Revistas
Autores:
Glez-Vaz, J.; Azpilikueta, A.; Olivera, I.; et al.
Revista:
JOURNAL FOR IMMUNOTHERAPY OF CANCER
ISSN 2051-1426
Vol. 10
N° 3
Año 2022
Págs.e003532
Background On the basis of efficacy in mouse tumor models, multiple CD137 (4-1BB) agonist agents are being preclinically and clinically developed. The costimulatory molecule CD137 is inducibly expressed as a transmembrane or as a soluble protein (sCD137). Moreover, the CD137 cytoplasmic signaling domain is a key part in approved chimeric antigen receptors (CARs). Reliable pharmacodynamic biomarkers for CD137 ligation and costimulation of T cells will facilitate clinical development of CD137 agonists in the clinic. Methods We used human and mouse CD8 T cells undergoing activation to measure CD137 transcription and protein expression levels determining both the membrane-bound and soluble forms. In tumor-bearing mice plasma sCD137 concentrations were monitored on treatment with agonist anti-CD137 monoclonal antibodies (mAbs). Human CD137 knock-in mice were treated with clinical-grade agonist anti-human CD137 mAb (Urelumab). Sequential plasma samples were collected from the first patients intratumorally treated with Urelumab in the INTRUST clinical trial. Anti-mesothelin CD137-encompassing CAR-transduced T cells were stimulated with mesothelin coated microbeads. sCD137 was measured by sandwich ELISA and Luminex. Flow cytometry was used to monitor CD137 surface expression. Results CD137 costimulation upregulates transcription and protein expression of CD137 itself including sCD137 in human and mouse CD8 T cells. Immunotherapy with anti-CD137 agonist mAb resulted in increased plasma sCD137 in mice bearing syngeneic tumors. sCD137 induction is also observed in human CD137 knock-in mice treated with Urelumab and in mice transiently humanized with T cells undergoing CD137 costimulation inside subcutaneously implanted Matrigel plugs. The CD137 signaling domain-containing CAR T cells readily released sCD137 and acquired CD137 surface expression on antigen recognition. Patients treated intratumorally with low dose Urelumab showed increased plasma concentrations of sCD137. Conclusion sCD137 in plasma and CD137 surface expression can be used as quantitative parameters dynamically reflecting therapeutic costimulatory activity elicited by agonist CD137-targeted agents.
Revista:
THERANOSTICS
ISSN 1838-7640
Vol. 12
N° 3
Año 2022
Págs.1373 - 1387
Rationale: The CEA-CD3 T cell bispecific antibody cibisatamab (CEA-TCB) is currently undergoing clinical trials. Here we study its performance against three-dimensional tumor organoids in cocultures with T cells as compared to a higher affinity CEACAM5-CD3 (CEACAM5-TCB) bispecific antibody using time-lapse confocal microscopy. Methods: Pre-labelled spheroids derived from colon cancer cell lines and primary organoids derived from four colorectal cancer surgical specimens, which expressed different graded levels of CEA, were exposed in cocultures to T lymphocytes. Cocultures were treated with CEA-CD3 T-cell engagers and were followed by live confocal microscopy. Caspase 3 activation detected in real-time was used as an indicator of tumor cell death. Co-cultures were also set up with autologous tumor-associated fibroblasts to test the co-stimulatory effect of a fibroblast activated protein (FAP)- targeted 4-1BBL bispecific antibody fusion protein currently undergoing clinical trials. Results: Tumor-cell killing of 3D colon carcinoma cultures was dependent on the levels of surface CEA expression, in such a way that the lower affinity agent (CEA-TCB) did not mediate killing by human preactivated T cells below a certain CEA expression threshold, while the high affinity construct (CEACAM5-TCB) remained active on the low CEA expressing organoids. Modelling heterogeneity in the levels of CEA expression by coculturing CEA high and low organoids showed measurable but weak bystander killing. Cocultures of tumor organoids, autologous fibroblasts and T cells allowed to observe a costimulatory effect of anti-FAP-4-1BBL both to release IFN gamma and to attain more efficacious tumor cell killing. Conclusion: Three-dimensional tumor cocultures with T cells using live confocal microscopy provide suitable models to test the requirements for colon-cancer redirected killing as elicited by CEA-targeted T-cell engagers undergoing clinical trials and treatment allow combinations to be tested in a relevant preclinical system.
Revista:
CANCER DISCOVERY
ISSN 2159-8274
Vol. 11
N° 7
Año 2021
Págs.1700 - 1715
Specific mechanisms by which tumor-infiltrating lymphocytes (TIL) become dysfunctional remain poorly understood. Here, we employed a two-pronged approach using single-cell mass cytometry and tissue imaging technologies to dissect TILs from 25 patients with resectable and 35 patients with advanced non-small cell lung cancer (NSCLC). We identified a burned-out CD8(+) TIL subset (Ebo) that specifically accumulated within the tumor microenvironment (TME) but not in adjacent nontumoral tissues. Ebo showed the highest expression of proliferation and activation markers but produced the lowest amount of IFN gamma and were the most apoptotic CD8(+) TIL subset. Using a humanized patient-derived tumor xenograft model, we demonstrated that Ebo expansion occurred within the TME in a PD-1/B7-H1 pathway-dependent manner. Ebo abundance in baseline tumor tissues was associated with resistance to anti-PD therapy in patients with NSCLC. Our study identifies a dysfunctional TIL subset, with distinct features from previously described exhausted T cells, and implies strategies to overcome immunotherapy resistance. SIGNIFICANCE: We identified a highly proliferative, overactivated, and apoptotic dysfunctional CD8(+) tumor-infiltrating subpopulation that is functionally distinct from previously described exhausted T cells. This population is expanded in lung cancer tissues in a PD-1/B7-H1-dependent manner, and its abundance is associated with resistance to cancer immunotherapy, thus becoming a potential tissue biomarker.
Revista:
JOURNAL FOR IMMUNOTHERAPY OF CANCER
ISSN 2051-1426
Vol. 9
N° Supl. 2
Año 2021
Págs.A536
Revista:
JOURNAL OF CLINICAL ONCOLOGY
ISSN 0732-183X
Vol. 39
N° 15
Año 2021
Revista:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN 0027-8424
Vol. 118
N° 26
Año 2021
Págs.e2025930118
Costimulation via CD137 (4-1BB) enhances antitumor immunity mediated by cytotoxic T lymphocytes. Anti-CD137 agonist antibodies elicit mild liver inflammation in mice, and the maximum tolerated dose of Urelumab, an anti-human CD137 agonist monoclonal antibody, in the clinic was defined by liver inflammation-related side effects. A protease-activated prodrug form of the anti-mouse CD137 agonist antibody 1D8 (1D8 Probody therapeutic, Pb-Tx) was constructed and found to be selectively activated in the tumor microenvironment. This construct, which encompasses a protease-cleavable linker holding in place a peptide that masks the antigen binding site, exerted antitumor effects comparable to the unmodified antibody but did not result in liver inflammation. Moreover, it efficaciously synergized with both PD-1 blockade and adoptive T-cell therapy. Surprisingly, minimal active Pb-Tx reached tumor-draining lymph nodes, and regional lymphadenectomy did not abrogate antitumor efficacy. By contrast, S1P receptor-dependent recirculation of T cells was absolutely required for efficacy. The preferential cleavage of the anti-CD137 Pb-Tx by tumor proteases offers multiple therapeutic opportunities, including neoadjuvant therapy, as shown by experiments in which the Pb-Tx is given prior to surgery to avoid spontaneous metastases.
Revista:
CANCER RESEARCH
ISSN 0008-5472
Vol. 81
N° 13
Año 2021
Revista:
NATURE COMMUNICATIONS
ISSN 2041-1723
Vol. 12
N° 1
Año 2021
Págs.7296
CD137 (4-1BB; TNFSR9) is an activation-induced surface receptor that through costimulation effects provide antigen-primed T cells with augmented survival, proliferation and effector functions as well as metabolic advantages. These immunobiological mechanisms are being utilised for cancer immunotherapy with agonist CD137-binding and crosslinking-inducing agents that elicit CD137 intracellular signaling. In this study, side-by-side comparisons show that provision of CD137 costimulation in-cis with regard to the TCR-CD3-ligating cell is superior to that provided in-trans in terms of T cell activation, proliferation, survival, cytokine secretion and mitochondrial fitness in mouse and human. Cis ligation of CD137 relative to the TCR-CD3 complex results in more intense canonical and non-canonical NF-kappa B signaling and provides a more robust induction of cell cycle and DNA damage repair gene expression programs. Here we report that the superiority of cis versus trans CD137-costimulation is readily observed in vivo and is relevant for understanding the immunotherapeutic effects of CAR T cells and CD137 agonistic therapies currently undergoing clinical trials, which may provide costimulation either in cis or in trans. Costimulation has been shown to be required for optimal activation of T cells and it could be delivered either in trans with respect to the source of CD3-TCR ligation or in cis on the same cell. Here the authors show that CD137 costimulation is more effective when delivered in cis to enhance T cell proliferation and activation.
Revista:
JOURNAL OF CLINICAL ONCOLOGY
ISSN 0732-183X
Vol. 39
N° 15
Año 2021
Revista:
CLINICAL CANCER RESEARCH
ISSN 1078-0432
Vol. 27
N° 20
Año 2021
Págs.5443 - 5445
Radiotherapy and immunotherapy can be concomitantly or sequentially combined seeking synergistic effects in terms of control of irradiated tumors and abscopal effects on nonirradiated lesions. Clinical-trial testing of such combinations faces several obstacles to demonstrate efficacy and needs improvements in trial design, patient selection, evaluation of results and biomarker discovery.
Revista:
EUROPEAN JOURNAL OF IMMUNOLOGY
ISSN 0014-2980
Vol. 51
N° 9
Año 2021
Págs.2274 - 2280
In humans, IL-8 (CXCL8) is a key chemokine for chemotaxis of polymorphonuclear leukocytes and monocytes/macrophages when acting on CXCR1 and CXCR2. CXCL8 activity on neutrophils includes chemotaxis and eliciting the extrusion of neutrophil extracellular traps (NETs). In this study, we show that concentrations of IL-8 that induce NETosis surpass in at least one order of magnitude those required to elicit chemoattraction in human neutrophils. IL-8-induced NETosis was less dependent on G-proteins than migration, while extracellular Ca+2 chelation similarly inhibited both processes. Reactive oxygen species (ROS) were more important for NETosis than for chemotaxis as evidenced by neutralization with N-acetyl -cysteine. Interestingly, selective blockade with anti-CXCR1 mAb inhibited NETosis much more readily than chemotaxis, while pharmacological inhibition of both CXCR1 and CXCR2, or selective inhibition for CXCR2 alone, similarly inhibited both functions. Together, these results propose a model according to which low concentrations of IL-8 in a gradient attract neutrophils to the inflammatory foci, while high receptor-saturating concentrations of IL-8 give rise to NETosis once leukocytes reach the core of the inflammatory insult.
Revista:
JOURNAL OF PATHOLOGY
ISSN 0022-3417
Vol. 255
N° 2
Año 2021
Págs.190 - 201
Neutrophil extracellular traps (NETs) are webs of extracellular nuclear DNA extruded by dying neutrophils infiltrating tissue. NETs constitute a defence mechanism to entrap and kill fungi and bacteria. Tumours induce the formation of NETs to the advantage of the malignancy via a variety of mechanisms shown in mouse models. Here, we investigated the presence of NETs in a variety of human solid tumours and their association with IL-8 (CXCL8) protein expression and CD8(+) T-cell density in the tumour microenvironment. Multiplex immunofluorescence panels were developed to identify NETs in human cancer tissues by co-staining with the granulocyte marker CD15, the neutrophil marker myeloperoxidase and citrullinated histone H3 (H3Cit), as well as IL-8 protein and CD8(+) T cells. Three ELISA methods to detect and quantify circulating NETs in serum were optimised and utilised. Whole tumour sections and tissue microarrays from patients with non-small cell lung cancer (NSCLC; n = 14), bladder cancer (n = 14), melanoma (n = 11), breast cancer (n = 31), colorectal cancer (n = 20) and mesothelioma (n = 61) were studied. Also, serum samples collected retrospectively from patients with metastatic melanoma (n = 12) and NSCLC (n = 34) were ELISA assayed to quantify circulating NETs and IL-8. NETs were detected in six different human cancer types with wide individual variation in terms of tissue density and distribution. At least in NSCLC, bladder cancer and metastatic melanoma, NET density positively correlated with IL-8 protein expression and inversely correlated with CD8(+) T-cell densities. In a series of serum samples from melanoma and NSCLC patients, a positive correlation between circulating NETs and IL-8 was found. In conclusion, NETs are detectable in formalin-fixed human biopsy samples from solid tumours and in the circulation of cancer patients with a considerable degree of individual variation. NETs show a positive association with IL-8 and a trend towards a negative association with CD8(+) tumour-infiltrating lymphocytes. (c) 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Revista:
CLINICAL CANCER RESEARCH
ISSN 1078-0432
Vol. 27
N° 9
Año 2021
Págs.2383 - 2393
One of the most important mechanisms by which cancer fosters its own development is the generation of an immune microenvironment that inhibits or impairs antitumor immune responses. A cancer permissive immune microenvironment is present in a large proportion of the patients with cancer who do not respond to immunotherapy approaches intended to trigger preexisting antitumor immune responses, for instance, immune checkpoint blockade. High circulating levels of IL8 in patients with cancer quite accurately predict those who will not benefit from checkpoint-based immunotherapy. IL8 has been reported to favor cancer progression and metastases via different mechanisms, including proangiogenesis and the maintenance of cancer stem cells, but its ability to attract and functionally modulate neutrophils and macrophages is arguably one of the most important factors. IL8 does not only recruit neutrophils to tumor lesions, but also triggers the extrusion of neutrophil extracellular traps (NET). The relevance and mechanisms underlying the contribution of both neutrophils and NETs to cancer development and progression are starting to be uncovered and include both direct effects on cancer cells and changes in the tumor microenvironment, such as facilitating metastasis, awakening micrometastases from dormancy, and facilitating escape from cytotoxic immune cells. Blockade of IL8 or its receptors (CXCR1 and CXCR2) is being pursued in drug development, and clinical trials alone or in combination with anti-PD-L1 checkpoint inhibitors are already ongoing.
