Nuestros investigadores

Ignacio López Goñi

Microbiología y Parasitología
Facultad de Medicina. Universidad de Navarra
Líneas de investigación
Patogenicidad bacteriana. Caracterización molecular de factores de virulencia, vacunas, desarrollo de nuevas técnicas para el diagnóstico y tipificación molecular. Divulgación y comunicación de la ciencia.
Índice H
31, (Google Scholar, 27/06/2018)
24, (Scopus, 27/06/2018)
23, (WoS, 27/06/2018)

Publicaciones científicas más recientes (desde 2010)

Autores: Salaverría Aliaga, Ramón (Autor de correspondencia); Buslón, N.; López Pan, Fernando; et al.
ISSN 1699-2407  Vol. 29  Nº 3  2020  págs. e290315
Se presenta un análisis de contenido de todos los bulos (N=292) relacionados con la pandemia Covid-19 identificados por las tres plataformas de verificación acreditadas en España, durante el primer mes del estado de alarma decretado por el Gobierno (14 marzo 2020 ¿ 13 abril 2020). El estudio muestra que los bulos sobre el coronavirus fueron diseminados principalmente en las redes sociales y, entre ellas, sobre todo en las cerradas, como la aplicación móvil de mensajería WhatsApp. También detecta las particularidades formales y de contenido más frecuentes de los contenidos falsificados. Los resultados revelan que la pandemia, además de generar un gran número de bulos sobre salud y ciencia, casi un tercio de la muestra, también propició la difusión de numerosos contenidos falsos de tema político y gubernamental. El artículo explora los formatos, fuentes y territorios de procedencia de los bulos. Más allá de sus resultados empíricos, este estudio realiza contribuciones teóricas en el marco de los emergentes estudios sobre desórdenes informativos. En concreto, aporta una definición propia de bulo, así como una tipología en la que se identifican cuatro tipos de bulos: broma, exageración, descontextualización y engaño. A partir de esos cuatro tipos, se propone un `diagrama de gravedad de los bulos¿.
Autores: López Goñi, Ignacio (Autor de correspondencia); Giner-Lamia, J.; Alvarez-Ordonez, A.; et al.
ISSN 0378-1097  Vol. 366  Nº 11  2019  págs. fnz141
Twitter is one of the most popular social media networks that, in recent years, has been increasingly used by researchers as a platform to share science and discuss ongoing work. Despite its popularity, Twitter is not commonly used as a medium to teach science. Here, we summarize the results of #EUROmicroMOOC: the first worldwide Microbiology Massive Open Online Course taught in English using Twitter. Content analytics indicated that more than 3 million users saw posts with the hashtag #EUROmicroMOOC, which resulted in over 42 million Twitter impressions worldwide. These analyses demonstrate that free Microbiology MOOCs shared on Twitter are valuable educational tools that reach broad audiences throughout the world. We also describe our experience teaching an entire Microbiology course using Twitter and provide recommendations when using social media to communicate science to a broad audience.
Autores: López Goñi, Ignacio (Autor de correspondencia); Sanchez-Angulo, M.;
ISSN 0378-1097  Vol. 365  Nº 2  2018  págs. 246
Social networks have been used to teach and engage people about the importance of science. The integration of social networks in the daily routines of faculties and scientists is strongly recommended to increase their personal brand, improve their skills, enhance their visibility, share and communicate science to society, promote scientific culture, and even as a tool for teaching and learning. Here we review the use of Twitter in science and comment on our previous experience of using this social network as a platform for a Massive Online Open Course (MOOC) in Spain and Latin America. We propose to extend this strategy to a pan-European Microbiology MOOC in the near future.
Autores: López Goñi, Ignacio; Martínez-Viñas, M. J.; Antón, J.; et al.
ISSN 1542-8818  Vol. 17  Nº 3  2016  págs. 492 - 494
Autores: Soler Llorens, Pedro Francisco; Gil Ramírez, Yolanda Teresa; Zabalza Baranguá, Ana; et al.
