TMPRSS4 and SHOX2 (as control) promoters in plasma and bronchoalveolar lavage (BAL) samples. In case-control studies, we demonstrated that TMPRSS4 hypomethylation can be used as a diagnostic tool in early stages, with an AUROC of 0.72 (p = 0.008; 91% specificity and 52% sensitivity) for BAL and 0.73 (p = 0.015; 65% specificity and 90% sensitivity) for plasma, in early stages. In conclusion, TMPRSS4 protein expression can be used to stratify patients at high risk of relapse/death in very early stages NSCLC patients. Moreover, analysis of TMPRSS4 methylation status by ddPCR in blood and BAL is feasible and could serve as a non-invasive biomarker to monitor surgically resected patients.
Revista:
CANCER LETTERS
ISSN:
0304-3835
Año:
2019
Vol.:
453
Págs.:
21 - 33
High mortality rates caused by NSCLC show the need for the identification of novel therapeutic targets. In this study we have investigated the biological effects and molecular mechanisms elicited by TMPRSS4 in NSCLC. Overexpression of TMPRSS4 in LKR13¿cells increased malignancy, subcutaneous tumor growth and multiorganic metastasis. In conditional knock-down (KD) experiments, abrogation of TMPRSS4 in H358 and H2170¿cells altered proliferation, clonogenicity, tumor engraftment and tumor growth. Reduction in S and G2/M phases of the cell cycle, decreased BrdU incorporation and increased apoptosis was also found. Transcriptomic analysis in KD cells revealed downregulation of genes involved in DNA replication, such as MCM6, TYMS and CDKN1A (p21). In patients, expression of a signature of MCM6/TYMS/TMPRSS4 genes was highly associated with poor prognosis. Downregulation of TMPRSS4 significantly increased sensitivity to chemotherapy agents. In experiments using cisplatin, apoptosis and expression of the DNA-damage marker ¿-H2A was higher in cells lacking TMPRSS4. Moreover, in vivo assays demonstrated that tumors with no TMPRSS4 were significantly more sensitive to cisplatin than controls. These results show that TMPRSS4 can be considered as a novel target in NSCLC, whose inhibition increases chemosensitivity.
Revista:
ANNALS OF ONCOLOGY
ISSN:
0923-7534
Año:
2018
Vol.:
29
N°:
5
Págs.:
1312 - 1319
Background: Combination immunotherapy has the potential to achieve additive or synergistic effects. Combined local injections of dsRNA analogues (mimicking viral RNA) and repeated vaccinations with tumor-lysate loaded dendritic cells shows efficacy against colon cancer mouse models. In the context of immunotherapy, radiotherapy can exert beneficial abscopal effects.
Patients and methods: In this two-cohort pilot phase I study, 15 advanced cancer patients received two 4-week cycles of four intradermal daily doses of monocyte-derived dendritic cells preloaded with autologous tumor lysate and matured for 24 h with poly-ICLC (Hiltonol), TNF-alpha and IFN-alpha. On days +8 and +10 of each cycle, patients received intratumoral image-guided 0.25mg injections of the dsRNA-analogue Hiltonol. Cyclophosphamide 600 mg/m(2) was administered 1 week before. Six patients received stereotactic ablative radiotherapy (SABR) on selected tumor lesions, including those injected with Hiltonol. Expression of 25 immune-relevant genes was sequentially monitored by RT-PCR on circulating peripheral blood mononuclear cell (PBMCs) and serum concentrations of a cytokine panel were sequentially determined before and during treatment. Pre-and posttreatment PBMC from patients achieving durable stable disease (SD) were studied by IFNc ELISPOT-assays responding to tumor-lysate loaded DC and by TCR beta sequencing.
Results: Combined treatment was, safe and well tolerated. One heavily pretreated castration-resistant prostate cancer patient experienced a remarkable mixed abscopal response to SABR+ immunotherapy. No objective responses were observed, while nine patients presented SD (five of them in the six-patient radiotherapy cohort). Intratumoral Hiltonol increased IFN-beta and IFN-alpha mRNA in circulating PBMC. DC vaccination increased serum IL-12 and IL-1 beta concentrations, especially in patients presenting SD. IFNc-ELISPOT reactivity to tumor lysates was observed in two patients experiencing durable SD.