Revista:
EUROPEAN JOURNAL OF IMMUNOLOGY
ISSN 0014-2980
Vol. 51
N° Supl. 1
Año 2021
Págs.124 - 124
Revista:
JOURNAL FOR IMMUNOTHERAPY OF CANCER
ISSN 2051-1426
Vol. 9
N° 11
Año 2021
Págs.e002953
Background BO-112 is a nanoplexed form of polyinosinic:polycytidylic acid that acting on toll-like receptor 3 (TLR3), melanoma differentiation-associated protein 5 (MDA5) and protein kinase RNA-activated (PKR) elicits rejection of directly injected transplanted tumors, but has only modest efficacy against distant untreated tumors. Its clinical activity has also been documented in early phase clinical trials. The 5,6-dimethylxanthenone-4-acetic acid (DMXAA) stimulator of interferon genes (STING) agonist shows a comparable pattern of efficacy when used via intratumoral injections. Methods Mice subcutaneously engrafted with bilateral MC38 and B16.OVA-derived tumors were treated with proinflammatory immunotherapy agents known to be active when intratumorally delivered. The combination of BO-112 and DMXAA was chosen given its excellent efficacy and the requirements for antitumor effects were studied on selective depletion of immune cell types and in gene-modified mouse strains lacking basic leucine zipper ATF-like transcription factor 3 (BATF3), interferon-alpha/beta receptor (IFNAR) or STING. Spatial requirements for the injections were studied in mice bearing three tumor lesions. Results BO-112 and DMXAA when co-injected in one of the lesions of mice bearing concomitant bilateral tumors frequently achieved complete local and distant antitumor efficacy. Synergistic effects were contingent on CD8 T cell lymphocytes and dependent on conventional type 1 dendritic cells, responsiveness to type I interferon (IFN) and STING function in the tumor-bearing host. Efficacy was preserved even if BO-112 and DMXAA were injected in separate lesions in a manner able to control another untreated third-party tumor. Efficacy could be further enhanced on concurrent PD-1 blockade. Conclusion Clinically feasible co-injections of BO-112 and a STING agonist attain synergistic efficacy able to eradicate distant untreated tumor lesions.
Revista:
CANCER DISCOVERY
ISSN 2159-8274
Vol. 11
N° 6
Año 2021
Págs.1353 - 1367
Checkpoint inhibitors are being added to standard-of-care chemotherapy in multiple clinical trials. Success has been reported in non-small and small cell lung carcinomas and urothelial, head and neck, gastric, and esophageal cancers, and promising results are already available in triple-negative breast and pancreatic malignancies. The potential mechanisms of synergy include immunogenic tumor cell death, antiangiogenesis, selective depletion of myeloid immunosuppressive cells, and lymphopenia, which reduces regulatory T cells and makes room for proliferation of effector T cells. However, chemotherapy regimens have not been optimized for such combinations, perhaps explaining some recent clinical trial disappointments. Approaches to make the most of chemoimmunotherapy include neoadjuvant and adjuvant schemes.Significance: Immunotherapy of cancer based on PD-1/PD-L1 blockade has prompted a revolution in cancer clinical management. Evidence in phase III clinical trials already supports combinations of immunotherapy with standard-of-care chemotherapy for a number of malignant diseases. This review focuses on such evidence and provides an overview of the potential synergistic mechanisms of action and the opportunities to optimize chemoimmunotherapy regimens.
Revista:
CANCER RESEARCH
ISSN 0008-5472
Vol. 81
N° 13 Supl. S
Año 2021
Autores:
Márquez Rodas, I.; Saiag, P.; de la Cruz Merino, L.; et al.
Revista:
JOURNAL FOR IMMUNOTHERAPY OF CANCER
ISSN 2051-1426
Vol. 9
N° Supl. 2
Año 2021
Págs.A1011 - A1012
Revista:
CLINICAL CANCER RESEARCH
ISSN 1078-0432
Vol. 27
N° 2
Año 2021
Págs.374 - 376
It has been reported that a group of patients with advanced non- small cell lung cancer showed circulating T cells with a senescent phenotype, and an abundance of such cells is associated with worse clinical response to immune checkpoint inhibitors. This study encourages further analysis of the role of senescent T cells in resistance to lung cancer immunotherapy.
Revista:
CLINICAL CANCER RESEARCH
ISSN 1078-0432
Vol. 27
N° 3
Año 2021
Págs.680 - 688
Immunomodulatory agents blocking the PD-1/PD-L1 pathway have shown a new way to treat cancer. The explanation underlying the success of these agents may be the selective expression of PD-L1 with dominant immune-suppressive activities in the tumor microenvironment (TME), supporting a more favorable tumor response-to-toxicity ratio. However, despite the big success of these drugs, most patients with cancer show primary or acquired resistance, calling for the identification of new immune modulators in the TME. Using a genome-scale T-cell activity array in combination with bioinformatic analysis of human cancer databases, we identified Siglec-15 as a critical immune suppressor with broad upregulation on various cancer types and a potential target for cancer immunotherapy. Siglec-15 has unique molecular features compared with many other known checkpoint inhibitory ligands. It shows prominent expression on macrophages and cancer cells and a mutually exclusive expression with PD-L1, suggesting that it may be a critical immune evasion mechanism in PD-L1-negative patients. Interestingly, Siglec-15 has also been identified as a key regulator for osteoclast differentiation and may have potential implications in bone disorders not limited to osteoporosis. Here, we provide an overview of Siglec-15 biology, its role in cancer immune regulation, the preliminary and encouraging clinical data related to the first-in-class Siglec-15 targeting mAb, as well as many unsolved questions in this pathway. As a new player in the cancer immunotherapeutic arena, Siglec-15 may represent a novel class of immune inhibitors with tumor-associated expression and divergent mechanisms of action to PD-L1, with potential implications in anti-PD-1/PD-L1-resistant patients.
Revista:
RESPIRATORY RESEARCH
ISSN 1465-993X
Vol. 22
N° 1
Año 2021
Págs.122
BackgroundAsthma has been associated with impaired interferon response. Multiple cell types have been implicated in such response impairment and may be responsible for asthma immunopathology. However, existing models to study the immune response in asthma are limited by bulk profiling of cells. Our objective was to Characterize a model of peripheral blood mononuclear cells (PBMCs) of patients with severe asthma (SA) and its response to the TLR3 agonist Poly I:C using two single-cell methods.MethodsTwo complementary single-cell methods, DropSeq for single-cell RNA sequencing (scRNA-Seq) and mass cytometry (CyTOF), were used to profile PBMCs of SA patients and healthy controls (HC). Poly I:C-stimulated and unstimulated cells were analyzed in this study.ResultsPBMCs (n=9414) from five SA (n=6099) and three HC (n=3315) were profiled using scRNA-Seq. Six main cell subsets, namely CD4+T cells, CD8+T cells, natural killer (NK) cells, B cells, dendritic cells (DCs), and monocytes, were identified. CD4+T cells were the main cell type in SA and demonstrated a pro-inflammatory profile characterized by increased JAK1 expression. Following Poly I:C stimulation, PBMCs from SA had a robust induction of interferon pathways compared with HC. CyTOF profiling of Poly I:C stimulated and unstimulated PBMCs (n=160,000) from the same individuals (SA=5; HC=3) demonstrated higher CD8+and CD8+effector T cells in SA at baseline, followed by a decrease of CD8+effector T cells after poly I:C stimulation.ConclusionsSingle-cell profiling of an in vitro model using PBMCs in patients with SA identified activation of pro-inflammatory pathways at baseline and strong response to Poly I:C, as well as quantitative changes in CD8+effector cells. Thus, transcriptomic and cell quantitative changes are associated with immune cell heterogeneity in this model to evaluate interferon responses in severe asthma.
Autores:
Yeung, J. (Autor de correspondencia); Yaghoobi, V.; Miyagishima, D.; et al.
Revista:
NEURO-ONCOLOGY
ISSN 1522-8517
Vol. 23
N° 11
Año 2021
Págs.1922 - 1935
Background. Malignant meningiomas are fatal and lack effective therapy. As M2 macrophages are the most prevalent immune cell type in human meningiomas, we hypothesized that normalizing this immunosuppressive population would be an effective treatment strategy. Methods. We used CIBERSORTx to examine the proportions of 22 immune subsets in human meningiomas. We targeted the colony-stimulating factor 1 (CSF1) or CSF1 receptor (CSF1R) axis, an important regulator of macrophage phenotype, using monoclonal antibodies (mAbs) in a novel immunocompetent murine model (MGS1) for malignant meningioma. RNA sequencing (RNA-seq) was performed to identify changes in gene expression in the tumor microenvironment (TME). Mass cytometry was used to delineate changes in immune subsets after treatment. We measured patients' plasma CSF1 levels using ELISA and CSF1R expression using multiplex quantitative immunofluorescence in a human meningioma tissue microarray. Results. Human meningiomas are heavily enriched for immunosuppressive myeloid cells. MGS1 recapitulates the TME of human meningiomas, including an abundance of myeloid cells, a paucity of infiltrating T cells, and low programmed death ligand 1 (PD-L1) expression. Treatment of murine meningiomas with anti-CSF1/CSF1R, but not programmed cell death receptor 1 (PD-1), mAbs abrogate tumor growth. RNA-seq and mass cytometry analyses reveal a myeloid cell reprogramming with limited effect on T cells in the TME. CSF1 plasma levels are significantly elevated in human patients, and CSF1R is highly expressed on CD163(+) macrophages within the human TME. Conclusion. Our findings suggest that anti-CSF1/CSF1R antibody treatment may be an effective normalization cancer immunotherapy for malignant meningiomas.
Revista:
TRANSLATIONAL LUNG CANCER RESEARCH
ISSN 2218-6751
Vol. 10
N° 3
Año 2021
Págs.1327 - +
Background: Tobacco is the main risk factor for developing lung cancer. Yet, some heavy smokers do not develop lung cancer at advanced ages while others develop it at young ages. Here, we assess for the first time the genetic background of these clinically relevant extreme phenotypes using whole exome sequencing (WES).
Methods: We performed WES of germline DNA from heavy smokers who either developed lung adenocarcinoma at an early age ( extreme cases, n=50) or did not present lung adenocarcinoma or other tumors at an advanced age (extreme controls, n=50). We selected non-synonymous variants located in exonic regions and consensus splice sites of the genes that showed significantly different allelic frequencies between both cohorts. We validated our results in all the additional extreme cases (i.e., heavy smokers who developed lung adenocarcinoma at an early age) available from The Cancer Genome Atlas (TCGA).
Results: The mean age for the extreme cases and controls was respectively 49.7 and 77.5 years. Mean tobacco consumption was 43.6 and 56.8 pack-years. We identified 619 significantly different variants between both cohorts, and we validated 108 of these in extreme cases selected from TCGA. Nine validated variants, located in relevant cancer related genes, such as PARP4, HLA-A or NQO1, among others, achieved statistical significance in the False Discovery Rate test. The most significant validated variant (P=4.48x10(-5)) was located in the tumor-suppressor gene ALPK2.
Conclusions: We describe genetic variants associated with extreme phenotypes of high and low risk for the development of tobacco-induced lung adenocarcinoma. Our results and our strategy may help to identify high-risk subjects and to develop new therapeutic strategies.
Revista:
JOURNAL OF THORACIC ONCOLOGY
ISSN 1556-0864
Vol. 15
N° 4
Año 2020
Págs.489 - 492
Revista:
IMMUNITY
ISSN 1074-7613
Vol. 52
N° 5
Año 2020
Págs.856 - 871.E8
Neutrophils are expanded and abundant in cancer-bearing hosts. Under the influence of CXCR1 and CXCR2 chemokine receptor agonists and other chemotactic factors produced by tumors, neutrophils, and granulocytic myeloid-derived suppressor cells (MDSCs) from cancer patients extrude their neutrophil extracellular traps (NETs). In our hands, CXCR1 and CXCR2 agonists proved to be the major mediators of cancer-promoted NETosis. NETs wrap and coat tumor cells and shield them from cytotoxicity, as mediated by CD8+ T cells and natural killer (NK) cells, by obstructing contact between immune cells and the surrounding target cells. Tumor cells protected from cytotoxicity by NETs underlie successful cancer metastases in mice and the immunotherapeutic synergy of protein arginine deiminase 4 (PAD4) inhibitors, which curtail NETosis with immune checkpoint inhibitors. Intravital microscopy provides evidence of neutrophil NETs interfering cytolytic cytotoxic T lymphocytes (CTLs) and NK cell contacts with tumor cells.
Revista:
ANNALS OF ONCOLOGY
ISSN 0923-7534
Vol. 31
N° Supl. 1
Año 2020
Págs.S4 - S4
Revista:
ESMO OPEN
ISSN 2059-7029
Vol. 5
N° 3
Año 2020
Págs.e000662
During the last years, there has been a dramatic increase in the administrative and bureaucratic burden associated with clinical research, which has clearly had an impact on its overall efficiency and on the activity of clinical investigators and research teams. Indeed, the supervision of the adherence of clinical research to Good Clinical Practice (GCP) guidelines and legal regulations is of the utmost importance. Yet, while such regulations have remained largely unchanged during recent years, the number of administrative tasks and their complexity have grown markedly, as supported by the results of a survey performed among 940 clinical investigators that we report in this manuscript. Therefore, many investigators believe that it has become necessary to undertake a rigorous analysis of the causes and consequences of this issue, and to create a conduit to channel the advice from experienced investigators regarding clinical research procedures, in order to improve them. Based on these premises, ESMO has launched the ESMO Clinical Research Observatory (ECRO), a task force that will analyse different aspects of clinical research. ECRO will aim to provide the views of ESMO on clinical research procedures based on the feedback from clinical investigators, under complete adherence to the Declaration of Helsinki, the GCP guidelines and any other applicable legal regulations, while at the same time showing profound respect for all the stakeholders involved in clinical research. This
Autores:
Schalper, K. A. (Autor de correspondencia); Carleton, M. ; Zhou, M. ; et al.
Revista:
NATURE MEDICINE
ISSN 1078-8956
Vol. 26
N° 5
Año 2020
Págs.688 - 692
Serum interleukin-8 (IL-8) levels and tumor neutrophil infiltration are associated with worse prognosis in advanced cancers. Here, using a large-scale retrospective analysis, we show that elevated baseline serum IL-8 levels are associated with poor outcome in patients (n = 1,344) with advanced cancers treated with nivolumab and/or ipilimumab, everolimus or docetaxel in phase 3 clinical trials, revealing the importance of assessing serum IL-8 levels in identifying unfavorable tumor immunobiology and as an independent biomarker in patients receiving immune-checkpoint inhibitors.
