Revistas
Revista:
LEUKEMIA
ISSN:
0887-6924
Año:
2021
Vol.:
35
N°:
1
Págs.:
245 - 249
Revista:
BLOOD CANCER JOURNAL
ISSN:
2044-5385
Año:
2021
Vol.:
11
N°:
2
Págs.:
34
Light chain (AL) amyloidosis is caused by a small B-cell clone producing light chains that form amyloid deposits and cause organ dysfunction. Chemotherapy aims at suppressing the production of the toxic light chain (LC) and restore organ function. However, even complete hematologic response (CR), defined as negative serum and urine immunofixation and normalized free LC ratio, does not always translate into organ response. Next-generation flow (NGF) cytometry is used to detect minimal residual disease (MRD) in multiple myeloma. We evaluated MRD by NGF in 92 AL amyloidosis patients in CR. Fifty-four percent had persistent MRD (median 0.03% abnormal plasma cells). There were no differences in baseline clinical variables in patients with or without detectable MRD. Undetectable MRD was associated with higher rates of renal (90% vs 62%, p = 0.006) and cardiac response (95% vs 75%, p = 0.023). Hematologic progression was more frequent in MRD positive (0 vs 25% at 1 year, p = 0.001). Altogether, NGF can detect MRD in approximately half the AL amyloidosis patients in CR, and persistent MRD can explain persistent organ dysfunction. Thus, this study supports testing MRD in CR patients, especially if not accompanied by organ response. In case MRD persists, further treatment could be considered, carefully balancing residual organ damage, patient frailty, and possible toxicity.
Revista:
BLOOD
ISSN:
0006-4971
Año:
2021
Vol.:
138
N°:
17
Págs.:
1583 - 1589
Although light-chain amyloidosis (AL) and multiple myeloma (MM) are characterized by tumor plasma cell (PC) expansion in bone marrow (BM), their clinical presentation differs. Previous attempts to identify unique pathogenic mechanisms behind such differences were unsuccessful, but there are no studies investigating the differentiation stage of tumor PCs in patients with AL and MM. We sought to define a transcriptional atlas of normal PC development (n=11) in secondary lymphoid organs (SLO), peripheral blood (PB) and BM for comparison with the transcriptional programs (TPs) of tumor PCs in AL (n=37), MM (n=46) and MGUS (n=6). Based on bulk and single-cell RNAseq, we observed thirteen TPs during transition of normal PCs throughout SLO, PB and BM; that CD39 outperforms CD19 to discriminate new-born from long-lived BM-PCs; that tumor PCs expressed the most advantageous TPs of normal PC differentiation; that AL shares greater similarity to SLO-PCs whereas MM is transcriptionally closer to PB-PCs and new-born BM-PCs; that AL and MM patients enriched in immature TPs had inferior survival; and that TPs related with protein N-linked glycosylation are upregulated in AL. Collectively, we provide a novel resource to understand normal PC development and the transcriptional reorganization of AL and other monoclonal gammopathies.
Revista:
HAEMATOLOGICA
ISSN:
0390-6078
Año:
2020
Vol.:
105
N°:
9
Págs.:
E470 - E473
Revista:
JOURNAL OF MOLECULAR BIOLOGY
ISSN:
0022-2836
Año:
2020
Vol.:
432
N°:
22
Págs.:
5889 - 5901
Protein lifespan is regulated by co-translational modification by several enzymes, including methionine aminopeptidases and N-alpha-aminoterminal acetyltransferases. The NatB enzymatic complex is an N-terminal acetyltransferase constituted by two subunits, NAA20 and NAA25, whose interaction is necessary to avoid NAA20 catalytic subunit degradation. We found that deletion of the first five amino acids of hNAA20 or fusion of a peptide to its amino terminal end abolishes its interaction with hNAA25. Substitution of the second residue of hNAA20 with amino acids with small, uncharged side-chains allows NatB enzymatic complex formation. However, replacement by residues with large or charged side-chains interferes with its hNAA25 interaction, limiting functional NatB complex formation. Comparison of NAA20 eukaryotic sequences showed that the residue following the initial methionine, an amino acid with a small uncharged side-chain, has been evolutionarily conserved. We have confirmed the relevance of second amino acid characteristics of NAA20 in NatB enzymatic complex formation in Drosophila melanogaster. Moreover, we have evidenced the significance of NAA20 second residue in Saccharomyces cerevisiae using different NAA20 versions to reconstitute NatB formation in a yNAA20-KO yeast strain. The requirement in humans and in fruit flies of an amino acid with a small uncharged side-chain following the initial methionine of NAA20 suggests that methionine aminopeptidase action may be necessary for the NAA20 and NAA25 interaction. We showed that inhibition of MetAP2 expression blocked hNatB enzymatic complex formation by retaining the initial methionine of NAA20. Therefore, NatB-mediated protein N-terminal acetylation is dependent on methionine aminopeptidase, providing a regulatory mechanism for protein N-terminal maturation. (C) 2020 Elsevier Ltd. All rights reserved.