Conclusions: This radio-immunotherapy combination strategy, aimed at resembling viral infection in tumor tissue in combination with a dendritic-cell vaccine and SABR, is safe and shows immune-associated activity and signs of preliminary clinical efficacy.
Revista:
ARCHIVES OF PATHOLOGY AND LABORATORY MEDICINE
ISSN:
0003-9985
Año:
2018
Vol.:
142
N°:
3
Págs.:
291 - 298
CONTEXT:
- The rapid advances in targeted therapies in non-small cell lung cancer (NSCLC) make the optimization and implementation of cytology specimens for molecular testing a priority. Up to 70% of patients with NSCLC are diagnosed at advanced stages and tissue biopsies often cannot be taken. Although cytology samples provide high-quality material for molecular testing, molecular cytopathology is not yet well known or widely used.
OBJECTIVE:
- To report the many advances in molecular cytopathology and the suitability and utility of cytology samples in molecular and genetic testing of NSCLC.
DATA SOURCES:
- Data sources comprised published peer-reviewed literature and personal experience of the authors.
CONCLUSIONS:
- Molecular testing can be performed on cytologic specimens, especially on direct smears. Rapid on-site evaluation by cytopathologists has improved the adequacy and the management of cytology samples for molecular testing. Mutational profiling of NSCLC using next-generation sequencing can be performed on cytology samples from very small amounts of DNA. Fluorescence in situ hybridization assays on cytology specimens, including stained direct smear, offer some distinct advantages over their histologic counterpart, and are used to detect ALK and ROS1 rearrangements in NSCLC. Cytology specimens allow assessment of the entire tumor cell nucleus, avoiding signal loss from truncation artifacts. The use of cytology samples for assessing programmed death ligand-1 protein expression is currently being developed. Protocols for bisulfite conversion and DNA droplet digital polymerase chain reaction assays have been optimized for cytology smear to investigate aberrant DNA methylation of several NSCLC-related genes
Revista:
CANCER CELL
ISSN:
1535-6108
Año:
2018
Vol.:
34
N°:
6
Págs.:
876 - 878
Van den Eynde et al. publish in this issue of Cancer Cell that metastatic colorectal cancer shows marked heterogeneity in T cell infiltration among different lesions and patients. Measurements of T cell infiltration in metastases by immunoscore offer some prognostic information and support immune editing by coevolving adaptive immune responses.
Autores:
Malapelle, U.; Mayo-de-Las-Casas, C.; Molina-Vila, M. A.; et al.
Revista:
CANCER CYTOPATHOLOGY
ISSN:
1934-662X
Año:
2017
Vol.:
125
N°:
8
Págs.:
615 - 626
BACKGROUND:
Molecular testing of cytological lung cancer specimens includes, beyond epidermal growth factor receptor (EGFR), emerging predictive/prognostic genomic biomarkers such as Kirsten rat sarcoma viral oncogene homolog (KRAS), neuroblastoma RAS viral [v-ras] oncogene homolog (NRAS), B-Raf proto-oncogene, serine/threonine kinase (BRAF), and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit ¿ (PIK3CA). Next-generation sequencing (NGS) and other multigene mutational assays are suitable for cytological specimens, including smears. However, the current literature reflects single-institution studies rather than multicenter experiences.
METHODS:
Quantitative cytological molecular reference slides were produced with cell lines designed to harbor concurrent mutations in the EGFR, KRAS, NRAS, BRAF, and PIK3CA genes at various allelic ratios, including low allele frequencies (AFs; 1%). This interlaboratory ring trial study included 14 institutions across the world that performed multigene mutational assays, from tissue extraction to data analysis, on these reference slides, with each laboratory using its own mutation analysis platform and methodology.
RESULTS:
All laboratories using NGS (n¿=¿11) successfully detected the study's set of mutations with minimal variations in the means and standard errors of variant fractions at dilution points of 10% (P¿=¿.171) and 5% (P¿=¿.063) despite the use of different sequencing platforms (Illumina, Ion Torrent/Proton, and Roche). However, when mutations at a low AF of 1% were analyzed, the concordance of the NGS results was low, and this reflected the use of different thresholds for variant calling among the institutions. In contrast, laboratories using matrix-assisted laser desorption/ionization-time of flight (n¿=¿2) showed lower concordance in terms of mutation detection and mutant AF quantification.