Revista:
ONCOIMMUNOLOGY
ISSN 2162-402X
Vol. 9
N° 1
Año 2020
Págs.e1760676
Checkpoint inhibitors have improved the survival of patients with advanced tumors and show a manageable toxicity profile. However, auto-immune colitis remains a relevant side effect, and combinations of anti-PD1/PDL1 and anti-CTLA-4 increase its incidence and severity. Here, we report the case of a 50-year-old patient diagnosed with stage IV cervical cancer that relapsed following radical surgery, external radiation/brachytherapy and standard chemotherapy. She was subsequently treated with Nivolumab and Ipilimumab combination and developed grade 2 colitis presenting a dissociation between endoscopic and pathological findings. At cycle 10 the patient reported grade 3 diarrhea and abdominal discomfort, without blood or mucus in the stools. Immunotherapy was withheld and a colonoscopy was performed, showing normal mucosa in the entire colon. Puzzlingly, histologic evaluation of randomly sampled mucosal biopsy of the distal colon showed an intense intraepithelial lymphocyte infiltration with crypt loss and some regenerating crypts with a few apoptotic bodies set in a chronically inflamed lamina propria, consistent with the microscopic diagnosis of colitis. Treatment with methylprednisolone 2 mg/kg was initiated which led to a decrease in the number of stools to grade 1. Additional investigations to exclude other causes of diarrhea rendered negative results. The patient experienced a major partial response and, following the resolution of diarrhea, she was re-challenged again with
Revista:
ANNALS OF ONCOLOGY
ISSN 0923-7534
Vol. 31
Año 2020
Págs.S707 - S707
Revista:
THERANOSTICS
ISSN 1838-7640
Vol. 10
N° 10
Año 2020
Págs.4481 - 4489
Activation-induced cell death (AICD) is a complex immunoregulatory mechanism that causes the demise of a fraction of T-lymphocytes upon antigen-driven activation. In the present study we investigated the direct role of TNF in AICD of CD8 T lymphocytes. Methods: Human peripheral mononuclear cells were isolated from healthy donors and fresh tumor-infiltrating lymphocytes were obtained from cancer patients undergoing surgery. T cells were activated with anti-CD3/CD28 mAbs or with a pool of virus peptides, in combination with clinical-grade TNF blocking agents. Results: A portion of CD8 T cells undergoes apoptosis upon CD3/CD28 activation in a manner that is partially prevented by the clinically used anti-TNF agents infliximab and etanercept. TNF-mediated AICD was also observed upon activation of virus-specific CD8 T cells and tumor-infiltrating CD8 T lymphocytes. The mechanism of TNF-driven T cell death involves TNFR2 and production of mitochondrial oxygen free radicals which damage DNA. Conclusion: The use of TNF blocking agents reduces oxidative stress, hyperpolarization of mitochondria, and the generation of DNA damage in CD8 T celss undergoing activation. The fact that TNF mediates AICD in human tumor-reactive CD8 T cells suggests that the use of TNF-blocking agents can be exploited in immunotherapy strategies.
Autores:
Zhou, T.; Damsky, W. ; Weizman, O. E. ; et al.
Revista:
NATURE
ISSN 0028-0836
Vol. 583
N° 7817
Año 2020
Págs.609 - 614
Cytokines were the first modern immunotherapies to produce durable responses in patients with advanced cancer, but they have only modest efficacy and limited tolerability(1,2). In an effort to identify alternative cytokine pathways for immunotherapy, we found that components of the interleukin-18 (IL-18) pathway are upregulated on tumour-infiltrating lymphocytes, suggesting that IL-18 therapy could enhance anti-tumour immunity. However, recombinant IL-18 previously did not demonstrate efficacy in clinical trials(3). Here we show that IL-18BP, a high-affinity IL-18 decoy receptor, is frequently upregulated in diverse human and mouse tumours and limits the anti-tumour activity of IL-18 in mice. Using directed evolution, we engineered a 'decoy-resistant' IL-18 (DR-18) that maintains signalling potential but is impervious to inhibition by IL-18BP. Unlike wild-type IL-18, DR-18 exerted potent anti-tumour effects in mouse tumour models by promoting the development of poly-functional effector CD8(+)T cells, decreasing the prevalence of exhausted CD8(+)T cells that express the transcriptional regulator of exhaustion TOX, and expanding the pool of stem-like TCF1(+)precursor CD8(+)T cells. DR-18 also enhanced the activity and maturation of natural killer cells to effectively treat anti-PD-1 resistant tumours that have lost surface expression of major histocompatibility complex class I molecules. These results highlight the potential of the IL-18 pathway for immunotherapeutic intervention and implicate IL-18BP as a major therapeutic barrier. An engineered version of IL-18 that is resistant to binding by the soluble decoy receptor IL-18BP shows strong anti-tumour activity in mouse models of cancer.
Autores:
Wang, E. Y. ; Rosen, C. E. ; Dai, Y. L.; et al.
Revista:
CANCER RESEARCH
ISSN 0008-5472
Vol. 80
N° 16
Año 2020
Revista:
CANCER JOURNAL
ISSN 1528-9117
Vol. 26
N° 6
Año 2020
Págs.473 - 484
Anti-PD-(L)1 therapy represents a turning point in lung cancer immunotherapy, moving from previously ineffective enhancer strategies to immune checkpoints as standard first- and second-line therapies. This unprecedented success highlights the importance of mechanisms to escape immune attack, such PD-1/PD-L1 axis, and emphasize the importance to better understand the tumor immune microenvironment. Analyzing the specifics of immune response against lung tumor cells and how malignant cells progressively adapt to this pressure may help to understand which are the key aspects to guide the development of new therapeutic strategies. Here we review the past and present of clinical lung cancer immunotherapy and give a perspective for the future development based on emerging biological insights.
Revista:
CLINICAL CANCER RESEARCH
ISSN 1078-0432
Vol. 26
N° 16
Año 2020
Págs.4186 - 4197
Immune checkpoint inhibitors (ICI) have revolutionized the management of advanced non-small cell lung cancer (NSCLC). However, most pivotal phase III trials systematically excluded patients with active brain metastases, precluding the generalization of the results. Although theoretically restricted from crossing the blood-brain barrier, the novel pharmacokinetic/pharmacodynamic profiles of anti-PD-1/PD-L1 drugs have prompted studies to evaluate their activity in patients with NSCLC with active central nervous system (CNS) involvement. Encouraging results have suggested that ICI could be active in the CNS in selected patients with driver-negative advanced NSCLC with high PD-L1 expression and low CNS disease burden. Single-agent CNS response rates around 30% have been reported. Beyond this particular setting, anti-PD-1/PD-L1 antibodies have been evaluated in patients receiving local therapy for brain metastases (BM), addressing concerns about potential neurologic toxicity risks associated with radiotherapy, more specifically, radionecrosis (RN). Accordingly, a variety of clinical and imaging strategies are being appropriately developed to evaluate tumor response and to rule out pseudoprogression or radionecrosis. Our purpose is to critically summarize the advances regarding the role of systemic anti-PD-1/PD-L1 antibodies for the treatment of NSCLC BM. Data were collected from the PubMed database, reference lists, and abstracts from the latest scientific meetings. Recent reports suggest anti-PD-1/PD-L1 agents are active in a subset of patients with NSCLC with BM showing acceptable toxicity. These advances are expected to change soon the management of these patients but additional research is required to address concerns regarding radionecrosis and the appropriate sequencing of local and systemic therapy combinations.
Revista:
JOURNAL FOR IMMUNOTHERAPY OF CANCER
ISSN 2051-1426
Vol. 8
Año 2020
Págs.A225 - A226
Revista:
NATURE CANCER
ISSN 2662-1347
Vol. 1
Año 2020
Págs.75 - 85
Harnessing the immune system by blocking the programmed cell death protein 1 (PD-1) pathway has been a major breakthrough in non-small-cell lung cancer treatment. Nonetheless, many patients fail to respond to PD-1 inhibition. Using three syngeneic models, we demonstrate that short-term starvation synergizes with PD-1 blockade to inhibit lung cancer progression and metastasis. This antitumor activity was linked to a reduction in circulating insulin-like growth factor 1 (IGF-1) and a downregulation of IGF-1 receptor (IGF-1R) signaling in tumor cells. A combined inhibition of IGF-1R and PD-1 synergistically reduced tumor growth in mice. This effect required CD8 cells, boosted the intratumoral CD8/Treg ratio and led to the development of tumor-specific immunity. In patients with non-small-cell lung cancer, high plasma levels of IGF-1 or high IGF-1R expression in tumors was associated with resistance to anti-PD-1¿programmed death-ligand 1 immunotherapy. In conclusion, our data strongly support the clinical evaluation of IGF-1 modulators in combination with PD-1 blockade.
Revista:
JOURNAL FOR IMMUNOTHERAPY OF CANCER
ISSN 2051-1426
Vol. 8
Año 2020
Págs.A175 - A175
Revista:
BRITISH JOURNAL OF CANCER
ISSN 0007-0920
Vol. 120
N° 1
Año 2019
Págs.6 - 15
Cytokines are soluble proteins that mediate cell-to-cell communication. Based on the discovery of the potent anti-tumour activities of several pro-inflammatory cytokines in animal models, clinical research led to the approval of recombinant interferon-alpha and interleukin-2 for the treatment of several malignancies, even if efficacy was only modest. These early milestones in immunotherapy have been followed by the recent addition to clinical practice of antibodies that inhibit immune checkpoints, as well as chimeric antigen receptor T cells. A renewed interest in the anti-tumour properties of cytokines has led to an exponential increase in the number of clinical trials that explore the safety and efficacy of cytokine-based drugs, not only as single agents, but also in combination with other immunomodulatory drugs. These second-generation drugs under clinical development include known molecules with novel mechanisms of action, new targets, and fusion proteins that increase half-life and target cytokine activity to the tumour microenvironment or to the desired effector immune cells. In addition, the detrimental activity of immunosuppressive cytokines can be blocked by antagonistic antibodies, small molecules, cytokine traps or siRNAs. In this review, we provide an overview of the novel trends in the cytokine immunotherapy field that are yielding therapeutic agents for clinical trials.
Revista:
ONCOIMMUNOLOGY
ISSN 2162-402X
Vol. 8
N° 7
Año 2019
Págs.1599636
Daratumumab is an anti-CD38 fully human IgG1 mAb approved for multiple myeloma treatment. One of the proposed mechanisms of action is the induction of antibody-dependent cellular cytotoxicity (ADCC) mediated by NK cells. NK cells acquire surface CD137 expression in the presence of solid-phase-attached daratumumab and when encountering a daratumumab-coated CD38(+) tumor cell line. In this setting, addition of the agonist anti-CD137 mAb urelumab enhances NK-cell activation increasing CD25 expression and IFN gamma production. However, in vitro ADCC is not increased by the addition of urelumab both in 4h or 24h lasting experiments. To study urelumab-increased daratumumab-mediated ADCC activity in vivo, we set up a mouse model based on the intravenous administration of a luciferase-transfected multiple myeloma cell line of human origin, human NK cells and daratumumab to immuno-deficient NSG mice. In this model, intravenous administration of urelumab 24h after daratumumab delayed tumor growth and prolonged mice survival.
Revista:
CLINICAL CANCER RESEARCH
ISSN 1078-0432
Vol. 25
N° 15
Año 2019
Págs.4663 - 4673
Purpose: To determine the tumor tissue/cell distribution, functional associations, and clinical significance of PD-1, LAG3, and TIM-3 protein expression in human non-small cell lung cancer (NSCLC). Experimental Design: Using multiplexed quantitative immunofluorescence, we performed localized measurements of CD3, PD-1, LAG-3, and TIM-3 protein in > 800 clinically annotated NSCLCs from three independent cohorts represented in tissue microarrays. Associations between the marker's expression and major genomic alterations were studied in The Cancer Genome Atlas NSCLC dataset. Using mass cytometry (CyTOF) analysis of leukocytes collected from 20 resected NSCLCs, we determined the levels, coexpression, and functional profile of PD-1, LAG-3, and TIM-3 expressing immune cells. Finally, we measured the markers in baseline samples from 90 patients with advanced NSCLC treated with PD-1 axis blockers and known response to treatment. Results: PD-1, LAG-3, and TIM-3 were detected in tumorinfiltrating lymphocytes (TIL) from 55%, 41.5%, and 25.3% of NSCLC cases, respectively. These markers showed a prominent association with each other and limited association with major clinicopathologic variables and survival in patients not receiv-ing immunotherapy. Expression of the markers was lower in EGFR-mutated adenocarcinomas and displayed limited association with tumor mutational burden. In single-cell CyTOF analysis, PD-1 and LAG-3 were predominantly localized on T-cell subsets/NKT cells, whereas TIM-3 expression was higher in NK cells and macrophages. Coexpression of PD-1, LAG-3, and TIM-3 was associated with prominent T-cell activation (CD69/CD137), effector function (Granzyme-B), and proliferation (Ki-67), but also with elevated levels of proapoptotic markers (FAS/BIM). LAG-3 and TIM-3 were present in TIL subsets lacking PD-1 expression and showed a distinct functional profile. In baseline samples from 90 patients with advanced NSCLC treated with PD-1 axis blockers, elevated LAG-3 was significantly associated with shorter progressionfree survival. Conclusions: PD-1, LAG-3, and TIM-3 have distinct tissue/cell distribution, functional implications, and genomic correlates in human NSCLC. Expression of these immune inhibitory receptors in TILs is associated with prominent activation, but also with a proapoptotic T-cell phenotype. Elevated LAG-3 expression is associated with insensitivity to PD-1 axis blockade, suggesting independence of these immune evasion pathways.
Revista:
CELL
ISSN 0092-8674
Vol. 176
N° 1 - 2
Año 2019
Págs.334 - 347
Lymphocyte-activation gene 3 (LAG-3) is an immune inhibitory receptor, with major histocompatibility complex class II (MHC-II) as a canonical ligand. However, it remains controversial whether MHC-II is solely responsible for the inhibitory function of LAG-3. Here, we demonstrate that fibrinogen-like protein 1 (FGL1), a liver-secreted protein, is a major LAG-3 functional ligand independent from MHC-II. FGL1 inhibits antigen-specific T cell activation, and ablation of FGL1 in mice promotes T cell immunity. Blockade of the FGL1-LAG-3 interaction by monoclonal antibodies stimulates tumor immunity and is therapeutic against established mouse tumors in a receptor-ligand inter-dependent manner. FGL1 is highly produced by human cancer cells, and elevated FGL1 in the plasma of cancer patients is associated with a poor prognosis and resistance to anti-PD-1/B7-H1 therapy. Our findings reveal an immune evasion mechanism and have implications for the design of cancer immunotherapy.
Revista:
INTERNATIONAL JOURNAL OF CANCER
ISSN 0020-7136
Vol. 145
N° 7
Año 2019
Págs.1991 - 2001
Sunitinib is one of the most widely used targeted therapeutics for renal cell carcinoma (RCC), but acquired resistance against targeted therapies remains a major clinical challenge. To dissect mechanisms of acquired resistance and unravel reliable predictive biomarkers for sunitinib in RCC, we sequenced the exons of 409 tumor-suppressor genes and oncogenes in paired tumor samples from an RCC patient, obtained at baseline and after development of acquired resistance to sunitinib. From newly arising mutations, we selected, using in silico prediction models, six predicted to be deleterious, located in G6PD, LRP1B, SETD2, TET2, SYNE1, and DCC. Consistently, immunoblotting analysis of lysates derived from sunitinib-desensitized RCC cells and their parental counterparts showed marked differences in the levels and expression pattern of the proteins encoded by these genes. Our further analysis demonstrates essential roles for these proteins in mediating sunitinib cytotoxicity and shows that their loss of function renders tumor cells resistant to sunitinib in vitro and in vivo. Finally, sunitinib resistance induced by continuous exposure or by inhibition of the six proteins was overcome by treatment with cabozantinib or a low-dose combination of lenvatinib and everolimus. Collectively, our results unravel novel markers of acquired resistance to sunitinib and clinically relevant approaches for overcoming this resistance in RCC.