Revista:
LEUKEMIA
ISSN:
0887-6924
Año:
2020
Vol.:
34
N°:
2
Págs.:
589 - 603
The reason why a few myeloma cells egress from the bone marrow (BM) into peripheral blood (PB) remains unknown. Here, we investigated molecular hallmarks of circulating tumor cells (CTCs) to identify the events leading to myeloma trafficking into the bloodstream. After using next-generation flow to isolate matched CTCs and BM tumor cells from 32 patients, we found high correlation in gene expression at single-cell and bulk levels (r¿¿¿0.94, P¿=¿10-16), with only 55 genes differentially expressed between CTCs and BM tumor cells. CTCs overexpressed genes involved in inflammation, hypoxia, or epithelial-mesenchymal transition, whereas genes related with proliferation were downregulated in CTCs. The cancer stem cell marker CD44 was overexpressed in CTCs, and its knockdown significantly reduced migration of MM cells towards SDF1-¿ and their adhesion to fibronectin. Approximately half (29/55) of genes differentially expressed in CTCs were prognostic in patients with newly-diagnosed myeloma (n¿=¿553; CoMMpass). In a multivariate analysis including the R-ISS, overexpression of CENPF and LGALS1 was significantly associated with inferior survival. Altogether, these results help understanding the presence of CTCs in PB and suggest that hypoxic BM niches together with a pro-inflammatory microenvironment induce an arrest in proliferation, forcing tumor cells to circulate in PB and seek other BM niches to continue growing.
Revista:
LEUKEMIA
ISSN:
0887-6924
Año:
2019
Vol.:
33
N°:
5
Págs.:
1256 - 1267
Early diagnosis and risk stratification are key to improve outcomes in light-chain (AL) amyloidosis. Here we used multidimensional-flow-cytometry (MFC) to characterize bone marrow (BM) plasma cells (PCs) from a series of 166 patients including newly-diagnosed AL amyloidosis (N = 9 4) , MGUS (N = 20) and multiple myeloma (MM, N = 52) vs. healthy adults (N= 30). MFC detected clonality in virtually all AL amyloidosis (99%) patients. Furthermore, we developed an automated risk-stratification system based on BMPCs features, with independent prognostic impact on progression-free and overall survival of AL amyloidosis patients (hazard ratio: >= 2.9;P <= .03). Simultaneous assessment of the clonal PCs immunophenotypic protein expression profile and the BM cellular composition, mapped AL amyloidosis in the crossroad between MGUS and MM; however, lack of homogenously-positive CD56 expression, reduction of B-cell precursors and a predominantly-clonal PC compartment in the absence of an MM-like tumor PC expansion, emerged as hallmarks of AL amyloidosis (ROC-AUC = 0.74;P < .001), and might potentially be used as biomarkers for the identification of MGUS and MM patients, who are candidates for monitoring pre-symptomatic organ damage related to AL amyloidosis. Altogether, this study addressed the need for consensus on how to use flow cytometry in AL amyloidosis, and proposes a standardized MFCbased automated risk classification ready for implementation in clinical practice.