CONCLUSIONS:
Quantitative molecular reference slides are a useful tool for monitoring the performance of different multigene mutational assays, and this could lead to better standardization of molecular cytopathology procedures.
Autores:
Villalba, M.; López, L.; Redrado M; et al.
Revista:
HISTOLOGY AND HISTOPATHOLOGY
ISSN:
0213-3911
Año:
2016
Vol.:
32
N°:
9
Págs.:
929 - 940
Metastatic spread is responsible for the majority of cancer deaths and identification of metastasis-related therapeutic targets is compulsory. TMPRSS4 is a pro-metastatic druggable transmembrane type II serine protease whose expression has been associated with the development of several cancer types and poor prognosis. To study the role and expression of this protease in cancer, we have developed molecular tools (active recombinant proteins and a polyclonal antibody) that can be used for diagnostic purposes and for testing anti-TMPRSS4 drugs. In addition, we have evaluated TMPRSS4 protein expression in several cancer tissue microarrays (TMAs). Full length and truncated TMPRSS4 recombinant proteins maintained the catalytic activity in two different expression systems (baculovirus and E. coli). Sensitivity of the rabbit polyclonal antisera against TMPRSS4 (ING-pAb) outperformed the antibody most commonly used in clinical settings. Analysis by immunohistochemistry in the different TMAs identified a subset of adenocarcinomas, squamous carcinomas, large cell carcinomas and carcinoids of the lung, which may define aggressive tumors. In conclusion, our biological tools will help the characterization of TMPRSS4 activity and protein expression, as well as the evaluation of anti-TMRSS4 drugs. Future studies should determine the clinical value of assessing TMPRSS4 levels in different types of lung cancer.
Revista:
JOURNAL OF PATHOLOGY
ISSN:
0022-3417
Año:
2015
Vol.:
236
N°:
2
Págs.:
210 - 218
Peripheral chondrosarcoma (PCS) develops as malignant transformation of an osteochondroma, a benign cartilaginous outgrowth at the bone surface. Its invasive, lobular growth despite low-grade histology suggests a loss of chondrocyte polarity. The known genetics of osteochondromagenesis include mosaic loss of EXT1 or EXT2 in both hereditary and non-hereditary cases. The most frequent genetic aberrations in human PCS also include disruptions of CDKN2A or TP53. In order to test the sufficiency of either of these to drive progression of an osteochondroma to PCS, we added conditional loss of Trp53 or Ink4a/Arf in an Ext1-driven mouse model of osteochondromagenesis. Each additional tumour suppressor silencing efficiently drove the development of growths that mimic human PCS. As in humans, lobules developed from both Ext1-null and Ext1-functional clones within osteochondromas. Assessment of their orientation revealed an absence of primary cilia in the majority of mouse PCS chondrocytes, which was corroborated in human PCSs. Loss of primary cilia may be responsible for the lost polarity phenotype ascribed to PCS. Cilia deficiency blocks proliferation in physeal chondrocytes, but cell cycle deregulation is sufficient to rescue chondrocyte proliferation following deciliation. This provides a basis of selective pressure for the frequent cell-cycle regulator silencing observed in peripheral chondrosarcomagenesis. Mosaic loss of Ext1 combined with loss of cell cycle regulators promotes peripheral chondrosarcomagenesis in the mouse and reveals deficient ciliogenesis in both the model and the human disease, explaining biological behaviour including lobular and invasive growth.