ISSN 0928-4249  Vol. 45  Nº 72  2014 
Brucella spp. are Gram-negative bacteria that behave as facultative intracellular parasites of a variety of mammals. This genus includes smooth (S) and rough (R) species that carry S and R lipopolysaccharides (LPS), respectively. S-LPS is a virulence factor, and mutants affected in the S-LPS O-polysaccharide (R mutants), core oligosaccharide or both show attenuation. However, B. ovis is naturally R and is virulent in sheep. We studied the role of B. ovis LPS in virulence by mutating the orthologues of wadA, wadB and wadC, three genes known to encode LPS core glycosyltransferases in S brucellae. When mapped with antibodies to outer membrane proteins (Omps) and R-LPS, wadB and wadC mutants displayed defects in LPS structure and outer membrane topology but inactivation of wadA had little or no effect. Consistent with these observations, the wadB and wadC but not the wadA mutants were attenuated in mice. When tested as vaccines, the wadB and wadC mutants protected mice against B. ovis challenge. The results demonstrate that the LPS core is a structure essential for survival in vivo not only of S brucellae but also of a naturally R Brucella pathogenic species, and they confirm our previous hypothesis that the Brucella LPS core is a target for vaccine development. Since vaccine B. melitensis Rev 1 is S and thus interferes in serological testing for S brucellae, wadB mutant represents a candidate vaccine to be evaluated against B. ovis infection of sheep suitable for areas free of B. melitensis.
Autores: Mancilla, M.; Grilló, M. J.; De Miguel, M. J.; et al.
ISSN 1746-6148  Vol. 44  2013  págs. 105
Brucella melitensis Rev 1 is the best vaccine available for the prophylaxis of small ruminant brucellosis and, indirectly, for reducing human brucellosis. However, Rev 1 shows anomalously high rates of spontaneous dissociation from smooth (S) to rough (R) bacteria, the latter being inefficacious as vaccines. This S-R instability results from the loss of the O-polysaccharide. To overcome this problem, we investigated whether some recently described mechanisms promoting mutations in O-polysaccharide genes were involved in Rev 1 S-R dissociation. We found that a proportion of Rev 1 R mutants result from genome rearrangements affecting the wbo O-polysaccharide loci of genomic island GI-2 and the wbkA O-polysaccharide glycosyltransferase gene of the wbk region. Accordingly, we mutated the GI-2 int gene and the wbk IS transposase involved in those arrangements, and found that these Rev 1 mutants maintained the S phenotype and showed lower dissociation levels. Combining these two mutations resulted in a strain (Rev 2) displaying a 95% decrease in dissociation with respect to parental Rev 1 under conditions promoting dissociation. Rev 2 did not differ from Rev 1 in the characteristics used in Rev 1 typing (growth rate, colonial size, reactivity with O-polysaccharide antibodies, phage, dye and antibiotic susceptibility). Moreover, Rev 2 and Rev 1 showed similar attenuation and afforded similar protection in the mouse model of brucellosis vaccines. We conclude that mutations targeting genes and DNA sequences involved in spontaneous O-polysaccharide loss enhance the stability of a critical vaccine phenotype and complement the empirical stabilization precautions taken during S Brucella vaccine production.
Autores: Cruz Rodriguez, M; Viadas Martínez, Cristina; Seoane, A.; et al.
Revista: PLOS ONE
ISSN 1932-6203  Vol. 7  Nº 12  2012 
Bacteria of the genus Brucella have the unusual capability to catabolize erythritol and this property has been associated with their virulence mainly because of the presence of erythritol in bovine foetal tissues and because the attenuated S19 vaccine strain is the only Brucella strain unable to oxydize erythritol. In this work we have analyzed the transcriptional changes produced in Brucella by erythritol by means of two high throughput approaches: RNA hybridization against a microarray containing most of Brucella ORF's constructed from the Brucella ORFeome and next generation sequencing of Brucella mRNA in an Illumina GAIIx platform. The results obtained showed the overexpression of a group of genes, many of them in a single cluster around the ery operon, able to co-ordinately mediate the transport and degradation of erythritol into three carbon atoms intermediates that will be then converted into fructose-6P (F6P) by gluconeogenesis. Other induced genes participating in the nonoxidative branch of the pentose phosphate shunt and the TCA may collaborate with the ery genes to conform an efficient degradation of sugars by this route. On the other hand, several routes of amino acid and nucleotide biosynthesis are up-regulated whilst amino acid transport and catabolism genes are down-regulated. These results corroborate previous descriptions indicating that in the presence of erythritol, this sugar was used preferentially over other compounds and provides a neat explanation of the the reported stimulation of growth induced by erythritol. Citation: Rodriguez MC, Viadas C, Seoane A, Sangari FJ, Lopez-Goni I, et al. (2012) Evaluation of the Effects of Erythritol on Gene Expression in Brucella abortus. PLoS ONE 7(12): e50876. doi:10.1371/journal.pone.0050876
Autores: Hofer, E.; Bago, Z.; Revilla-Fernandez, S.; et al.
ISSN 1121-7138  Vol. 35  Nº 4  2012  págs. 507 - 510
Brucella canis occurs almost worldwide and is a potential danger to the health of dogs and humans. The pathogen was detected in the placenta and fetuses of a Standard Poodle by direct culture and immunohistochemistry. Further, Brucellae were also isolated from the blood samples of two asymptomatic female Medium Poodles. The isolates were identified as B. canis by conventional microbiological methods and a novel Bruce-ladder multiplex PCR. Genotyping was performed by multiple locus variable number tandem repeats analysis (MLVA).