Revista:
INTERNATIONAL JOURNAL OF CANCER
ISSN 0020-7136
Vol. 145
N° 7
Año 2019
Págs.1991 - 2001
Sunitinib is one of the most widely used targeted therapeutics for renal cell-cancer (RCC) but acquired resistance against targeted therapies remains a major clinical challenge. To dissect mechanisms of acquired resistance and unravel reliable predictive biomarkers for sunitinib in renal cell-cancer (RCC), we sequenced the exons of 409 tumor-suppressor genes and oncogenes in paired tumor samples from an RCC patient, obtained at baseline and following development of acquired resistance to sunitinib. From newly arising mutations, we selected, using in-silico prediction models, 6 predicted to be deleterious, located in G6PD, LRP1B, SETD2, TET2, SYNE1 and DCC. Consistently, immunoblotting analysis of lysates derived from sunitinib-desensitized RCC cells and their parental counterparts showed marked differences in the levels and expression pattern of the proteins encoded by these genes. Our further analysis demonstrates essential roles for these proteins in mediating sunitinib cytotoxicity and shows that their loss of function render tumor cells resistant to sunitinib in vitro and in vivo. Finally, sunitinib resistance induced by continuous exposure or by inhibition of the 6 proteins was overcome by treatment with cabozantinib or a low-dose combination of lenvatinib and everolimus. Collectively, our results unravel novel markers of acquired resistance to sunitinib and clinically relevant approaches for overcoming this resistance in RCC.
Revista:
CLINICAL CANCER RESEARCH
ISSN 1078-0432
Vol. 25
N° 15
Año 2019
Págs.4592 - 4602
Immune-checkpoint inhibitors (ICI), particularly inhibitors of the PD-1 axis, have altered the management of non-small cell lung cancer (NSCLC) over the last 10 years. First demonstrated to improve outcomes in second-line or later therapy of advanced disease, ICIs were shown to improve overall survival compared with chemotherapy in first-line therapy for patients whose tumors express PD-L1 on at least 50% of cells. More recently, combining ICIs with chemotherapy has been shown to improve survival in patients with both squamous and nonsquamous NSCLC, regardless of PD-L1 expression. However, PD-L1 and, more recently, tumor mutational burden have not proven to be straightforward indicative biomarkers. We describe the advances to date in utilizing these biomarkers, as well as novel markers of tumor inflammation, to ascertain which patients are most likely to benefit from ICIs. Ongoing translational work promises to improve the proportion of patients who benefit from these agents.
Autores:
Etxeberria, I.; Bolaños, E.; Quetglas, J. I.; et al.
Revista:
CANCER CELL
ISSN 1535-6108
Vol. 36
N° 6
Año 2019
Págs.613 - 629
Retroviral gene transfer of interleukin-12 (IL-12) into T cells markedly enhances antitumor efficacy upon adoptive transfer but has clinically shown unacceptable severe side effects. To overcome the toxicity, we engineered tumor-specific CD8+ T cells to transiently express IL-12. Engineered T cells injected intratumorally, but not intravenously, led to complete rejections not only of the injected lesion but also of distant concomitant tumors. Efficacy was further enhanced by co-injection with agonist anti-CD137 mAb or by transient co-expression of CD137 ligand. This treatment induced epitope spreading of the endogenous CD8+ T cell immune response in a manner dependent on cDC1 dendritic cells. Mouse and human tumor-infiltrating T lymphocyte cultures can be transiently IL-12 engineered to attain marked immunotherapeutic effects.
Autores:
Nagineni, V. V.; Schalper, K.; Desai, S.; et al.
Revista:
JOURNAL FOR IMMUNOTHERAPY OF CANCER
ISSN 2051-1426
Vol. 7
Año 2019
Revista:
NATURE MEDICINE
ISSN 1078-8956
Vol. 25
N° 3
Año 2019
Págs.470 - 476
Glioblastoma is the most common primary central nervous system malignancy and has a poor prognosis. Standard first-line treatment, which includes surgery followed by adjuvant radio-chemotherapy, produces only modest benefits to survival1,2. Here, to explore the feasibility, safety and immunobiological effects of PD-1 blockade in patients undergoing surgery for glioblastoma, we conducted a single-arm phase II clinical trial (NCT02550249) in which we tested a presurgical dose of nivolumab followed by postsurgical nivolumab until disease progression or unacceptable toxicity in 30 patients (27 salvage surgeries for recurrent cases and 3¿cases of primary surgery for newly diagnosed patients). Availability of tumor tissue pre- and post-nivolumab dosing and from additional patients who did not receive nivolumab allowed the evaluation of changes in the tumor immune microenvironment using multiple molecular and cellular analyses. Neoadjuvant nivolumab resulted in enhanced expression of chemokine transcripts, higher immune cell infiltration and augmented TCR clonal diversity among tumor-infiltrating T lymphocytes, supporting a local immunomodulatory effect of treatment. Although no obvious clinical benefit was substantiated following salvage surgery, two of the three patients treated with nivolumab before and after primary surgery remain alive 33 and 28 months later.
Autores:
Han, X.; Vesely, M. D.; Yang, W.; et al.
Revista:
SCIENCE TRANSLATIONAL MEDICINE
ISSN 1946-6234
Vol. 11
N° 522
Año 2019
Págs.eaax1159
Systemic lupus erythematosus (SLE) and discoid lupus erythematosus (DLE) of the skin are autoimmune diseases characterized by inappropriate immune responses against self-proteins; the key elements that determine disease pathogenesis and progression are largely unknown. Here, we show that mice lacking immune inhibitory receptor VISTA or programmed death-1 homolog (PD-1H KO) on a BALB/c background spontaneously develop cutaneous and systemic autoimmune diseases resembling human lupus. Cutaneous lupus lesions of PD-1H KO mice have clustering of plasmacytoid dendritic cells (pDCs) similar to human DLE. Using mass cytometry, we identified proinflammatory neutrophils as critical early immune infiltrating cells within cutaneous lupus lesions of PD-1H KO mice. We also found that PD-1H is highly expressed on immune cells in human SLE, DLE lesions, and cutaneous lesions of MRL/lpr mice. A PD-1H agonistic monoclonal antibody in MRL/lpr mice reduces cutaneous disease, autoantibodies, inflammatory cytokines, chemokines, and immune cell expansion. Furthermore, PD-1H on both T cells and myeloid cells including neutrophils and pDCs could transmit inhibitory signals, resulting in reduced activation and function, establishing PD-1H as an inhibitory receptor on T cells and myeloid cells. On the basis of these findings, we propose that PD-1H is a critical element in the pathogenesis and progression of lupus, and PD-1H activation could be effective for treatment of systemic and cutaneous lupus.
Autores:
Wang, J.; Sun, J.; Liu, L. N.; et al.
Revista:
*NATURE MEDICINE* (IF: 36.130)
ISSN 1546-170X
Vol. 25
N° 4
Año 2019
Págs.656 - 666
Overexpression of the B7-H1 (PD-L1) molecule in the tumor microenvironment (TME) is a major immune evasion mechanism in some patients with cancer, and antibody blockade of the B7-H1/PD-1 interaction can normalize compromised immunity without excessive side-effects. Using a genome-scale T cell activity array, we identified Siglec-15 as a critical immune suppressor. While only expressed on some myeloid cells normally, Siglec-15 is broadly upregulated on human cancer cells and tumor-infiltrating myeloid cells, and its expression is mutually exclusive to B7-H1, partially due to its induction by macrophage colony-stimulating factor and downregulation by IFN-gamma. We demonstrate that Siglec-15 suppresses antigen-specific T cell responses in vitro and in vivo. Genetic ablation or antibody blockade of Siglec-15 amplifies anti-tumor immunity in the TME and inhibits tumor growth in some mouse models. Taken together, our results support Siglec-15 as a potential target for normalization cancer immunotherapy.
Revista:
MOLECULAR CANCER THERAPEUTICS
ISSN 1535-7163
Vol. 18
N° 3
Año 2019
Págs.621 - 631
Radiotherapy can be synergistically combined with immunotherapy in mouse models, extending its efficacious effects outside of the irradiated field (abscopal effects). We previously reported that a regimen encompassing local radiotherapy in combination with anti-CD137 plus anti-PD-1 mAbs achieves potent abscopal effects against syngeneic transplanted murine tumors up to a certain tumor size. Knowing that TGF beta expression or activation increases in irradiated tissues, we tested whether TGF beta blockade may further enhance abscopal effects in conjunction with the anti-PD-1 plus anti-CD137 mAb combination. Indeed, TGF beta blockade with 1D11, a TGF beta-neutralizing mAb, markedly enhanced abscopal effects and overall treatment efficacy against subcutaneous tumors of either 4T1 breast cancer cells or large MC38 colorectal tumors. Increases in CD8 T cells infiltrating the nonirradiated lesion were documented upon combined treatment, which intensely expressed Granzyme-B as an indicator of cytotoxic effector capability. Interestingly, tumor tissue but not healthy tissue irradiation results in the presence of higher concentrations of TGF beta in the nonirradiated contralateral tumor that showed smad2/3 phosphorylation increases in infiltrating CD8 T cells. In conclusion, radiotherapy-induced TGF beta hampers abscopal efficacy even upon combination with a potent immunotherapy regimen. Therefore, TGF beta blockade in combination with radioimmunotherapy results in greater efficacy.
Autores:
Lee, J. W.; Zhang, Y.; Eoh, K. J.; et al.
Revista:
JOURNAL OF THORACIC ONCOLOGY
ISSN 1556-1380
Vol. 14
N° 6
Año 2019
Págs.1046 - 1060
Introduction: This study aimed to characterize the tumor-infiltrating immune cells population in Kras/tumor protein 53 (Trp53)-driven lung tumors and to evaluate the combinatorial antitumor effect with MEK inhibitor (MEKi), trametinib, and immunomodulatory monoclonal antibodies (mAbs) targeting either programmed death -1 (PD-1) or programmed cell death ligand 1 (PD-L1) in vivo.
Methods: Trp53(FloxFlox); Kras(G12D/+); Rosa26(LSL-Luciferase/LSL-Luciferase) (PKL) genetically engineered mice were used to develop autochthonous lung tumors with intratracheal delivery of adenoviral Cre recombinase. Using these tumor-bearing lungs, tumor-infiltrating immune cells were characterized by both mass cytometry and flow cytometry. PKL-mediated immunocompetent syngeneic and transgenic lung cancer mouse models were treated with MEKi alone as well as in combination with either anti-PD-1 or anti-PD-L1 mAbs. Tumor growth and survival outcome were assessed. Finally, immune cell populations within spleens and tumors were evaluated by flow cytometry and immunohistochemistry.
Results: Myeloid-derived suppressor cells (MDSCs) were significantly augmented in PKL-driven lung tumors compared to normal lungs of tumor-free mice. PD-L1 expression appeared to be highly positive in both lung tumor cells and, particularly MDSCs. The combinatory administration of MEKi with either anti-PD-1 or anti-PD-L1 mAbs synergistically increased antitumor response and survival outcome compared with single-agent therapy...
Revista:
SCIENCE TRANSLATIONAL MEDICINE
ISSN 1946-6234
Vol. 11
N° 496
Año 2019
Revista:
ADVANCES IN LABORATORY MEDICINE / AVANCES EN MEDICINA DE LABORATORIO
ISSN 2628-491X
Vol. 1
N° 2
Año 2019
Págs.1 - 2
Revista:
JOURNAL OF CLINICAL ONCOLOGY
ISSN 0732-183X
Vol. 37
N° 15
Año 2019
Autores:
Gettinger, S. N.; Choi, J.; Mani, N.; et al.
Revista:
NATURE COMMUNICATIONS
ISSN 2041-1723
Vol. 9
N° 1
Año 2018
Págs.3196
The biological determinants of sensitivity and resistance to immune checkpoint blockers are not completely understood. To elucidate the role of intratumoral T-cells and their association with the tumor genomic landscape, we perform paired whole exome DNA sequencing and multiplexed quantitative immunofluorescence (QIF) in pre-treatment samples from non-small cell lung carcinoma (NSCLC) patients treated with PD-1 axis blockers. QIF is used to simultaneously measure the level of CD3+ tumor infiltrating lymphocytes (TILs), in situ T-cell proliferation (Ki-67 in CD3) and effector capacity (Granzyme-B in CD3). Elevated mutational load, candidate class-I neoantigens or intratumoral CD3 signal are significantly associated with favorable response to therapy. Additionally, a "dormant" TIL signature is associated with survival benefit in patients treated with immune checkpoint blockers characterized by elevated TILs with low activation and proliferation. We further demonstrate that dormant TILs can be reinvigorated upon PD-1 blockade in a patient-derived xenograft model.
Revista:
CELL
ISSN 0092-8674
Vol. 175
N° 2
Año 2018
Págs.313 - 326
Harnessing an antitumor immune response has been a fundamental strategy in cancer immunotherapy. For over a century, efforts have primarily focused on amplifying immune activation mechanisms that are employed by humans to eliminate invaders such as viruses and bacteria. This "immune enhancement'' strategy often results in rare objective responses and frequent immune-related adverse events (irAEs). However, in the last decade, cancer immunotherapies targeting the B7-H1/PD-1 pathway (anti-PD therapy), have achieved higher objective response rates in patients with much fewer irAEs. This more beneficial tumor response-to-toxicity profile stems from distinct mechanisms of action that restore tumor-induced immune deficiency selectively in the tumor microenvironment, here termed "(i)mmune normalization,'' which has led to its FDA approval in more than 10 cancer indications and facilitated its combination with different therapies. In this article, we wish to highlight the principles of immune normalization and learn from it, with the ultimate goal to guide better designs for future cancer immunotherapies
Revista:
ANNALS OF ONCOLOGY
ISSN 0923-7534
Vol. 29
N° Supl. 8
Año 2018
Págs.viii651 - viii652
Revista:
ANNALS OF ONCOLOGY
ISSN 0923-7534
Vol. 29
N° Supl. 6
Año 2018
Págs.21 - 22
Revista:
ANNALS OF ONCOLOGY
ISSN 0923-7534
Vol. 29
N° 5
Año 2018
Págs.1312 - 1319
Background: Combination immunotherapy has the potential to achieve additive or synergistic effects. Combined local injections of dsRNA analogues (mimicking viral RNA) and repeated vaccinations with tumor-lysate loaded dendritic cells shows efficacy against colon cancer mouse models. In the context of immunotherapy, radiotherapy can exert beneficial abscopal effects.
Patients and methods: In this two-cohort pilot phase I study, 15 advanced cancer patients received two 4-week cycles of four intradermal daily doses of monocyte-derived dendritic cells preloaded with autologous tumor lysate and matured for 24 h with poly-ICLC (Hiltonol), TNF-alpha and IFN-alpha. On days +8 and +10 of each cycle, patients received intratumoral image-guided 0.25mg injections of the dsRNA-analogue Hiltonol. Cyclophosphamide 600 mg/m(2) was administered 1 week before. Six patients received stereotactic ablative radiotherapy (SABR) on selected tumor lesions, including those injected with Hiltonol. Expression of 25 immune-relevant genes was sequentially monitored by RT-PCR on circulating peripheral blood mononuclear cell (PBMCs) and serum concentrations of a cytokine panel were sequentially determined before and during treatment. Pre-and posttreatment PBMC from patients achieving durable stable disease (SD) were studied by IFNc ELISPOT-assays responding to tumor-lysate loaded DC and by TCR beta sequencing.