Revista:
MODERN PATHOLOGY
ISSN:
0893-3952
Año:
2015
Vol.:
28
N°:
10
Págs.:
1336 - 1342
Parosteal osteosarcoma, low-grade central osteosarcoma, and fibrous dysplasia share similar histological features that may pose a diagnostic challenge. The detection of GNAS mutations in primary bone tumors has been useful in clinical practice for diagnosing fibrous dysplasia. However, the recent report of GNAS mutations being detected in a significant proportion of parosteal osteosarcoma challenges the specificity of this mutation. As the number of cases reported in this study was small we set out to determine if these results could be reproduced. We studied 97 formalin-fixed paraffin-embedded low-grade osteosarcomas from 90 patients including 62 parosteal osteosarcomas, of which MDM2 amplification was detected in 79%, 11 periosteal osteosarcomas and 24 low-grade central osteosarcoma samples. The mutational status of GNAS was analyzed in codons p.R201, p.Q227, and other less common GNAS alterations by bidirectional Sanger sequencing and/or next generation sequencing using the Life Technologies Ion Torrent platform. GNAS mutations were not detected in any of the low-grade osteosarcomas from which informative DNA was extracted. Our findings therefore support prior observations that GNAS mutations are highly specific for fibrous dysplasia and occur rarely, if ever, in parosteal and other low-grade osteosarcomas.
Autores:
Wiweger, M. I.; de Andrea, CE; Scheepstra, K. W. F.; et al.
Revista:
ORPHANET JOURNAL OF RARE DISEASES
ISSN:
1750-1172
Año:
2014
Vol.:
9
N°:
1
Págs.:
35
Background
Mutations in the EXT genes disrupt polymerisation of heparan sulphates (HS) and lead to the development of osteochondroma, an isolated/sporadic- or a multifocal/hereditary cartilaginous bone tumour. Zebrafish (Danio rerio) is a very powerful animal model which has shown to present the same cartilage phenotype that is commonly seen in mice model and patients with the rare hereditary syndrome, Multiple Osteochondroma (MO).
Methods
Zebrafish dackel (dak) mutant that carries a nonsense mutation in the ext2 gene was used in this study. A panel of molecular, morphological and biochemical analyses was used to assess at what step bone formation is affected and what mechanisms underlie changes in the bone formation in the ext2 mutant.
Results
During bone development in the ext2 -/- zebrafish, chondrocytes fail to undergo terminal differentiation; and pre-osteoblasts do not differentiate toward osteoblasts. This inadequate osteogenesis coincides with increased deposition of lipids/fats along/in the vessels and premature adipocyte differentiation as shown by biochemical and molecular markers. Also, the ext2-null fish have a muscle phenotype, i.e. muscles are shorter and thicker. These changes coexist with misshapen bones. Normal expression of runx2 together with impaired expression of osterix and its master regulator - xbp1 suggest that unfolded protein responses might play a role in MO pathogenesis.
Conclusions
Heparan sulphates are required for terminal differentiation of the cartilaginous template and consecutive formation of a scaffold that is needed for further bone development. HS are also needed for mesenchymal cell differentiation. At least one copy of ext2 is needed to maintain the balance between bone and fat lineages, but homozygous loss of the ext2 function leads to an imbalance between cartilage, bone and fat lineages. Normal expression of runx2 and impaired expression of osterix in the ext2 -/- fish indicate that HS are required by osteoblast precursors for their further differentiation towards osteoblastic lineage. Lower expression of xbp1, a master regulator of osterix, suggests that HS affect the `unfolded protein response¿, a pathway that is known to control bone formation and lipid metabolism. Our observations in the ext2-null fish might explain the musculoskeletal defects that are often observed in MO patients.
Revista:
VIRCHOWS ARCHIV
ISSN:
0945-6317
Año:
2012
Vol.:
461
N°:
4
Págs.:
475 - 481
Chondrosarcomas are malignant cartilage-forming tumours that can arise centrally (in the medulla) or peripherally (at the surface) of the bone. They are classified into three histological grades which correspond to the clinical severity. Previous studies by our group have shown altered signal transduction of the fibroblast growth factor and Wnt signalling pathways during peripheral chondrosarcoma progression. Heparan sulphate (HS) is a glycosaminoglycan that facilitates receptor binding of multiple growth factors, in which the sulphation of 6O position plays a pivotal role. 6O-Sulphation occurs through three HS 6O-sulphotransferases (HS6ST1-3) and is fine-tuned by two endosulphatases (SULF1-2) that remove 6O-sulphate groups. We have investigated whether the expression of HS6STs and SULFs changes during chondrosarcoma progression and have determined 6O-sulphation levels in two chondrosarcoma cell lines. Immunohistochemistry on tissue microarrays of chondrosarcomas showed that HS6ST3 and SULF1 were highly expressed in most chondrosarcomas, whereas SULF2 expression was absent in most cases. HS6ST1 and HS6ST2 expression are significantly increased during chondrosarcoma progression, which suggest that 6O-sulphation is increased during progression. This was confirmed in one grade III chondrosarcoma cell line, which showed a dramatically increased 6O-sulphation compared to an articular chondrocyte cell line by HPLC; another cell line showed an increased expression of one 6O-sulphated HS disaccharide. In conclusion, our results show increased HS6ST1 and HS6ST2 expression during chondrosarcoma progression and increased HS 6O-sulphation in vitro. As 6O-sulphation plays an important role in signal transduction, altered HS6STexpression might be associatedwith changes in signal transduction pathways in chondrosarcoma progression.
