Revistas
Revista:
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY
ISSN:
0305-7453
Año:
2022
Vol.:
77
N°:
4
Págs.:
1072 - 1081
Objectives More effective topical treatments remain an unmet need for the localized forms of cutaneous leishmaniasis (CL). The aim of this study was to evaluate the efficacy and safety of a topical berberine cream in BALB/c mice infected with Leishmania major parasites. Methods A cream containing 0.5% berberine-beta-glycerophosphate salt and 2.5% menthol was prepared. Its physicochemical and stability properties were determined. The cream was evaluated for its capacity to reduce lesion size and parasitic load as well as to promote wound healing after twice-a-day administration for 35 days. Clinical biochemical profile was used for estimating off-target effects. In vitro time-to-kill curves in L. major-infected macrophages and skin and plasma pharmacokinetics were determined, aiming to establish pharmacokinetic/pharmacodynamic relationships. Results The cream was stable at 40 degrees C for 3 months and at 4 degrees C for at least 8 months. It was able to halt lesion progression in all treated mice. At the end of treatment, parasite load in the skin was reduced by 99.9% (4 log) and genes involved in the wound healing process were up-regulated compared with untreated mice. The observed effects were higher than expected from in vitro time-to-kill kinetic and plasma berberine concentrations, which ranged between 0.07 and 0.22 mu M. Conclusions The twice-a-day administration of a topical berberine cream was safe, able to stop parasite progression and improved the appearance of skin CL lesions. The relationship between drug plasma levels and in vivo effect was unclear.
Revista:
PHARMACEUTICS
ISSN:
1999-4923
Año:
2022
Vol.:
14
N°:
1
Págs.:
123
Enterotoxigenic Escherichia coli (ETEC) represents a major cause of morbidity and mortality in the human population. In particular, ETEC infections affect children under the age of five from low-middle income countries. However, there is no licensed vaccine against this pathogen. ETEC vaccine development is challenging since this pathotype expresses a wide variety of antigenically diverse virulence factors whose genes can be modified due to ETEC genetic plasticity. To overcome this challenge, we propose the use of outer membrane vesicles (OMVs) isolated from two ETEC clinical strains. In these OMVs, proteomic studies revealed the presence of important immunogens, such as heat-labile toxin, colonization factors, adhesins and mucinases. Furthermore, these vesicles proved to be immunogenic after subcutaneous administration in BALB/c mice. Since ETEC is an enteropathogen, it is necessary to induce both systemic and mucosal immunity. For this purpose, the vesicles, free or encapsulated in zein nanoparticles coated with a Gantrez(R)-mannosamine conjugate, were administered orally. Biodistribution studies showed that the encapsulation of OMVs delayed the transit through the gut. These results were confirmed by in vivo study, in which OMV encapsulation resulted in higher levels of specific antibodies IgG2a. Further studies are needed to evaluate the protection efficacy of this vaccine approach.
Revista:
NANOSCALE
ISSN:
2040-3364
Año:
2021
Vol.:
13
N°:
41
Págs.:
17486 - 17503
This study investigates if visceral leishmaniasis (VL) infection has some effects on the organ and cellular uptake and distribution of 100-200 nm near-infrared fluorescently labelled non-biodegradable polystyrene latex beads (PS NPs) or biodegradable polylactic-co-glycolic nanoparticles (PLGA NPs), as this parasitic infection produces morphological alterations in liver, spleen and bone marrow, organs highly involved in NP sequestration. The results showed that the magnitude of the effect was specific for each organ and type of NP. With the exception of the liver, the general trend was a decrease in NP organ and cellular uptake, mostly due to immune cell mobilization and/or weight organ gain, as vascular permeability was increased. Moreover, NPs redistributed among different phagocytic cells to adapt infection associated changes and cellular alterations. In the liver, it is noteworthy that only isolated Kuffer cells (KCs) captured NPs, whereas they were not taken up by KC forming granulomas. In the spleen, NPs redistributed from macrophages and dendritic cells towards B cells and inflammatory monocytes although they maintained their preferential accumulation in the marginal zone and red pulp. Comparatively, the infection rarely affected the NP cellular distribution in the bone marrow. NP cellular target changes in VL infection could affect their therapeutic efficacy and should be considered for more efficient drug delivery.
Revista:
ACS INFECTIOUS DISEASES
ISSN:
2373-8227
Año:
2021
Vol.:
7
N°:
12
Págs.:
3197 - 3209
Leishmaniasis urgently needs new oral treatments, as it is one of the most important neglected tropical diseases that affects people with poor resources. The drug discovery pipeline for oral administration currently discards entities with poor aqueous solubility and permeability (class IV compounds in the Biopharmaceutical Classification System, BCS) such as the diselenide 2m, a trypanothione reductase (TR) inhibitor. This work was assisted by glyceryl palmitostearate and diethylene glycol monoethyl ether-based nanostructured lipid carriers (NLC) to render 2m bioavailable and effective after its oral administration. The loading of 2m in NLC drastically enhanced its intestinal permeability and provided plasmatic levels higher than its effective concentration (IC50). In L. infantum-infected BALB/c mice, 2m-NLC reduced the parasite burden in the spleen, liver, and bone marrow by at least 95% after 5 doses, demonstrating similar efficacy as intravenous Fungizone. Overall, compound 2m and its formulation merit further investigation as an oral treatment for visceral leishmaniasis.