Results: Combined treatment was, safe and well tolerated. One heavily pretreated castration-resistant prostate cancer patient experienced a remarkable mixed abscopal response to SABR+ immunotherapy. No objective responses were observed, while nine patients presented SD (five of them in the six-patient radiotherapy cohort). Intratumoral Hiltonol increased IFN-beta and IFN-alpha mRNA in circulating PBMC. DC vaccination increased serum IL-12 and IL-1 beta concentrations, especially in patients presenting SD. IFNc-ELISPOT reactivity to tumor lysates was observed in two patients experiencing durable SD.
Conclusions: This radio-immunotherapy combination strategy, aimed at resembling viral infection in tumor tissue in combination with a dendritic-cell vaccine and SABR, is safe and shows immune-associated activity and signs of preliminary clinical efficacy.
Revista:
CANCER MEDICINE
ISSN 2045-7634
Vol. 7
N° 7
Año 2018
Págs.3474 - 3483
Single nucleotide polymorphisms (SNPs) may modulate individual susceptibility to carcinogens. We designed a genome-wide association study to characterize individuals presenting extreme phenotypes of high and low risk to develop tobacco-induced non-small cell lung cancer (NSCLC), and we validated our results. We hypothesized that this strategy would enrich the frequencies of the alleles that contribute to the observed traits. We genotyped 2.37 million SNPs in 95 extreme phenotype individuals, that is: heavy smokers that either developed NSCLC at an early age (extreme cases); or did not present NSCLC at an advanced age (extreme controls), selected from a discovery set (n=3631). We validated significant SNPs in 133 additional subjects with extreme phenotypes selected from databases including >39,000 individuals. Two SNPs were validated: rs12660420 (p(combined)=5.66x10(-5); ORcombined=2.80), mapping to a noncoding transcript exon of PDE10A; and rs6835978 (p(combined)=1.02x10(-4); ORcombined=2.57), an intronic variant in ATP10D. We assessed the relevance of both proteins in early-stage NSCLC. PDE10A and ATP10D mRNA expressions correlated with survival in 821 stage I-II NSCLC patients (p=0.01 and p<0.0001). PDE10A protein expression correlated with survival in 149 patients with stage I-II NSCLC (p=0.002). In conclusion, we validated two variants associated with extreme phenotypes of high and low risk of developing tobacco-induced NSCLC. Our findings may allow to identify individuals presenting high and low risk to develop tobacco-induced NSCLC and to characterize molecular mechanisms of carcinogenesis and resistance to develop NSCLC.
Revista:
CANCER CELL
ISSN 1535-6108
Vol. 34
N° 6
Año 2018
Págs.876 - 878
Van den Eynde et al. publish in this issue of Cancer Cell that metastatic colorectal cancer shows marked heterogeneity in T cell infiltration among different lesions and patients. Measurements of T cell infiltration in metastases by immunoscore offer some prognostic information and support immune editing by coevolving adaptive immune responses.
Revista:
BLOOD
ISSN 0006-4971
Vol. 131
N° 1
Año 2018
Págs.49 - 57
4-1BB (CD137, tumor necrosis factor receptor superfamily 9) is an inducible costimulatory receptor expressed on activated T and natural killer (NK) cells. 4-1BB ligation on T cells triggers a signaling cascade that results in upregulation of antiapoptotic molecules, cytokine secretion, and enhanced effector function. In dysfunctional T cells that have a decreased cytotoxic capacity, 4-1BB ligation demonstrates a potent ability to restore effector functions. On NK cells, 4-1BB signaling can increase antibody-dependent cell-mediated cytotoxicity. Agonistic monoclonal antibodies targeting 4-1BB have been developed to harness 4-1BB signaling for cancer immunotherapy. Preclinical results in a variety of induced and spontaneous tumor models suggest that targeting 4-1BB with agonist antibodies can lead to tumor clearance and durable antitumor immunity. Clinical trials of 2 agonist antibodies, urelumab and utomilumab, are ongoing. Despite initial signs of efficacy, clinical development of urelumab has been hampered by inflammatory liver toxicity at doses > 1 mg/kg. Utomilumab has a superior safety profile, but is a less potent 4-1BB agonist relative to urelumab. Both antibodies have demonstrated promising results in patients with lymphoma and are being tested in combination therapy trials with other immunomodulatory agents. In an effort to optimally leverage 4-1BB-mediated immune activation, the next generation of 4-1BB targeting strategies attempts to decouple the observed antitumor efficacy from the on-target liver toxicity. Multiple therapeutics that attempt to restrict 4-1BB agonism to the tumor microenvironment and minimize systemic exposure have emerged. 4-1BB is a compelling target for cancer immunotherapy and future agents show great promise for achieving potent immune activation while avoiding limiting immune-related adverse events.
Revista:
ADVANCES IN CLINICAL CHEMISTRY
ISSN 0065-2423
Vol. 83
Año 2018
Págs.73 - 119
Liquid biopsy refers to the molecular analysis in biological fluids of nucleic acids, subcellular structures, especially exosomes, and, in the context of cancer, circulating tumor cells. In the last 10 years, there has been an intensive research in liquid biopsy to achieve a less invasive and more precise personalized medicine. Molecular assessment of these circulating biomarkers can complement or even surrogate tissue biopsy. Because of this research, liquid biopsy has been introduced in clinical practice, especially in oncology, prenatal screening, and transplantation. Here we review the biology, methodological approaches, and clinical applications of the main biomarkers involved in liquid biopsy.
Revista:
TRANSLATIONAL LUNG CANCER RESEARCH
ISSN 2218-6751
Vol. 7
N° Supl. 4
Año 2018
Págs.S356 - S357
Revista:
ANNALS OF ONCOLOGY
ISSN 0923-7534
Vol. 29
N° Supl. 8
Año 2018
Autores:
Villarroel-Espindola, F.; Yu, X.; Datar, I.; et al.
Revista:
CLINICAL CANCER RESEARCH
ISSN 1078-0432
Vol. 24
N° 7
Año 2018
Págs.1562 - 1573
Purpose: Determine the localized expression pattern and clinical significance of VISTA/PD-1H in human non-small cell lung cancer (NSCLC).
Experimental Design: Using multiplex quantitative immunofluorescence (QIF), we performed localized measurements of VISTA, PD-1, and PD-L1 protein in 758 stage I-IV NSCLCs from 3 independent cohorts represented in tissue microarray format. The targets were selectively measured in cytokeratinthorn tumor epithelial cells, CD3(+) T cells, CD4(+) T-helper cells, CD8(+) cytotoxic T cells, CD20(+) B lymphocytes and CD68(+) tumor-associated macrophages. We determined the association between the targets, clinicopathological/molecular variables and survival. Genomic analyses of lung cancer cases from TCGA were also performed.
Results: VISTA protein was detected in 99% of NSCLCs with a predominant membranous/cytoplasmic staining pattern. Expression in tumor and stromal cells was seen in 21% and 98% of cases, respectively. The levels of VISTA were positively associated with PD-L1, PD-1, CD8(+) T cells and CD68(+) macrophages. VISTA expression was higher in T-lymphocytes than in macrophages; and in cytotoxic T cells than in T-helper cells. Elevated VISTA was associated with absence of EGFR mutations and lower mutational burden in lung adenocarcinomas. Presence of VISTA in tumor compartment predicted longer 5-year survival.
Conclusions: VISTA is frequently expressed in human NSCLC and shows association with increased tumor-infiltrating lymphocytes, ...
Revista:
ANNALS OF ONCOLOGY
ISSN 0923-7534
Vol. 28
N° 8
Año 2017
Págs.1988 - 1995
Background: Surrogate biomarkers of efficacy are needed for anti-PD1/PD-L1 therapy, given the existence of delayed responses and pseudo-progressions. We evaluated changes in serum IL-8 levels as a biomarker of response to anti-PD-1 blockade in melanoma and non-small-cell lung cancer (NSCLC) patients. Patients and methods: Metastatic melanoma and NSCLC patients treated with nivolumab or pembrolizumab alone or nivolumab plus ipilimumab were studied. Serum was collected at baseline; at 2-4 weeks after the first dose; and at the time-points of response evaluation. Serum IL-8 levels were determined by sandwich ELISA. Changes in serum IL-8 levels were compared with the Wilcoxon test and their strength of association with response was assessed with the Mann-Whitney test. Accuracy of changes in IL-8 levels to predict response was estimated using receiver operation characteristics curves. Results: Twenty-nine melanoma patients treated with nivolumab or pembrolizumab were studied. In responding patients, serum IL-8 levels significantly decreased between baseline and best response (P < 0.001), and significantly increased upon progression (P = 0.004). In non-responders, IL-8 levels significantly increased between baseline and progression (P = 0.013). Early changes in serum IL-8 levels (2-4 weeks after treatment initiation) were strongly associated with response (P < 0.001). These observations were validated in 19 NSCLC patients treated with nivolumab or pembrolizumab (P = 0.001), and in 15 melanoma patients treated with nivolumab plus ipilimumab (P < 0.001). Early decreases in serum IL-8 levels were associated with longer overall survival in melanoma (P = 0.001) and NSCLC (P = 0.015) patients. Serum IL-8 levels also correctly reflected true response in three cancer patients presenting pseudoprogression. Conclusions: Changes in serum IL-8 levels could be used to monitor and predict clinical benefit from immune checkpoint blockade in melanoma and NSCLC patients.
Autores:
Schalper, K. A. (Autor de correspondencia); Carvajal-Hausdorf, D.; McLaughlin, J.; et al.
Revista:
CLINICAL CANCER RESEARCH
ISSN 1078-0432
Vol. 23
N° 2
Año 2017
Págs.370 - 378
Purpose: To determine the expression level, associations, and biological role of PD-L1, IDO-1, and B7-H4 in non-small cell lung cancer (NSCLC).
Experimental Design: Using multiplexed quantitative immunofluorescence (QIF), we measured the levels of PD-L1, IDO-1, B7-H4, and different tumor-infiltrating lymphoycte (TIL) subsets in 552 stages I-IV lung carcinomas from two independent populations. Associations between the marker levels, TILs, and major clinicopathologic variables were determined. Validation of findings was performed using mRNA expression data from The Cancer Genome Atlas (TCGA) and in vitro stimulation of lung adenocarcinoma A549 cells with IFN gamma and IL10.
Results: PD-L1 was detected in 16.9% and 21.8% of cases in each population. IDO-1 was expressed in 42.6% and 49.8%; and and IDO-1 were consistently associated with prominent B-and T-cell infiltrates, but B7-H4 was not. Coexpression of the three protein markers was infrequent, and comparable results were seen in the lung cancer TCGA dataset. Levels of PD-L1 and IDO-1 (but not B7-H4) were increased by IFNg stimulation in A549 cells. Treatment with IL10 upregulated B7-H4 but did not affect PD-L1 and IDO-1 levels.
Conclusions: PD-L1, IDO-1, and B7-H4 are differentially expressed in human lung carcinomas and show limited coexpression. While PD-L1 and IDO-1 are associated with increased TILs and IFNg stimulation, B7-H4 is not. The preferential expression of discrete immune evasion pathways in lung cancer could par
Revista:
JOURNAL OF TRANSLATIONAL MEDICINE
ISSN 1479-5876
Vol. 15
N° 62
Año 2017
Background: Inguinal orchiectomy is curative in 70-80% of clinical stage I testicular germ cell tumours (CS I TGCT). The identification of patients who are at low risk of relapse is critical to avoid unnecessary treatment. The aim of this study is to explore EGFR, hMLH-1/hMSH-2 and microsatellite instability (MSI) as potential prognostic factors of recurrence in CS I TGCT. Methods: Fifty-six CS I TGCT patients who underwent inguinal orchiectomy were included in this study. We analysed the relationship between clinicopathological and molecular factors with survival. Analysis of hMLH1, hMSH2 and EGFR expression was carried out by immunohistochemistry. Methylation status of the hMLH1 promoter was determined by pyrosequencing analysis in selected cases. EGFR exons 19, 20, 21 were analysed by PCR labeled-fragments and MSI status was determined using standard Multiplex MSI assays. Results: Classical pathological factors such as lymphovascular invasion, high percentage of embryonal carcinoma, rete testis invasion or tumour size >= 4 cm showed a significant relationship with a higher risk of relapse. Additionally, it was found that an epididymis invasion proved to be a significant independent poor prognostic factor of recurrence (p = 0.001). hMLH1 or hMSH2 expression showed no significant association with risk of relapse and no MSI was found. EGFR expression was observed in 30.4% of samples and its expression was associated with higher risk of relapse (HR 3.5; 95% CI 1.3-9.8; p = 0.016). None of the cases presented EGFR kinase domain mutations. Conclusions: Epididymis invasion and EGFR expression, but not hMLH-1/hMSH-2 or MSI, could be potentially useful as new prognostic factors of recurrence for CS I TGCT.
Autores:
Gettinger, S. (Autor de correspondencia); Choi, J.; Hastings, K.; et al.
Revista:
CANCER DISCOVERY
ISSN 2159-8274
Vol. 7
N° 12
Año 2017
Págs.1420 - 1435
Mechanisms of acquired resistance to immune checkpoint inhibitors (ICI) are poorly understood. We leveraged a collection of 14 ICI-resistant lung cancer samples to investigate whether alterations in genes encoding HLA Class I antigen processing and presentation machinery (APM) components or interferon signaling play a role in acquired resistance to PD-1 or PD-L1 antagonistic antibodies. Recurrent mutations or copy-number changes were not detected in our cohort. In one case, we found acquired homozygous loss of B2M that caused lack of cell-surface HLA Class I expression in the tumor and a matched patient-derived xenograft (PDX). Downregulation of B2M was also found in two additional PDXs established from ICI-resistant tumors. CRISPR-mediated knockout of B2m in an immunocompetent lung cancer mouse model conferred resistance to PD-1 blockade in vivo, proving its role in resistance to ICIs. These results indicate that HLA Class I APM disruption can mediate escape from ICIs in lung cancer.
SIGNIFICANCE: As programmed death 1 axis inhibitors are becoming more established in standard treatment algorithms for diverse malignancies, acquired resistance to these therapies is increasingly being encountered. Here, we found that defective antigen processing and presentation can serve as a mechanism of such resistance in lung cancer.
Revista:
CANCER TREATMENT REVIEWS
ISSN 0305-7372
Vol. 60
Año 2017
Págs.24 - 31
Interleukin-8 (CXCL8) was originally described asa chemokine whose main function is the attraction of a polymorphonuclear inflammatory leukocyte infiltrate acting on CXCR1/2. Recently, it has been found that tumors very frequently coopt the production of this chemokine, which in this malignant context exerts different pro-tumoral functions. Reportedly, these include angiogenesis, survival signaling for cancer stem cells and attraction of myeloid cells endowed with the ability to immunosuppress and locally provide growth factors. Given the fact that in cancer patients IL-8 is mainly produced by tumor cells themselves, its serum concentration has been shown to correlate with tumor burden. Thus, IL-8 serum concentrations have been shown to be useful asa pharmacodynamic biomarker to early detect response to immunotherapy. Finally, because of the roles that IL-8 plays in favoring tumor progression, several therapeutic strategies are being developed to interfere with its functions. Such interventions hold promise, especially for therapeutic combinations in the field of cancer immunotherapy.