Revista:
MODERN PATHOLOGY
ISSN:
0893-3952
Año:
2012
Vol.:
25
N°:
9
Págs.:
1275 - 1283
The distinction between benign and malignant cartilaginous tumors located peripherally in the bone may be a challenging task in surgical pathology. The aim of this study was to investigate interobserver reliability in histological diagnosis of cartilaginous tumors in the setting of multiple osteochondromas and to evaluate possible histological parameters that could differentiate among osteochondroma, low- and high-grade secondary peripheral chondrosarcoma. Interobserver reliability was assessed by 12 specialized bone-tumor pathologists in a set of 38 cases. Substantial agreement on diagnosis among all the reviewers was observed (intraclass correlation coefficient=0.78). Our study confirmed that mitotic figures and nuclear pleomorphism are hallmarks of high-grade secondary peripheral chondrosarcoma. However, despite the substantial agreement, we demonstrated that histology alone cannot distinguish osteochondroma from low-grade secondary peripheral chondrosarcoma in the setting of multiple osteochondromas, as nodularity, the presence of binucleated cells, irregular calcification, cystic/mucoid changes and necrosis were not helpful to indicate malignant transformation of an osteochondroma. On the other hand, among the concordant cases, the cartilage cap in osteochondroma was significantly less thicker than in low- and high-grade secondary peripheral chondrosarcoma. Therefore, our study showed that a multidisciplinary approach integrating clinical and radiographical features and the size of the cartilaginous cap in combination with a histological assessment are crucial to the diagnosis of cartilaginous tumors.
Autores:
de Andrea, CE; Wiweger, M. I.; Bovée, J. V. M. G.; et al.
Revista:
VIRCHOWS ARCHIV
ISSN:
0945-6317
Año:
2012
Vol.:
460
N°:
1
Págs.:
95 - 102
Endochondral bone formation requires a cartilage template, known as the growth plate, and vascular invasion, bringing osteoblasts and osteoclasts. Endochondral chondrocytes undergo sequences of cell division, matrix secretion, cell hypertrophy, apoptosis, and matrix calcification/mineralisation. In this study, two critical steps of endochondral bone formation, the deposition of collagen X-rich matrix and blood vessel attraction/invasion, were investigated by immunohistochemistry. Fourteen multiple osteochondromas and six secondary peripheral chondrosarcomas occurring in patients with multiple osteochondromas were studied and compared to epiphyseal growth plate samples. Mutation analysis showed all studied patients (expect one) to harbour a germ-line mutations in either EXT1 or EXT2. Here, we described that homozygous mutations in EXT1/EXT2, which are causative for osteochondroma formation, are likely to affect terminal chondrocyte differentiation and vascularisation in the osteocartilaginous interface. Contrastingly, terminal chondrocyte differentiation and vascularisation seem to be unaffected in secondary peripheral chondrosarcoma. In addition, osteochondromas with high vascular density displayed a higher proliferation rate. A similar apoptotic rate was observed in osteochondromas and secondary peripheral chondrosarcomas. Recently, it has been shown that cells with functional EXT1 and EXT2 are outnumbering EXT1/EXT2 mutated cells in secondary peripheral chondrosarcomas. This might explain the increased type X collagen production and blood vessel attraction in these malignant tumours.
Autores:
de Andrea, CE; Reijnders, C. M. A.; Kroon, H. M.; et al.