Revista:
CLINICAL CANCER RESEARCH
ISSN:
1078-0432
Año:
2019
Vol.:
25
N°:
10
Págs.:
3176 - 3187
Purpose: Knowledge about the mechanism of action (MoA) of monoclonal antibodies (mAb) is required to understand which patients with multiple myeloma (MM) benefit the most from a given mAb, alone or in combination therapy. Although there is considerable research about daratumumab, knowledge about other anti-CD38 mAbs remains scarce.
Experimental Design: We performed a comprehensive analysis of the MoA of isatuximab.
Results: Isatuximab induces internalization of CD38 but not its significant release from MMcell surface. In addition, we uncovered an association between levels of CD38 expression and different MoA: (i) Isatuximab was unable to induce direct apoptosis on MM cells with CD38 levels closer to those in patients with MM, (ii) isatuximab sensitized CD38(hi) MMcells to bortezomib plus dexamethasone in the presence of stroma, (iii) antibody-dependent cellular cytotoxicity (ADCC) was triggered by CD38(lo) and CD38(hi) tumor plasma cells (PC), (iv) antibody-dependent cellular phagocytosis (ADCP) was triggered only by CD38(hi) MM cells, whereas (v) complement-dependent cytotoxicity could be triggered in less than half of the patient samples (those with elevated levels of CD38). Furthermore, we showed that isatuximab depletes CD38(hi) B-lymphocyte precursors and natural killer (NK) lymphocytes ex vivo-the latter through activation followed by exhaustion and eventually phagocytosis.
Conclusions: This study provides a framework to understand response determinants in patients treated with isatuximab based on the number of MoA triggered by CD38 levels of expression, and for the design of effective combinations aimed at capitalizing disrupted tumor-stroma cell protection, augmenting NK lymphocyte-mediated ADCC, or facilitating ADCP in CD38(lo) MM patients.
Revista:
ONCOTARGET
ISSN:
1949-2553
Año:
2017
Vol.:
8
N°:
25
Págs.:
40967 - 40981
The identification of new targets for systemic therapy of hepatocellular carcinoma (HCC) is an urgent medical need. Recently, we showed that hNatB catalyzes the N-alpha-terminal acetylation of 15% of the human proteome and that this action is necessary for proper actin cytoskeleton structure and function. In tumors, cytoskeletal changes influence motility, invasion, survival, cell growth and tumor progression, making the cytoskeleton a very attractive antitumor target. Here, we show that hNatB subunits are upregulated in in over 59% HCC tumors compared to non-tumor tissue and that this upregulation is associated with microscopic vascular invasion. We found that hNatB silencing blocks proliferation and tumor formation in HCC cell lines in association with hampered DNA synthesis and impaired progression through the S and the G2/M phases. Growth inhibition is mediated by the degradation of two hNatB substrates, tropomyosin and CDK2, which occurs when these proteins lack N-alpha-terminal acetylation. In addition, hNatB inhibition disrupts the actin cytoskeleton, focal adhesions and tight/adherens junctions, abrogating two proliferative signaling pathways, Hippo/YAP and ERK1/2. Therefore, inhibition of NatB activity represents an interesting new approach to treating HCC by blocking cell proliferation and disrupting actin cytoskeleton function.
Revista:
BLOOD
ISSN:
0006-4971
Año:
2016
Vol.:
127
N°:
24
Págs.:
3035 - 3039
Immunoglobulin light-chain amyloidosis (AL) and multiple myeloma (MM) are 2 distinct monoclonal gammopathies that involve the same cellular compartment: clonal plasma cells (PCs). Despite the fact that knowledge about MM PC biology has significantly increased in the last decade, the same does not apply for AL. Here, we used an integrative phenotypic, molecular, and genomic approach to study clonal PCs from 24 newly diagnosed patients with AL. Through principal-component-analysis, we demonstrated highly overlapping phenotypic profiles between AL and both monoclonal gammopathy of undetermined significance and MM PCs. However, in contrast to MM, highly purified fluorescence-activated cell-sorted clonal PCs from AL (n = 9) showed almost normal transcriptome, with only 38 deregulated genes vs normal PCs; these included a few tumor-suppressor (CDH1, RCAN) and proapoptotic (GLIPR1, FAS) genes. Notwithstanding, clonal PCs in AL (n=11) were genomically unstable, with a median of 9 copy number alterations (CNAs) per case, many of such CNAs being similar to those found in MM. Whole-exome sequencing (WES) performed in 5 AL patients revealed a median of 15 nonrecurrent mutations per case. Altogether, our results show that in the absence of a unifying mutation by WES, clonal PCs in AL display phenotypic and CNA profiles similar to MM, but their transcriptome is remarkably similar to that of normal PCs.