Revista:
CANCER TREATMENT REVIEWS
ISSN 0305-7372
Vol. 53
Año 2017
Págs.79 - 97
The discovery of reliable biomarkers to predict efficacy and toxicity of anticancer drugs remains one of the key challenges in cancer research. Despite its relevance, no efficient study designs to identify promising candidate biomarkers have been established. This has led to the proliferation of a myriad of exploratory studies using dissimilar strategies, most of which fail to identify any promising targets and are seldom validated. The lack of a proper methodology also determines that many anti-cancer drugs are developed below their potential, due to failure to identify predictive biomarkers. While some drugs will be systematically administered to many patients who will not benefit from them, leading to unnecessary toxicities and costs, others will never reach registration due to our inability to identify the specific patient population in which they are active. Despite these drawbacks, a limited number of outstanding predictive biomarkers have been successfully identified and validated, and have changed the standard practice of oncology. In this manuscript, a multidisciplinary panel reviews how those key biomarkers were identified and, based on those experiences, proposes a methodological framework the DESIGN guidelines-to-standardize the clinical design of biomarker identification studies and to develop future research in this pivotal field. (C) 2017 The Authors. Published by Elsevier Ltd.
Revista:
CANCER RESEARCH
ISSN 0008-5472
Vol. 76
N° 20
Año 2016
Págs.5994 - 6005
Preclinical and clinical evidence indicate that the proimmune effects of radiotherapy can be synergistically augmented with immunostimulatory mAbs to act both on irradiated tumor lesions and on distant, nonirradiated tumor sites. The combination of radiotherapy with immunostimulatory anti-PD1 and anti-CD137 mAbs was conducive to favorable effects on distant nonirradiated tumor lesions as observed in transplanted MC38 (colorectal cancer), B16OVA (melanoma), and 4T1 (breast cancer) models. The therapeutic activity was crucially performed by CD8 T cells, as found in selective depletion experiments. Moreover, the integrities of BATF-3-dependent dendritic cells specialized in crosspresentation/crosspriming of antigens to CD8+ T cells and of the type I IFN system were absolute requirements for the antitumor effects to occur. The irradiation regimen induced immune infiltrate changes in the irradiated and nonirradiated lesions featured by reductions in the total content of effector T cells, Tregs, and myeloid-derived suppressor cells, while effector T cells expressed more intracellular IFN¿ in both the irradiated and contralateral tumors. Importantly, 48 hours after irradiation, CD8+ TILs showed brighter expression of CD137 and PD1, thereby displaying more target molecules for the corresponding mAbs. Likewise, PD1 and CD137 were induced on tumor-infiltrating lymphocytes from surgically excised human carcinomas that were irradiated ex vivo These mechanisms involving crosspriming and CD8 T cells advocate clinical development of immunotherapy combinations with anti-PD1 plus anti-CD137 mAbs that can be synergistically accompanied by radiotherapy strategies, even if the disease is left outside the field of irradiation.
Revista:
ANNALS OF ONCOLOGY
ISSN 0923-7534
Vol. 27
N° Supl. 6
Año 2016
Págs.1055O
Revista:
ANNALS OF ONCOLOGY
ISSN 0923-7534
Vol. 27
N° 7
Año 2016
Págs.1190 - 1198
The lack of suitable animal models to study human immune response is an important limitation to the preclinical development of drugs targeting immune cells. In this regard, we have reviewed the strengths and weaknesses of available animal models to study checkpoint blockers. Humanized mice models are the most promising ones, since they facilitate the study of human immune responses against human tumors in a murine organism.The recent success of checkpoint blockers to treat cancer has demonstrated that the immune system is a critical player in the war against cancer. Historically, anticancer therapeutics have been tested in syngeneic mouse models (with a fully murine immune system) or in immunodeficient mice that allow the engraftment of human xenografts. Animal models with functioning human immune systems are critically needed to more accurately recapitulate the complexity of the human tumor microenvironment. Such models are integral to better predict tumor responses to both immunomodulatory agents and directly antineoplastic therapies. In this regard, the development of humanized models is a promising, novel strategy that offers the possibility of testing checkpoint blockers' capacity and their combination with other antitumor drugs. In this review, we discuss the strengths and weaknesses of the available animal models regarding their capacity to evaluate checkpoint blockers and checkpoint blocker-based combination immunotherapy.
Revista:
CLINICAL CANCER RESEARCH
ISSN 1078-0432
Vol. 22
N° 15
Año 2016
Págs.3924 - 3936
PURPOSE:
Myeloid-derived suppressor cells (MDSC) are considered an important T-cell immunosuppressive component in cancer-bearing hosts. The factors that attract these cells to the tumor microenvironment are poorly understood. IL8 (CXCL8) is a potent chemotactic factor for neutrophils and monocytes.
EXPERIMENTAL DESIGN:
MDSC were characterized and sorted by multicolor flow cytometry on ficoll-gradient isolated blood leucokytes from healthy volunteers (n = 10) and advanced cancer patients (n = 28). In chemotaxis assays, sorted granulocytic and monocytic MDSC were tested in response to recombinant IL8, IL8 derived from cancer cell lines, and patient sera. Neutrophil extracellular traps (NETs) formation was assessed by confocal microscopy, fluorimetry, and time-lapse fluorescence confocal microscopy on short-term MDSC cultures.
RESULTS:
IL8 chemoattracts both granulocytic (GrMDSC) and monocytic (MoMDSC) human MDSC. Monocytic but not granulocytic MDSC exerted a suppressor activity on the proliferation of autologous T cells isolated from the circulation of cancer patients. IL8 did not modify the T-cell suppressor activity of human MDSC. However, IL8 induced the formation of NETs in the GrMDSC subset.
CONCLUSIONS:
IL8 derived from tumors contributes to the chemotactic recruitment of MDSC and to their functional control.
Revista:
SEMINARS IN ONCOLOGY
ISSN 0093-7754
Vol. 42
N° 4
Año 2015
Págs.640 - 655
T and natural killer (NK) lymphocytes are considered the main effector players in the immune response against tumors. Full activation of T and NK lymphocytes requires the coordinated participation of several surface receptors that meet their cognate ligands through structured transient cell-to-cell interactions known as immune synapses. In the case of T cells, the main route of stimulation is driven by antigens as recognized in the form of short polypeptides associated with major histocompatibility complex (MHC) antigen-presenting molecules. However, the functional outcome of T-cell stimulation towards clonal expansion and effector function acquisition is contingent on the contact of additional surface receptor-ligand pairs and on the actions of cytokines in the milieu. While some of those interactions are inhibitory, others are activating and are collectively termed co-stimulatory receptors. The best studied belong to either the immunoglobulin superfamily or the tumor necrosis factor-receptor (TNFR) family. Co-stimulatory receptors include surface moieties that are constitutively expressed on resting lymphocytes such as CD28 or CD27 and others whose expression is induced upon recent previous antigen priming, ie, CD137, GITR, OX40, and ICOS. Ligation of these glycoproteins with agonist antibodies actively conveys activating signals to the lymphocyte. Those signals, acting through a potentiation of the cellular immune response, give rise to anti-tumor effects in mouse models. Anti-CD137 antibodies are undergoing clinical trials with evidence of clinical activity and anti-OX40 monoclonal antibodies (mAbs) induce interesting immunomodulation effects in humans. Antibodies anti-CD27 and GITR have recently entered clinical trials. The inherent dangers of these immunomodulation strategies are the precipitation of excessive systemic inflammation or/and invigorating silent autoimmunity. Agonist antibodies, recombinant forms of the natural ligands, and polynucleotide-based aptamers constitute the pharmacologic tools to manipulate such receptors. Preclinical data suggest that the greatest potential of these agents is achieved in combined treatment strategies.
Autores:
Gonzalez-Cao, M.; Mayo-de-las-Casas, C.; Molina-Vila, M. A.; et al.
Revista:
MELANOMA RESEARCH
ISSN 1473-5636
Vol. 25
N° 6
Año 2015
Págs.486 - 495
BRAFV600E is a unique molecular marker for metastatic melanoma, being the most frequent somatic point mutation in this malignancy. Detection of BRAFV600E in blood could have prognostic and predictive value and could be useful for monitoring response to BRAF-targeted therapy. We developed a rapid, sensitive method for the detection and quantification of BRAFV600E in circulating free DNA (cfDNA) isolated from plasma and serum on the basis of a quantitative 5-nuclease PCR (Taqman) in the presence of a peptide-nucleic acid. We validated the assay in 92 lung, colon, and melanoma archival serum and plasma samples with paired tumor tissue (40 wild-type and 52 BRAFV600E). The correlation of cfDNA BRAFV600E with clinical parameters was further explored in 22 metastatic melanoma patients treated with BRAF inhibitors. Our assay could detect and quantify BRAFV600E in mixed samples with as little as 0.005% mutant DNA (copy number ratio 1:20000), with a specificity of 100% and a sensitivity of 57.7% in archival serum and plasma samples. In 22 melanoma patients treated with BRAF inhibitors, the median progression-free survival was 3.6 months for those showing BRAFV600E in pretreatment cfDNA compared with 13.4 months for those in whom the mutation was not detected (P=0.021). Moreover, the median overall survival for positive versus negative BRAFV600E tests in pretreatment cfDNA differed significantly (7 vs. 21.8 months, P=0.017). This finding indicates that the sensitive detection and accurate quantification of low-abundance BRAFV600E alleles in cfDNA using our assay can be useful for predicting treatment outcome.
Revista:
ADVANCES IN CLINICAL CHEMISTRY
ISSN 0065-2423
Vol. 69
Año 2015
Págs.47 - 89
Melanoma is an aggressive tumor with increasing incidence worldwide. Biomarkers are valuable tools to minimize the cost and improve efficacy of treatment of this deadly disease. Serological markers have not widely been introduced in routine clinical practice due to their insufficient diagnostic sensitivity and specificity. It is likely that the lack of objective responses with traditional treatment hinder biomarker research and development in melanoma. Recently, new drugs and therapies have, however, emerged in advanced melanoma with noticeable objective response ratio and survival. In this new scenario, serological tumor markers should be revisited. In addition, other potential circulating biomarkers such as cell-free DNA, exosomes, microRNA, and circulating tumor cells have also been identified. In this review, we summarize classical and emerging tumor markers and discuss their possible roles in emerging therapeutics.
Revista:
CANCER RESEARCH
ISSN 0008-5472
Vol. 75
N° 17
Año 2015
Págs.3466 - 3478
A current pressing need in cancer immunology is the development of preclinical model systems that are immunocompetent for the study of human tumors. Here, we report the development of a humanized murine model that can be used to analyze the pharmacodynamics and antitumor properties of immunostimulatory monoclonal antibodies (mAb) in settings where the receptors targeted by the mAbs are expressed. Human lymphocytes transferred into immunodeficient mice underwent activation and redistribution to murine organs, where they exhibited cell-surface expression of hCD137 and hPD-1. Systemic lymphocyte infiltrations resulted in a lethal CD4(+) T cell-mediated disease (xenograft-versus-host disease), which was aggravated when murine subjects were administered clinical-grade anti-hCD137 (urelumab) and anti-hPD-1 (nivolumab). In mice engrafted with human colorectal HT-29 carcinoma cells and allogeneic human peripheral blood mononuclear cells (PBMC), or with a patient-derived gastric carcinoma and PBMCs from the same patient, we found that coadministration of urelumab and nivolumab was sufficient to significantly slow tumor growth. Correlated with this result were increased numbers of activated human T lymphocytes producing IFN gamma and decreased numbers of human regulatory T lymphocytes in the tumor xenografts, possibly explaining the efficacy of the therapeutic regimen. Our results offer a proof of concept for the use of humanized mouse models for surrogate efficacy and histology investigations of immune checkpoint drugs and their combinations.
Revista:
CLINICAL CHEMISTRY
ISSN 0009-9147
Vol. 61
N° 1
Año 2015
Págs.297 - 304
BACKGROUND:
Around 50% of cutaneous melanomas harbor the BRAF(V600E) mutation and can be treated with BRAF inhibitors. DNA carrying this mutation can be released into circulation as cell-free BRAF(V600E) (cfBRAF(V600E)). Droplet digital PCR (ddPCR) is an analytically sensitive technique for quantifying small concentrations of DNA. We studied the plasma concentrations of cfBRAF(V600E) by ddPCR in patients with melanoma during therapy with BRAF inhibitors.
METHODS:
Plasma concentrations of cfBRAF(V600E) were measured in 8 controls and 20 patients with advanced melanoma having the BRAF(V600E) mutation during treatment with BRAF inhibitors at baseline, first month, best response, and progression.
RESULTS:
The BRAF(V600E) mutation was detected by ddPCR even at a fractional abundance of 0.005% in the wild-type gene. Agreement between tumor tissue BRAF(V600E) and plasma cfBRAF(V600E) was 84.3%. Baseline cfBRAF(V600E) correlated with tumor burden (r = 0.742, P < 0.001). cfBRAF(V600E) concentrations decreased significantly at the first month of therapy (basal median, 216 copies/mL; Q1-Q3, 27-647 copies/mL; first response median, 0 copies/mL; Q1-Q3, 0-49 copies/mL; P < 0.01) and at the moment of best response (median, 0 copies/mL; Q1-Q3, 0-33 copies/mL; P < 0.01). At progression, there was a significant increase in the concentration of cfBRAF(V600E) compared with best response (median, 115 copies/mL; Q1-Q3, 3-707 copies/mL; P = 0.013). Lower concentrations of basal cfBRAF(V600E) were significantly associated with longer overall survival and progression-free survival (27.7 months and 9 months, respectively) than higher basal concentrations (8.6 months and 3 months, P < 0.001 and P = 0.024, respectively).
CONCLUSIONS:
cfBRAF(V600E) quantification in plasma by ddPCR is useful as a follow-up to treatment response in patients with advanced melanoma.
Revista:
ANNALS OF ONCOLOGY
ISSN 0923-7534
Vol. 25
N° Supl. 4
Año 2014
Revista:
JOURNAL OF CLINICAL ONCOLOGY
ISSN 0732-183X
Vol. 32
N° 15
Año 2014
Revista:
CANCER JOURNAL
ISSN 1528-9117
Vol. 20
N° 4
Año 2014
Págs.256 - 261
Immune evasion is an important hallmark of cancer, and a better understanding of this mechanism is essential for the development of effective strategies against cancer. The B7 homolog 1 (B7-H1)/programmed cell death 1 (PD-1) pathway has been demonstrated as a major mechanism of immune evasion in tumor site, and its blockade therapy shows very encouraging results in clinical trials. Inducible B7-H1 expression in tumor microenvironment is complex, with multidimensional interactions and expression by different subsets of hematopoietic and nonhematopoietic cells. Understanding these interactions and how tumors take advantage of this pathway can help us design future strategies for better therapeutic efficacy and to overcome resistances.