Revista:
ONCOGENE
ISSN:
0950-9232
Año:
2012
Vol.:
31
N°:
9
Págs.:
1095 - 1104
Secondary peripheral chondrosarcoma is the result of malignant transformation of a pre-existing osteochondroma, the most common benign bone tumor. Osteochondromas are caused by genetic abnormalities in EXT1 or EXT2: homozygous deletion of EXT1 characterizes sporadic osteochondromas (non-familial/solitary), and germline mutations in EXT1 or EXT2 combined with loss of heterozygosity define hereditary multiple osteochondromas. While cells with homozygous inactivation of EXT and wild-type cells shape osteochondromas, the cellular composition of secondary peripheral chondrosarcomas and the role of EXT in their formation have remained unclear. We report using a targeted-tiling-resolution oligo-array-CGH (array comparative genomic hybridization) that homozygous deletions of EXT1 or EXT2 are much less frequently detected (2/17, 12%) in sporadic secondary peripheral chondrosarcomas than expected based on the assumption that they originate in sporadic osteochondromas, in which homozygous inactivation of EXT1 is found in ~80% of our cases. FISH with an EXT1 probe confirmed that, unlike sporadic osteochondromas, cells from sporadic secondary peripheral chondrosarcomas predominantly retained one (hemizygous deleted loci) or both copies (wild-type) of the EXT1 locus. By immunohistochemistry, we confirm the presence of cells with dysfunctional EXT1 in sporadic osteochondromas and show cells with functional EXT1 in sporadic secondary peripheral chondrosarcomas. These immuno results were verified in osteochondromas and secondary peripheral chondrosarcomas in the setting of hereditary multiple osteochondromas. Our data therefore point to a model of oncogenesis in which the osteochondroma creates a niche in which wild-type cells with functional EXT are predisposed to acquire other mutations giving rise to secondary peripheral chondrosarcoma, indicating that EXT-independent mechanisms are involved in the pathogenesis of secondary peripheral chondrosarcoma.
Autores:
Mohseny, A. B.; Cai, Y.; Kuijjer, M.; et al.
Revista:
EUROPEAN JOURNAL OF CANCER
ISSN:
0959-8049
Año:
2012
Vol.:
48
N°:
18
Págs.:
3429 - 3438
High-grade conventional osteosarcoma is a malignant tumour predominantly affecting adolescents and, despite multimodal intensive therapy, lethal for one third of the patients. Although there is currently detailed knowledge of normal skeletal development, this has not been integrated into research on the genesis of osteosarcoma. Recently we showed that the canonical Wnt pathway is not active in osteosarcoma and that its reactivation is disadvantageous to osteosarcoma cells. Since Wnt is regulating normal skeletogenesis together with other pathways, here we report on the activities of the bone morphogenic protein (BMP), the transforming growth factor beta (TGFß) and the hedgehog (Hh) pathways in osteosarcoma. Human osteosarcoma samples (n = 210), benign bone tumours of osteoblastic lineage called osteoblastoma (n = 25) and osteosarcoma cell lines (n = 19) were examined. For pathway activity luciferase transcriptional reporter assays and gene and protein expression analyses were performed. Immunohistochemical analysis of phosphorylated Smad1 and Smad2, the intracellular effectors of BMP and TGFß, respectively, showed nuclear expression of both proteins in 70% of the osteosarcoma samples at levels comparable to osteoblastoma. Interestingly cases with lower expression showed significantly worse disease free survival. This may imply that drugs restoring impaired signalling pathways in osteosarcoma might change the tumour¿s aggressive clinical course, however targeted pathway modulation in vitro did not affect cell proliferation.