Autores: Mancilla, Marcos; MARIN, CM; Blasco, José María; et al.
ISSN 0021-9193  Vol. 194  Nº 8  2012  págs. 1860-1867
The brucellae are Gram-negative pathogens that cause brucellosis, a zoonosis of worldwide importance. The genus Brucella includes smooth and rough species that differ in that they carry smooth and rough lipopolysaccharides, respectively. Brucella abortus, B. melitensis, and B. suis are typical smooth species. However, these smooth brucellae dissociate into rough mutants devoid of the lipopolysaccharide O-polysaccharide, a major antigen and a virulence determinant encoded in regions wbo (included in genomic island-2) and wbk. We demonstrate here the occurrence of spontaneous recombination events in those three Brucella species leading to the deletion of a 5.5-kb fragment carrying the wbkA glycosyltranferase gene and to the appearance of rough mutants. Analysis of the recombination intermediates suggested homologous recombination between the ISBm1 insertion sequences flanking wbkA as the mechanism generating the deletion. Excision of wbkA was reduced but not abrogated in a recA-deficient mutant, showing the existence of both RecA-dependent and -independent processes. Although the involvement of the ISBm1 copies flanking wbkA suggested a transpositional event, the predicted transpositional joint could not be detected. This absence of detectable transposition was consistent with the presence of polymorphism in the inverted repeats of one of the ISBm1 copies. The spontaneous excision of wbkA represents a novel dissociation mechanism of smooth brucellae that adds to the previously described excision of genomic island-2. This ISBm1-mediated wbkA excision and the different %GC levels of the excised fragment and of other wbk genes suggest that the Brucella wbk locus is the result of at least two horizontal acquisition events.
Autores: López Goñi, Ignacio
ISSN 1746-0913  Vol. 7  Nº 2  2012  págs. 167-169
Autores: López Goñi, Ignacio; Gracía-Yoldi, D; Marin, CM; et al.
ISSN 0378-1135  Vol. 154  Nº 1-2  2011  págs. 152 - 155
Rapid and specific identification of Brucella suis at the biovar level is necessary because some of the biovars that infect animals are pathogenic for humans. None of the molecular typing methods described so far are able to discriminate B. suis biovars i
Autores: Mancilla Espinoza, Marcos; Ulloa, M.; López Goñi, Ignacio; et al.
ISSN 1471-2180  Vol. 11  Nº 1  2011  págs. 176
Brucellosis is a zoonosis caused by Brucella spp., a group of highly homogeneous bacteria. The insertion sequence IS711 is characteristic of these bacteria, and occurs in variable numbers and positions, but always constant within a given species.
Autores: Viadas Martínez, Cristina; Rodriguez, MC; Sangari, FJ; et al.
Revista: PLOS ONE
ISSN 1932-6203  Vol. 5  Nº 4  2010  págs. e10216
Background: The two-component BvrR/BvrS system is essential for Brucella abortus virulence. It was shown previously that its dysfunction alters the expression of some major outer membrane proteins and the pattern of lipid A acylation. To determine the genes regulated by BvrR/BvrS, we performed a whole-genome microarray analysis using B. abortus RNA obtained from wild type and bvrR mutant cells grown in the same conditions. Methodology/Principal Findings: A total of 127 differentially expressed genes were found: 83 were over expressed and 44 were less expressed in the bvrR mutant. Two operons, the phosphotransferase system and the maltose transport system, were down-regulated. Several genes involved in cell envelope or outer membrane biogenesis were differentially expressed: genes for outer membrane proteins (omp25a, omp25d), lipoproteins, LPS and fatty acid biosynthesis, stress response proteins, chaperones, flagellar genes, and twelve genes encoding ABC transport systems. Ten genes related with carbon metabolism (pckA and fumB among others) were up-regulated in the bvrR mutant, and denitrification genes (nirK, norC and nosZ) were also regulated. Notably, seven transcriptional regulators were affected, including VjbR, ExoR and OmpR that were less expressed in the bvrR mutant. Finally, the expression of eleven genes which have been previously related with Brucella virulence was also altered. Conclusions/Significance: All these data corroborate the impact of BvrR/BvrS on cell envelope modulation, confirm that this system controls the carbon and nitrogen metabolism, and suggest a cross-talk among some regulators to adjust the Brucella physiology to the shift expected to occur during the transit from the extracellular to the intracellular niche.
Autores: Mancilla Espinoza, Marcos; López Goñi, Ignacio; Moriyón Uría, Ignacio; et al.