Revista:
CURRENT OPINION IN IMMUNOLOGY
ISSN 0952-7915
Vol. 27
Año 2014
Págs.89 - 97
Inhibitory receptors on immune system cells respond to membrane-bound and soluble ligands to abort or mitigate the intensity of immune responses by raising thresholds of activation, halting proliferation, favoring apoptosis or inhibiting/deviating effector function differentiation. Such evolutionarily selected inhibitory mechanisms are termed check-points and therefore check-point inhibitors empower any ongoing anti-cancer immune response that might have been too weak or exhausted. Monoclonal antibodies (mAb) interfering with CTLA-4-CD80/86, PD-1 - PD-L1, TIM-3-GAL9 and LAG3-MHC-II belong to this category of check-point inhibitors. The anti-CTLA-4 mAb ipilimumab has been approved for metastatic melanoma. Anti-PD-1 and anti-PD-L1 mAbs have shown extremely encouraging clinical activity. The potential of combination strategies with these agents has recently been highlighted by clinical observations on CTLA-4+PD-1 combined blockade in melanoma patients.
Revista:
ANNALS OF ONCOLOGY
ISSN 0923-7534
Vol. 25
N° S4
Año 2014
Págs.1078TiP
Revista:
CLINICA CHIMICA ACTA
ISSN 0009-8981
Vol. 429
Año 2014
Págs.168 - 174
BRAF V600 mutation has been reported in more than 50% of melanoma cases and its presence predicts clinical activity of BRAF inhibitors (iBRAF). We evaluated the rote of MIA, S100 and LDH to monitor iBRAF efficiency in advanced melanoma patients presenting BRAF V600 mutations. This was a prospective study of melanoma patients harboring the BRAF V600 mutation and treated with iBRAF within a clinical trial (dabrafenib) or as part of an expanded access program (vemurafenib). MIA, S100 and LDH were analyzed in serum at baseline, and every 4-6 weeks during treatment. Eighteen patients with melanoma stages IIIc-IV were enrolled with 88.8% of response rate to iBRAF. Baseline concentrations of all the tumor markers correlated with tumor burden. MIA and S100 concentrations decreased significantly one month after the beginning of treatment and, upon progression, their concentrations increased significantly above the minimum levels previously achieved. MIA levels lower than 9 mu g/L one month after the beginning of treatment and S100 concentrations lower than 0.1 mu g/L at the moment of best response were associated With improved progression-free survival. In conclusion, MIA and S100 are useful to monitor response in melanoma patients treated with iBRAF.
Revista:
CLINICAL CANCER RESEARCH
ISSN 1078-0432
Vol. 20
N° 22
Año 2014
Págs.5697-5707
IL8 levels correlate with tumor burden in preclinical models and in patients with cancer. IL8 is a potentially useful biomarker to monitor changes in tumor burden following anticancer therapy, and has prognostic significance.
Revista:
CANCER RESEARCH
ISSN 0008-5472
Vol. 75
N° 3
Año 2014
Págs.497 - 507
Host responses are increasingly considered important for the efficacious response to experimental cancer therapies that employ viral vectors, but little is known about the specific nature of host responses required. In this study, we investigated the role of host type I interferons (IFN-I) in the efficacy of virally delivered therapeutic genes. Specifically, we used a Semliki Forest virus encoding IL12 (SFV-IL12) based on its promise as an RNA viral vector for cancer treatment. Intratumoral injection of SFV-IL12 induced production of IFN-I as detected in serum. IFN-I production was abolished in mice deficient for the IFN beta transcriptional regulator IPS-1 and partially attenuated in mice deficient for the IFN beta signaling protein TRIF. Use of bone marrow chimeric hosts established that both hematopoietic and stromal cells were involved in IFN-I production. Macrophages, plasmacytoid, and conventional dendritic cells were each implicated based on cell depletion experiments. Further, mice deficient in the IFN-I receptor (IFNAR) abolished the therapeutic activity of SFV-IL12, as did a specific antibody-mediated blockade of IFNAR signaling. Reduced efficacy was not caused by an impairment in IL12 expression, because IFNAR-deficient mice expressed the viral IL12 transgene even more strongly than wild-type (WT) hosts. Chimeric host analysis for the IFNAR involvement established a strict requirement in hematopoietic cells. Notably, although tumor-specific CD8 T lymphocytes expand
Revista:
ARCHIVES OF PATHOLOGY AND LABORATORY MEDICINE
ISSN 0003-9985
Vol. 138
N° 6
Año 2014
Págs.828 - 832
CONTEXT:
Malignant melanoma is an aggressive tumor that produces exosomes, which contain microRNAs (miRNAs) that could be of utility in following tumoral cell dysregulation. MicroR-125b is a miRNA whose down-regulation seems to be implicated in melanoma progression.
OBJECTIVE:
To analyze miR-125b levels in serum, and in exosomes obtained from serum, from patients with advanced melanoma.
DESIGN:
Serum samples were obtained from 21 patients with advanced melanoma, from 16 disease-free patients with melanoma, and from 19 healthy volunteers. Exosomes were isolated from serum by precipitation, and miR-16 and miR-125b levels were quantified by real-time polymerase chain reaction.
RESULTS:
MicroR-16, but not miR-125b, was detected in all samples, and miR-16 levels were significantly higher in serum than they were in exosomes. MicroR-16 expression levels did not differ significantly between the 2 groups (patients with melanoma and healthy donors). There was a significant relationship between miR-125b and miR-16 levels in exosomes. Additionally, miR-125b levels in exosomes were significantly lower in patients with melanoma compared with disease-free patients with melanoma and healthy controls.
CONCLUSIONS:
Exosomes can provide a suitable material to measure circulating miRNA in melanoma, and miR-16 can be used as an endogenous normalizer. Lower levels of miR-125b in exosomes obtained from serum are associated with advanced melanoma disease, probably reflecting the tumoral cell dysregulation.
Revista:
LABORATORY INVESTIGATION
ISSN 0023-6837
Vol. 93
N° Supl. 1
Año 2013
Págs.117A
Revista:
CLINICAL CANCER RESEARCH
ISSN 1078-0432
Vol. 19
N° 22
Año 2013
Págs.6151 - 6162
Purpose: Immunostimulatory monoclonal antibodies (ISmAb) that unleash antitumor immune responses are showing efficacy in cancer clinical trials. Anti-B7-H1 (PD-L1) monoclonal antibodies (mAb) block a critical inhibitory pathway in T cells, whereas anti-CD137 and OX40 mAbs provide T-cell costimulation. A combination of these ISmAbs (anti-CD137 + anti-OX40 + anti-B7-H1) was tested using a transgenic mouse model of multifocal and rapidly progressing hepatocellular carcinoma, in which c-myc drives transformation and cytosolic ovalbumin (OVA) is expressed in tumor cells as a model antigen.
Experimental Design: Flow-cytometry and immunohistochemistry were used to quantify tumor-infiltrating lymphocytes (TIL) elicited by treatment and assess their activation status and cytolytic potential. Tolerance induction and its prevention/reversal by treatment with the combination of ISmAbs were revealed by in vivo killing assays.
Results: The triple combination of ISmAbs extended survival of mice bearing hepatocellular carcinomas in a CD8-dependent fashion and synergized with adoptive T-cell therapy using activated OVA-specific TCR-transgenic OT-1 and OT-2 lymphocytes. Mice undergoing therapy showed clear increases in tumor infiltration by activated and blastic CD8(+) and CD4(+) T lymphocytes containing perforin/granzyme B and expressing the ISmAb-targeted receptors on their surface. The triple combination of ISmAbs did not result in enhanced OVA-specific cytotoxic T lymphocyte (CTL) activity but other antigens expressed by cell lines derived from such hepatocellular carcinomas were recognized by endogenous TILs. Adoptively transferred OVA-specific OT-1 lymphocytes into tumor-bearing mice were rendered tolerant, unless given the triple mAb therapy.
Conclusion: Extension of survival and dense T-cell infiltrates emphasize the translational potential of combinational immunotherapy strategies for hepatocellular carcinoma.
Revista:
ANALES DEL SISTEMA SANITARIO DE NAVARRA
ISSN 1137-6627
Vol. 36
N° 3
Año 2013
Págs.519 - 537
Dendritic cells (DC) are cells of hematopoietic origin, which constitutively express MHC class I and II, and are functionally the most potent inducers of T-lymphocyte activation and proliferation. CD8+ T lymphocytes proliferate and acquire cytotoxic functions upon recognition of their cognate antigen on the surface of one or various dendritic cells with which they interact. However, only some DC subsets are able to present antigen to cytotoxic T cell precursors as taken up from extracellular sources. This function is termed cross-presentation (in Spanish, presentacion cruzada or presentacion subrogada) and requires shuttle mechanisms from phagosomes to the cytosol for antigen processing. It has been demonstrated that the differentiation of DC with these capabilities is dependent on FLT-3L and the transcription factor BATF3. They express peculiar functions and differentiation markers. These cells are distinguished in mice by surface CD8 alpha features, while CD141 (BDCA-3) marks these cells in the human. These subpopulations are capable of selective internalization of necrotic cell debris by means of their CLEC9A lectin which is a receptor for extracellular polymerized actin. Expression of the chemokine receptor XCR1 favours contact with CD8+ T cells. Therapeutic vaccination with tumour antigens using DC is a strategy under development for the treatment of cancer. The use of DC subsets with more prominent capabilities for cross-presentation would mimic the natural mechanisms of immunization to induce cytolitic T lymphocytes. In vivo targeting of antigens with monoclonal antibodies against DEC-205 or CLEC9A attains very robust immune responses and is a strategy undergoing clinical trials for chronic viral diseases and malignancies.
Revista:
ONCOIMMUNOLOGY
ISSN 2162-4011
Vol. 1
N° 9
Año 2012
Págs.1527 - 1536
Cardiotrophin-1 (CT-1/CTF1) is a member of the interleukin-6 (IL-6) family of cytokines that stimulates STAT-3 phosphorylation in cells bearing the cognate receptor. We report that Ctf1(-/-) mice (hereby referred to as CT-1(-/-) mice) are resistant to the hepatic engraftment of MC38 colon carcinoma cells, while these cells engraft normally in the mouse subcutaneous tissue. Tumor intake in the liver could be enhanced by the systemic delivery of a recombinant adenovirus encoding CT-1, which also partly rescued the resistance of CT-1(-/-) mice to the hepatic engraftment of MC38 cells. Moreover, systemic treatment of wild-type (WT) mice with a novel antibody-neutralizing mouse CT-1 also reduced engraftment of this model. Conversely, experiments with Panc02 pancreatic cancer and B16-OVA melanoma cells in CT-1(-/-) mice revealed rates of hepatic engraftment similar to those observed in WT mice. The mechanism whereby CT-1 renders the liver permissive for MC38 metastasis involves T lymphocytes and natural killer (NK) cells, as shown by selective depletion experiments and in genetically deficient mice. However, no obvious changes in the number or cell killing capacity of liver lymphocytes in CT-1(-/-) animals could be substantiated. These findings demonstrate that the seed and soil concept to understand metastasis can be locally influenced by cytokines as well as by the cellular immune system
Revista:
MOLECULAR THERAPY
ISSN 1525-0016
Vol. 20
N° 9
Año 2012
Págs.1664 - 1675
Intratumoral injection of Semliki Forest virus encoding interleukin-12 (SFV-IL-12) combines acute expression of IL-12 and stressful apoptosis of infected malignant cells. Agonist antibodies directed to costimulatory receptor CD137 (4-1BB) strongly amplify pre-existing cellular immune responses toward weak tumor antigens. In this study, we provide evidence for powerful synergistic effects of a combined strategy consisting of intratumoral injection of SFV-IL-12 and systemic delivery of agonist anti-CD137 monoclonal antibodies (mAbs), which was substantiated against poorly immunogenic B16 melanomas (B16-OVA and B16.F10) and TC-1 lung carcinomas. Effector CD8(beta)(+) T cells were sufficient to mediate complete tumor eradications. Accordingly, there was an intensely synergistic in vivo enhancement of cytotoxic T lymphocytes (CTL)-mediated immunity against the tumor antigens OVA and tyrosine-related protein-2 (TRP-2). This train of phenomena led to long-lasting tumor-specific immunity against rechallenge, attained transient control of the progression of concomitant tumor lesions that were not directly treated with SFV-IL-12 and caused autoimmune vitiligo. Importantly, we found that SFV-IL-12 intratumoral injection induces bright expression of CD137 on most tumor-infiltrating CD8(+) T lymphocytes, thereby providing more abundant targets for the action of the agonist antibody. This efficacious combinatorial immunotherapy strategy offers feasibility for clinical translation since anti-CD137 mAbs are already undergoing clinical trials and development of clinical-grade SFV-IL-12 vectors is in progress.
Autores:
López, C. M.; Esteban, E.; Astudillo, A.; et al.
Revista:
INVESTIGATIONAL NEW DRUGS
ISSN 0167-6997
Vol. 30
N° 6
Año 2012
Págs.2443 - 2449
Introduction: The analysis of predictive factors of response may aid in predicting which patients with advanced renal cell carcinoma (RCC) would be good candidates for systemic treatments.
Materials and methods: The expression of several biomarkers was retrospectively analyzed using immunohistochemistry (IHC), as well as 2 analytical variables in 135 patients with advanced RCC treated with cytokines (CK) and/or new targeted drugs (NTD).
Results: 67 patients were treated solely with NTD and 68 with CK (23 also received NTD). Univariate analysis: HIF1¿ did not correlate significantly with response to these drugs. Overexpression of CAIX was associated with more responses (%) to NTD (64.7 vs. 21.1; p = 0.004) and CK (22.6 vs. 0; p = 0.038). PTEN demonstrated predictive value of response to sunitinib (70.8 vs. 34.1; p = 0.005). p21 was associated with a lower response to sunitinib (35.9 vs. 65.4; p = 0.025). Thrombocytosis was not significantly associated with response to NTD, although it was with CK (0 vs. 20; p = 0.017). Neutrophilia correlated with a lower response to NTD (29.6 vs. 57.5; p = 0.045), although not with CK. Multivariate analysis: Overexpression of CAIX was an independent predictor of significantly higher response to NTD and CK; OR = 8.773 (p < 0.001).
Conclusions: Our findings highlight the usefulness of CAIX in selecting patients with advanced RCC as candidates for systemic treatment. PTEN and p21 may be important in predicting response to sunitinib. Thrombocytosis and neutrophilia correlate well with response to CK and NTD, respectively.
Autores:
Muriel-López, C.; Esteban, E.; Berros, J. P.; et al.
Revista:
CLINICAL GENITOURINARY CANCER
ISSN 1558-7673
Vol. 10
N° 4
Año 2012
Págs.262 - 270
Background: The purpose of this study was to evaluate prognostic factors in patients with RCC.
Materials and methods: The expression of several biomarkers were measured by immunohistochemistry (IHC), together with 2 analytic factors (thrombocytosis and neutrophilia), in 135 patients with advanced RCC treated with new targeted drugs (NTDs) (n = 67) and/or cytokines (CKs) (n = 68)-with 23 of the patients who received CKs also receiving NTDs-between July 1996 and February 2010. Relationships with overall survival (OS) and progression-free survival (PFS) were searched for.