Revista:
JOURNAL OF PATHOLOGY
ISSN:
0022-3417
Año:
2011
Vol.:
223
N°:
4
Págs.:
531 - 542
Proteoglycans are molecules consisting of protein cores onto which sugar chains, i.e., glycosaminoglycans (GAGs) such as heparan or chondroitin sulphates, are attached. Proteoglycans are produced by nearly all cells, and once secreted they become a major component of the extracellular matrix. Cartilage is particularly rich in proteoglycans, and changes in the structure and composition of GAGs have been found in osteochondromas and osteoarthritis. The zebrafish (Danio rerio) exhibits fast development, a growth plate-like organization of its craniofacial skeleton and an availability of various mutants, making it a powerful model for the study of human skeletal disorders with unknown aetiology. We analysed skeletons from five zebrafish lines with known mutations in genes involved in proteoglycan synthesis: dackel (dak/ext2), lacking heparan sulphate; hi307 (ß3gat3), deficient for most GAGs; pinscher (pic/slc35b2), presenting defective sulphation of GAGs and other molecules; hi954 (uxs1), lacking Notch and most GAGs due to impaired protein xylosylation; and knypek (kny/gpc4), missing the protein core of the Glypican-4 proteoglycan. Here we show that each mutant displays different phenotypes related to: (a) cartilage morphology; (b) composition of the extracellular matrix; (c) ultrastructure of the extracellular matrix; and (d) the intracellular ultrastructure of chondrocytes, proving that sulphated GAGs orchestrate the cartilage intra- and extracellular ultrastructures. The mild phenotype of the hi307 mutant suggests that proteoglycans consisting of a protein core and a short sugar linker might suffice for proper chondrocyte stacking. Finally, knypek supports the involvement of Glypican-4 in the craniofacial phenotype of Simpson¿Golabi¿Behmel syndrome and suggests GPC4 as a modulator of the overgrowth phenotype that is associated with this syndrome and is primarily caused by a mutation in GPC3. Moreover, we speculate on the potential involvement of SLC35B2, ß3GAT3 and UXS1 in skeletal dysplasias. This work promotes the use of zebrafish as a model of human skeletal development and associated pathologies.
Revista:
JOURNAL OF PATHOLOGY
ISSN:
0022-3417
Año:
2011
Vol.:
224
N°:
2
Págs.:
160 - 168
Proteoglycans are secreted into the extracellular matrix of virtually all cell types and function in several cellular processes. They consist of a core protein onto which glycosaminoglycans (e.g., heparan or chondroitin sulphates), are attached. Proteoglycans are important modulators of gradient formation and signal transduction. Impaired biosynthesis of heparan sulphate glycosaminoglycans causes osteochondroma, the most common bone tumour to occur during adolescence. Cytochemical staining with positively charged dyes (e.g., polyethyleneimine¿PEI) allows, visualisation of proteoglycans and provides a detailed description of how proteoglycans are distributed throughout the cartilage matrix. PEI staining was studied by electron and reflection contrast microscopy in human growth plates, osteochondromas and five different proteoglycan-deficient zebrafish mutants displaying one of the following skeletal phenotypes: dackel (dak/ext2), lacking heparan sulphate and identified as a model for human multiple osteochondromas; hi307 (ß3gat3), deficient for most glycosaminoglycans; pinscher (pic/slc35b2), presenting with defective sulphation of glycosaminoglycans; hi954 (uxs1), lacking most glycosaminoglycans; and knypek (kny/gpc4), missing the protein core of the glypican-4 proteoglycan. The panel of genetically well-characterized proteoglycan-deficient zebrafish mutants serves as a convincing and comprehensive study model to investigate proteoglycan distribution and the relation of this distribution to the model mutation status. They also provide insight into the distributions and gradients that can be expected in the human homologue. Human growth plate, wild-type zebrafish and fish mutants with mild proteoglycan defects (hi307 and kny) displayed proteoglycans distributed in a gradient throughout the matrix. Although the mutants pic and hi954, which had severely impaired proteoglycan biosynthesis, showed no PEI staining, dak mutants demonstrated reduced PEI staining and no gradient formation. Most chondrocytes from human osteochondromas showed normal PEI staining. However, approximately 10% of tumour chondrocytes were similar to those found in the dak mutant (e.g., lack of PEI gradients). The cells in the reduced PEI-stained areas are likely associated with loss-of-function mutations in the EXT genes, and they might contribute to tumour initiation by disrupting the gradients.
Autores:
de Andrea, CE; Petrilli, A. S.; Jesus-Garcia, R.; et al.