Revista: Journal of bacteriology
ISSN 0021-9193  Vol. 192  Nº 24  2010  págs. 6346 - 6351
Brucella is a Gram-negative bacterium that causes a worldwide-distributed zoonosis. The genus includes smooth (S) and rough (R) species that differ in the presence or absence, respectively, of the O-polysaccharide of lipopolysaccharide. In S brucellae, the O-polysaccharide is a critical diagnostic antigen and a virulence determinant. However, S brucellae spontaneously dissociate into R forms, a problem in antigen and S vaccine production. Spontaneous R mutants of Brucella abortus, Brucella melitensis, and Brucella suis carried the chromosomal scar corresponding to genomic island 2 (GI-2) excision, an event causing the loss of the wboA and wboB O-polysaccharide genes, and the predicted excised circular intermediate was identified in B. abortus, B. melitensis, and B. suis cultures. Moreover, disruption of a putative phage integrase gene in B. abortus GI-2 caused a reduction in O-polysaccharide loss rates under conditions promoting S-R dissociation. However, spontaneous R mutants not carrying the GI-2 scar were also detected. These results demonstrate that the phage integrase-related GI-2 excision is a cause of S-R brucella dissociation and that other undescribed mechanisms must also be involved. In the R Brucella species, previous works have shown that Brucella ovis but not Brucella canis lacks GI-2, and a chromosomal scar identical to those in R mutants was observed. These results suggest that the phage integrase-promoted GI-2 excision played a role in B. ovis speciation and are consistent with other evidence, suggesting that this species and B. canis have emerged as two independent lineages.
Autores: López Goñi, Ignacio
Libro:  Brucella: molecular microbiology and genomics
2012  págs. 201 - 210
Autores: García-Lobo, J. M.; Rodríguez, M. C.; Seoane, A.; et al.
Libro:  Brucella: molecular microbiology and genomics
2012  págs. 89 - 102
Autores: López Goñi, Ignacio
Autores: López Goñi, Ignacio; Iturbide, O.;
Autores: López Goñi, Ignacio
Título: Virus y pandemias
Autores: López Goñi, Ignacio; Iturbide, Oihana ; Soler Llorens, Pedro Francisco (Ilustrador)
Autores: López Goñi, Ignacio (Editor); O'Callaghan, D., (Editor)


Catedrático de Microbiología (Acreditado por la ANECA, cuatro sexenios de investigación reconocidos por la CNEAI). Doctor en Biología por la Universidad de Navarra (1989). Investigador posdoctoral del Instituto Nacional de Investigaciones Agrarias (INIA) en los Departamentos de Biología Molecular y Celular de la Universidad de Berkeley (California, EE.UU.) y de Microbiología Molecular de la Universidad de Columbia (Missouri, EE.UU.) (1990-1992). Desde agosto de 1992 se incorporó como Profesor en el Departamento de Microbiología y Parasitología de la Universidad de Navarra, donde ha impartido la docencia de las asignaturas de Microbiología general y de Virología en los grados de Biología, Bioquímica y Farmacia. Durante 2005-2014 fue Decano de la Facultad de Ciencias de la Universidad de Navarra. Su investigación se ha centrado en el estudio de los mecanismos moleculares y genéticos que controlan la virulencia de las bacterias patógenas, el desarrollo de nuevas vacunas contra la brucelosis y de nuevos métodos de diagnóstico de enfermedades infecciosas. Ha participado como Investigador en varios proyectos nacionales y europeos y ha sido director de ocho tesis doctorales (una de ellas Premio SYVA 2010 a la mejor tesis en Sanidad Animal). Fue Presidente de la Sociedad Internacional de Brucelosis, autor de varias publicaciones especializadas, editor de dos libros sobre microbiología molecular y genómica de la bacteria Brucella. Es Vicepresidente del grupo de Docencia y Difusión de la Microbiología de la Sociedad Española de Microbiología y miembro de la American Society for Microbiology. Compagina su labor docente e investigadora con una intensa actividad de divulgación científica a través de blogs, redes sociales (en twitter como @microbioblog) y cursos masivos online (MOOC). Promotor de los cursos via twitter #microMOOC y #microMOOCSEM y #microBIOscope. Es autor del blog microBIO y El rincón de Pasteur (de la revista Investigación y Ciencia). Ha publicado tres libros de divulgación científica Virus y pandemias (2015), ¿Funcionan las vacunas? (2017) y Microbiota: los microbios de tu organismo (2018). Premio Tesla 2016 de divulgación científica, y premio ASEBIO 2017 de Comunicación y Divulgación de la Biotecnología, en la Categoría prensa digital y nuevos medios. Desde septiembre de 2017 es el Director del Museo de Ciencias de la Universidad de Navarra.