Results: Univariate statistical analysis revealed that high expression of hypoxia-inducible factor-1¿ (HIF-1¿) correlated with poor prognosis in NTD treatment (PFS, 5.4 vs. 13.5, low expression months; P = .033) and CK treatment (PFS, 3.3 vs. 5.7, low expression; P = .003). Overexpression of carbonic anhydrase IX (CAIX) was associated with better prognosis with NTD treatment (OS, 32.1 vs. 7.8 months; P < .001) and CK treatment (OS, 32.9 vs. 5.9 months; P = .001). Positive PTEN was related to good prognosis with sunitinib (PFS, 15.1 vs. 6.5 months; P = .003) and CKs (OS, 13.7 vs. 7.9 months; P = .039). Increased expression of p21 was related to poor prognosis with NTD treatment (PFS, 5.9 vs. 16.8 months; P = .024) and CK treatment (PFS, 3.9 vs. 7.5 months; P < .001) Thrombocytosis was related to poor prognosis with NTDs (OS, 15.9 vs. 26.7 months; P = .007) and CKs (OS, 5.9 vs. 14.3 months; P = .010). Neutrophilia was related to poor prognosis with NTDs (OS, 17.6 vs. 25.4 months; P = .063) and CKs (OS, 5.9 vs. 12.8 months; P = .035). Multivariate analysis revealed that overexpression of CAIX was a favorable prognostic factor independent of PFS (hazard ratio [HR], 0.107; P < .001) and OS (HR, 0.055; P < .001).
Conclusions: HIF-1¿, PTEN, p21, thrombocytosis, neutrophilia, and CAIX in particular are useful prognostic factors in patients with advanced RCC.
Revista:
Cancer Discovery
ISSN 2159-8274
Vol. 2
N° 7
Año 2012
Págs.608 - 623
Revista:
IMMUNOTHERAPY
ISSN 1750-743X
Vol. 4
N° 11
Año 2012
Págs.1081 - 1085
Autores:
Gonzalez, E. E.; Villanueva, N.; Fra, J.; et al.
Revista:
INVESTIGATIONAL NEW DRUGS
ISSN 0167-6997
Vol. 29
N° 6
Año 2011
Págs.1459 - 1464
Topotecan, a semi-synthetic camptothecin analogue with topoisomerase I interaction, has shown to be an active agent in the treatment of advanced refractory lung cancer. This paper describes the authors' experience with this drug when used as a single agent in patients (pts) with advanced non-small cell lung cancer (NSCLC) refractory to platinum- and taxane-containing chemotherapy regimens. Thirty-five patients with NSCLC refractory to previous chemotherapy and KI ¿ 60% were included in the study. Their characteristics are as follows: median age of 52 years (range 43-69) and Karnofsky PS of 70 (60-80); 27 were male and 8 were female. Twenty-one (60%) patients had adenocarcinoma; eleven (31.4%), squamous cell, and three (8.5%), undifferentiated carcinoma. There was a median of two disease sites and two prior chemotherapy regimens. Topotecan was administered at a dose of 1.25 mg/m(2) I.V. daily for 5 days, repeated every 21 days until disease progression, maximal response, or intolerable toxicity. After 73 cycles, patients received a median of 2 treatment cycles (1-9). All patients except one were considered evaluable for toxicity; eight episodes (24%) of nausea/vomiting and two episodes (6%) of grade 1-2 asthenia, respectively, were reported. Four (12%) patients developed grade 1-2 anemia and two (6%) subjects suffered grade 3 anemia. Seven (21%) patients had grade 1-2 neutropenia and one (3%) presented grade 5 neutropenia. In 33 patients evaluable for activity of the 35 subjects included in the study; one (2.8%) presented a partial response; nine (25.7%) had stable disease, and 23 (65.7%) exhibited disease progression. Median time to progression and overall survival were 54 (12-210) and 70 (12-324) days, respectively. Intravenous topotecan at that dose and administration schedule displays scant activity in terms of response rate in individuals with advanced NSCLC previously treated with platinum and taxanes. The role and usefulness of chemotherapy in this setting warrants further investigation and confirmation through comparative studies.
Revista:
PLoS One
ISSN 1932-6203
Vol. 6
N° 12
Año 2011
Págs.e229300
Moreover, when mouse PMNs with E. coli in their interior are co-injected in the foot pad with DC, many DC loaded with fluorescent material from the PMNs reach draining lymph nodes. Using CT26 (H-2(d)) mouse tumor cells, it was observed that if tumor cells are intracellularly loaded with OVA protein and UV-irradiated, they become phagocytic prey of H-2(d) PMNs. If such PMNs, that cannot present antigens to OT-1 T cells, are immunomagnetically re-isolated and phagocytosed by H-2(b) DC, such DC productively cross-present OVA antigen determinants to OT-1 T cells. Cross-presentation to adoptively transferred OT-1 lymphocytes at draining lymph nodes also take place when OVA-loaded PMNs (H-2(d)) are coinjected in the footpad of mice with autologous DC (H-2(b)). In summary, our results indicate that antigens phagocytosed by short-lived PMNs can be in turn internalized and productively cross-presented by DC.
Revista:
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS
ISSN 0360-3016
Vol. 81
N° 4
Año 2011
Págs.e523 - e539
Purpose: The present study was undertaken to determine factors predictive of toxicity, patterns of failure, and survival in 60 adult patients with soft tissue sarcomas of the extremity and superficial trunk treated with combined perioperative high-dose-rate brachytherapy and external beam radiotherapy. Methods and Materials: The patients were treated with surgical resection and perioperative high-dose-rate brachytherapy (16 or 24 Gy) for negative and close/microscopically positive resection margins, respectively. External beam radiotherapy (45 Gy) was added postoperatively to reach a 2-Gy equivalent dose of 62.9 and 72.3 Gy, respectively. Adjuvant chemotherapy with ifosfamide and doxorubicin was given to patients with advanced high-grade tumors. Results: Grade 3 toxic events were observed in 18 patients (30%) and Grade 4 events in 6 patients (10%). No Grade 5 events were observed. A location in the lower limb was significant for Grade 3 or greater toxic events on multivariate analysis (p =.013), and the tissue volume encompassed by the 150% isodose line showed a trend toward statistical significance (p =.086). The local control, locoregional control, and distant control rate at 9 years was 77.4%, 69.5%, and 63.8%, respectively. On multivariate analysis, microscopically involved margins correlated with local control (p =.036) and locoregional control (p =.007) and tumor size correlated with distant metastases (p =.004). The 9-year disease-free survival and overall survival rate was 47.0% and 61.5%, respectively. Multivariate analysis showed poorer disease-free survival rates for patients with tumors >6 cm (p =.005) and microscopically involved margins (p =.043), and overall survival rates decreased with increasing tumor size (p =.011). Conclusions: Grade 3 or greater wound complications can probably be decreased using meticulous treatment planning to decrease the tissue volume encompassed by the 150% isodose line, especially in lower limb locations. Microscopically involved margins remain a predictor of local and locoregional failure, despite radiation doses >70 Gy. Patients with tumors ¿6 cm and microscopically involved margins are at high risk of treatment failure and death from the development of distant metastases.
Revista:
CLINICAL CANCER RESEARCH
ISSN 1078-0432
Vol. 17
N° 9
Año 2011
Págs.2619 - 2627
Type I interferons (IFN-I) are well-known inducers of tumor cell apoptosis and antiangiogenesis via signaling through a common receptor interferon alpha receptor (IFNAR). IFNAR induces the Janus activated kinase-signal transducer and activation of transcription (JAK-STAT) pathway in most cells, along with other biochemical pathways that may differentially operate, depending on the responding cell subset, and jointly control a large collection of genes. IFNs-I were found to systemically activate natural killer (NK) cell activity. Recently, mouse experiments have shown that IFNs-I directly activate other cells of the immune system, such as antigen-presenting dendritic cells (DC) and CD4 and CD8 T cells. Signaling through the IFNAR in T cells is critical for the acquisition of effector functions. Cross-talk between IFNAR and the pathways turned on by other surface lymphocyte receptors has been described. Importantly, IFNs-I also increase antigen presentation of the tumor cells to be recognized by T lymphocytes. These IFN-driven immunostimulatory pathways offer opportunities to devise combinatorial immunotherapy strategies.
Autores:
Crespo, G.; Sierra, M.; Losa, R.; et al.
Revista:
INTERNATIONAL JOURNAL OF GYNECOLOGY AND OBSTETRICS
ISSN 0020-7292
Vol. 21
N° 3
Año 2011
Págs.478 - 485
Introduction: Pegylated liposomal doxorubicin (PLD) is currently the reference treatment for platinum-resistant ovarian cancer. The combination of PLD and gemcitabine and the administration of gemcitabine at a fixed dose rate infusion (FDRI) seem to have additive activity in this disease setting. We have launched a phase Ib study with the combination of FDRI gemcitabine followed by PLD in recurrent ovarian cancer with a platinum-free interval of less than 1 year, with parallel pharmacokinetic and pharmacogenetic studies.
Methods: The starting dose of gemcitabine was 1500 mg/m², 10 mg/m² per minute, every 2 weeks (± 250 mg gemcitabine titration depending on toxicity), followed by PLD 35 mg/m² every 4 weeks. Gemcitabine pharmacokinetics and equilibrative nucleoside transporter 1, deoxycytidine kinase, and ribonucleotide reductase M1 gene expression levels were studied.
Results: Thirty-five patients were treated at 3 different dose levels (DL). Dose level 1 was not tolerated. Nonfrail patients continued to be treated at DL-1 (G 1250 mg/m² on day 1 and PLD 35 mg/m² on days 1 and 15). Of 10 evaluable nonfrail patients, 4 displayed dose-limiting toxicity. Frail patients were treated at DL-2 (G 1250 mg/m on day 1 and PLD 35 mg/m² on days 1 and 15). Of the 12 evaluable frail patients, 3 developed dose-limiting toxicity. Neutropenia, palmar-plantar erythrodysesthesia and stomatitis were the most common toxicities. The response rate was 42.8% (95% confidence interval [CI], 34.5%-51.1%), with 17.1% (6/35) complete responses and 25.7% (9/35) partial responses. The median progression-free survival was 7.7 months (95% CI, 2.2-13.1). The median overall survival was 13.9 months (95% CI, 9.4-18.4). The administration of PLD after gemcitabine did not influence gemcitabine pharmacokinetics or its metabolites. The addition of PLD to gemcitabine caused a larger and longer induction of the ribonucleotide reductase M1 gene. Patients with higher baseline levels of deoxycytidine kinase had longer progression-free survival.
Conclusion: The recommended dose for a phase II study of patients with recurrent ovarian cancer having poor prognosis is PLD, 35 mg/m² on day 1, and gemcitabine, 1000 mg/m² on days 1 and 15 delivered at an FDRI of 10 mg/m per minute in 28-day cycles.
Revista:
The Journal of Immunology
ISSN 0022-1767
Vol. 187
N° 11
Año 2011
Págs.6130 - 6142
Twenty-four patients with metastatic cancer received two cycles of four daily immunizations with monocyte-derived dendritic cells (DC). DC were incubated with preheated autologous tumor lysate and subsequently with IFN-alpha, TNF-alpha, and polyinosinic:polycytidylic acid to attain type 1 maturation. One DC dose was delivered intranodally, under ultrasound control, and the rest intradermally in the opposite thigh. Cyclophosphamide (day -7), GM-CSF (days 1-4), and pegIFN alpha-2a (days 1 and 8) completed each treatment cycle. Pretreatment with cyclophosphamide decreased regulatory T cells to levels observed in healthy subjects both in terms of percentage and in absolute counts in peripheral blood. Treatment induced sustained elevations of IL-12 in serum that correlated with the output of IL-12p70 from cultured DC from each individual. NK activity in peripheral blood was increased and also correlated with the serum concentration of IL-12p70 in each patient. Circulating endothelial cells decreased in 17 of 18 patients, and circulating tumor cells markedly dropped in 6 of 19 cases. IFN-gamma-ELISPOT responses to DC plus tumor lysate were observed in 4 of 11 evaluated cases. Tracing DC migration with [(111)In] scintigraphy showed that intranodal injections reached deeper lymphatic chains in 61% of patients, whereas with intradermal injections a small fraction of injected DC was almost constantly shown to reach draining inguinal lymph nodes. Five patients experienced disease stabilization, but no objective responses were documented. This combinatorial immunotherapy strategy is safe and feasible, and its immunobiological effects suggest potential activity in patients with minimal residual disease. A randomized trial exploring this hypothesis is currently ongoing.
Autores:
Muriel, C.; Esteban, E.; Corral, N.; et al.
Revista:
CLINICAL AND TRANSLATIONAL ONCOLOGY
ISSN 1699-048X
Vol. 12
N° 8
Año 2010
Págs.562 - 567
Introduction: For nearly the past two decades, cytokines (CKs) have been the only systemic treatment option available for advanced renal cell carcinoma (RCC). In recent years, tyrosine kinase inhibitors (TKIs) have demonstrated clinical activity on this tumour. Our purpose is to describe one centre's experience with the use of CKs and TKIs in the treatment of patients with advanced RCC.
Materials and methods: This study was designed as a retrospective chart review of RCC patients who were treated with CKs and/or TKIs in our department between July 1996 and June 2008. Efficacy and toxicity were assessed using World Health Organization (WHO) criteria. The Kaplan-Meier method was used to estimate progression-free (PFS) and overall (OS) survival.
Results: Ninety-four patients were classified into three groups depending on the modality of treatment administered: 46 were treated with CKs alone and/or chemotherapy (27 with immunotherapy, one with chemotherapy and 18 with both), 28 with TKIs alone (25 with sunitinib and 13 with sorafenib) and 20 with TKIs in second-line treatment following failure with CKs (17 with sunitinib, eight with sorafenib, four with bevacizumab and one with lapatinib). The median age was 60 years in the CK group and 65 and 62, respectively, in TKI in first and second-line treatment groups. Eighty-five percent of patients treated with CKs and 75% in the TKI group in first-line treatment and 80% in second-line treatment were men. Overall, 89% of patients had favourable risk, and 11% had intermediate risk. All patients were considered evaluable for toxicity. The main grade 3-4 (%) toxicity was asthenia for both groups, (ten in TKIs and 15 in CKs). Other grade 1-2 toxicities were mucositis (39), bleeding (8), hypertension (19), skin toxicity (33) and hypothyroidism (12.5) associated with TKIs; and anaemia (33), cough (29), asthenia (39) and emesis (14) associated with CKs. The objective response rate among 80 patients evaluable for activity was 10.6% with CKs and 46.5% and 35%, respectively, with TKIs in first- and second-line treatments. Disease stabilisation with CKs was recorded at 59% of patients and with TKIs 25% and 50% in first- and second-line treatment groups, respectively. The median progression-free survival (PFS) with CKs was 122 days [95% confidence interval (CI) 82-162] and with TKIs 201 days (65-337) in the first and 346 days (256-436) in second-line treatment groups. The median overall survival (OS) was 229 days (142-316) and 2,074 days (1,152-2,996) for patients treated with CKs and TKIs.
Conclusions: Our results are in line with the activity and survival rates previously reported in the literature regarding the use of TKIs for patients with advanced RCC in first- and second-line treatment, which has demonstrated an acceptable toxicity level.