Revista:
INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY
ISSN:
1936-2625
Año:
2011
Vol.:
4
N°:
2
Págs.:
169 - 174
Osteosarcoma is the most frequent primary malignant bone tumor. Distinct histological features are distinguishable based on the morphology of the tumor. Differences in nuclei size and shape are often observed in osteosarcoma reflecting its broad histopathological heterogeneity. This study explores the relevance of two nuclear parameters in osteosarcoma: large area and round shape. Computerized nuclear morphometry was performed in 56 conventional osteosarcoma preoperative biopsies. The mean patient follow-up time was 35.1 months. Based on the nuclear area, no significant difference (P = 0.09) in overall survival between patients with large (¿ 42.5 ¿m2) and small (< 42.5 ¿m2) tumor nuclei was found. However, when cases with large and round nuclei were analyzed jointly (¿ 42.5 ¿m2 and coefficient of nuclear roundness ¿ 0.7), these two parameters together were likely to be a predictive factor (P = 0.05). Osteosarcoma patients with large and round tumor nuclei had a better outcome than patients with small and polymorphic (ovoid or spindle-shaped) nuclei. In this study, nuclear morphometry proved to be a useful tool to shed light on the biology of osteosarcoma showing that some morphometric parameters can be easily applied to help identifying patients with a good prognosis.
Revista:
LABORATORY INVESTIGATION
ISSN:
1530-0307
Año:
2010
Vol.:
90
N°:
7
Págs.:
1091 - 1101
Primary cilia are specialized cell surface projections found on most cell types. Involved in several signaling pathways, primary cilia have been reported to modulate cell and tissue organization. Although they have been implicated in regulating cartilage and bone growth, little is known about the organization of primary cilia in the growth plate cartilage and osteochondroma. Osteochondromas are bone tumors formed along the growth plate, and they are caused by mutations in EXT1 or EXT2 genes. In this study, we show the organization of primary cilia within and between the zones of the growth plate and osteochondroma. Using confocal and electron microscopy, we found that in both tissues, primary cilia have a similar formation but a distinct organization. The shortest ciliary length is associated with the proliferative state of the cells, as confirmed by Ki-67 immunostaining. Primary cilia organization in the growth plate showed that non-polarized chondrocytes (resting zone) are becoming polarized (proliferating and hypertrophic zones), orienting the primary cilia parallel to the longitudinal axis of the bone. The alignment of primary cilia forms one virtual axis that crosses the center of the columns of chondrocytes reflecting the polarity axis of the growth plate. We also show that primary cilia in osteochondromas are found randomly located on the cell surface. Strikingly, the growth plate-like polarity was retained in sub-populations of osteochondroma cells that were organized into small columns. Based on this, we propose the existence of a mixture (`mosaic¿) of normal lining (EXT+/¿ or EXTwt/wt) and EXT¿/¿ cells in the cartilaginous cap of osteochondromas.
Autores:
Mohseny, A. B.; Tieken, C.; van der Velden, P. A; et al.
Revista:
GENES CHROMOSOMES AND CANCER
ISSN:
1045-2257
Año:
2010
Vol.:
49
N°:
12
Págs.:
1095 - 1103
Conventional osteosarcoma is characterized by rapid growth, high local aggressiveness, and metastasizing potential. Patients developing lung metastases experience poor prognosis despite extensive chemotherapy regimens and surgical interventions. Previously we identified a subgroup of osteosarcoma patients with loss of CDKN2A/p16 protein expression in the primary tumor biopsies which was significantly predictive of a very poor prognosis. Here we aimed to identify the underlying mechanism(s) of this protein loss in relation to osteosarcoma behavior. The CDKN2A locus was analyzed in osteosarcoma cases with total loss of CDKN2A/p16 expression and in cases with high protein expression using melting curve analysis-methylation assay (MCA-Meth), fluorescent in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA), and mutation analysis. All cases with complete CDKN2A/p16 protein loss showed homozygous deletions at the CDKN2A locus. In none of the cases hyper methylation of the promoter region was seen which was confirmed by sequencing this region. Taken together we show that large or smaller deletions of the CDKN2A locus are evident in patient samples and underlie the CDKN2A/p16 protein expression loss while promoter methylation does not appear to be a mechanism of this expression loss. Genomic loss of CDKN2A instead of promoter methylation might be a plausible explanation for the rapid proliferation and high aggressiveness of osteosarcoma by simultaneous impairment CDKN2A/p14ARF function.