Revista:
PHARMACEUTICS
ISSN:
1999-4923
Año:
2020
Vol.:
12
N°:
9
Págs.:
E858
Berberine (BER)-an anti-inflammatory quaternary isoquinoline alkaloid extracted from plants-has been reported to have a variety of biologic properties, including antileishmanial activity. This work addresses the preparation of BER-loaded liposomes with the aim to prevent its rapid liver metabolism and improve the drug selective delivery to the infected organs in visceral leishmaniasis (VL). BER liposomes (LP-BER) displayed a mean size of 120 nm, negative Z-potential of -38 mV and loaded 6 nmol/¿mol lipid. In vitro, the loading of BER in liposomes enhanced its selectivity index more than 7-fold by decreasing its cytotoxicity to macrophages. In mice, LP-BER enhanced drug accumulation in the liver and the spleen. Consequently, the liposomal delivery of the drug reduced parasite burden in the liver and spleen by three and one logarithms (99.2 and 93.5%), whereas the free drug only decreased the infection in the liver by 1-log. The organ drug concentrations-far from IC50 values- indicate that BER immunomodulatory activity or drug metabolites also contribute to the efficacy. Although LP-BER decreased 10-fold-an extremely rapid clearance of the free drug in mice-the value remains very high. Moreover, LP-BER reduced plasma triglycerides levels.
Revista:
PHARMACEUTICS
ISSN:
1999-4923
Año:
2019
Vol.:
11
N°:
11
Págs.:
607
The oral administration of dapsone (DAP) for the treatment of cutaneous leishmaniasis (CL) is effective, although serious hematological side effects limit its use. In this study, we evaluated this drug for the topical treatment of CL. As efficacy depends on potency and skin penetration, we first determined its antileishmanial activity (IC50 = 100 ¿M) and selectivity index in vitro against Leishmania major-infected macrophages. In order to evaluate the skin penetration ex vivo, we compared an O/W cream containing DAP that had been micronized with a pluronic lecithin emulgel, in which the drug was solubilized with diethylene glycol monoethyl ether. For both formulations we obtained similar low flux values that increased when the stratum corneum and the epidermis were removed. In vivo efficacy studies performed on L. major-infected BALB/c mice revealed that treatment not only failed to cure the lesions but made their evolution and appearance worse. High plasma drug levels were detected and were concomitant with anemia and iron accumulation in the spleen. This side effect was correlated with a reduction of parasite burden in this organ. Our results evidenced that DAP in these formulations does not have an adequate safety index for use in the topical therapy of CL.
Revista:
JOURNAL OF DERMATOLOGICAL SCIENCE
ISSN:
0923-1811
Año:
2018
Vol.:
92
N°:
1
Págs.:
78 - 88
Background: Cutaneous leishmaniasis (CL) skin lesions are the result of a deregulated immune response, which is unable to eliminate Leishmania parasites. The control of both, parasites and host immune response, is critical to prevent tissue destruction. The skin ulceration has been correlated with high TNF-alpha level. Objective: Because human anti-TNF-alpha antibodies (Ab) have been successfully assayed in several mice inflammatory diseases, we hypothesized that their anti-inflammatory effect could optimize the healing of CL lesions achieved after topical application of paromomycin (PM), the current chemotherapy against CL. Methods and results: We first compared the in vitro efficacy of PM and Ab alone and the drug given in combination with Ab to assess if the Ab could interfere with PM leishmanicidal activity in L. major-infected bone marrow-derived macrophages. The combination therapy had similar antileishmanial activity to the drug alone and showed no influence on NO production, which allows macrophage-mediated parasite killing. Next, we demonstrated in an in vivo model of Imiquimod (R)-induced inflammation that topical Ab and PM inhibit the infiltration of inflammatory cells in the skin. In the efficacy studies in L. major-infected BALB/c mice, PM combined with Ab led to a sharp infection reduction and showed a stronger anti-inflammatory activity than PM alone. This was confirmed by the down-regulation of TNE-alpha, IL-1 beta, iNOS, IL 17, and CCL3 as well as by a decrease of the neutrophilic infiltrate during infection upon treatment with the Ab. Conclusions: In terms of parasite elimination and inflammation reduction, topical application of Ab in combination with PM was more effective than the drug alone. (C) 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.