Autores:
Elosegui-Artola, A.; Jorge-Peñas, A.; Moreno-Arotzena, O.; et al.
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2014
Vol.:
9
N°:
9
Págs.:
e107393
Actin stress fibers (SFs) detect and transmit forces to the extracellular matrix through focal adhesions (FAs), and molecules in this pathway determine cellular behavior. Here, we designed two different computational tools to quantify actin SFs and the distribution of actin cytoskeletal proteins within a normalized cellular morphology. Moreover, a systematic cell response comparison between the control cells and those with impaired actin cytoskeleton polymerization was performed to demonstrate the reliability of the tools. Indeed, a variety of proteins that were present within the string beginning at the focal adhesions (vinculin) up to the actin SFs contraction (non-muscle myosin II (NMMII)) were analyzed. Finally, the software used allows for the quantification of the SFs based on the relative positions of FAs. Therefore, it provides a better insight into the cell mechanics and broadens the knowledge of the nature of SFs.
Autores:
Van Damme, P.; Lasa, Marta; Polevoda, B.; et al.
Revista:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN:
0027-8424
Año:
2012
Vol.:
109
N°:
31
Págs.:
12449 - 12454
Protein N-terminal acetylation (Nt-acetylation) is an important mediator of protein function, stability, sorting, and localization. Although the responsible enzymes are thought to be fairly well characterized, the lack of identified in vivo substrates, the occurrence of Nt-acetylation substrates displaying yet uncharacterized N-terminal acetyltransferase (NAT) specificities, and emerging evidence of posttranslational Nt-acetylation, necessitate the use of genetic models and quantitative proteomics. NatB, which targets Met-Glu-, Met-Asp-, and Met-Asn-starting protein N termini, is presumed to Nt-acetylate 15% of all yeast and 18% of all human proteins. We here report on the evolutionary traits of NatB from yeast to human and demonstrate that ectopically expressed hNatB in a yNatB-Delta yeast strain partially complements the natB-Delta phenotypes and partially restores the yNatB Nt-acetylome. Overall, combining quantitative N-terminomics with yeast studies and knockdown of hNatB in human cell lines, led to the unambiguous identification of 180 human and 110 yeast NatB substrates. Interestingly, these substrates included Met-Gln- N-termini, which are thus now classified as in vivo NatB substrates. We also demonstrate the requirement of hNatB activity for maintaining the structure and function of actomyosin fibers and for proper cellular migration. In addition, expression of tropomyosin-1 restored the altered focal adhesions and cellular migration defects observed in hNatB-depleted HeLa cells, indicative for the conserved link between NatB, tropomyosin, and actin cable function from yeast to human.
Nacionales y Regionales
Título:
Single-cell multiomics for for ultra-sensitive and minimally invasive assessment of treatment efficacy in Waldenström¿s Macroglobulinemia
Código de expediente:
PI22/00865
Investigador principal:
Paula Rodríguez Otero, Jesús Fernando San Miguel Izquierdo
Financiador:
INSTITUTO DE SALUD CARLOS III
Convocatoria:
2022 AES Proyectos de investigación
Fecha de inicio:
01/01/2023
Fecha fin:
31/12/2025
Importe concedido:
171.820,00€
Otros fondos:
Fondos FEDER
Título:
Nuevos métodos no-invasivos y de ultra-sensibilidad para evaluar enfermedad mínima residual en mieloma mútliple
Código de expediente:
PI21/01816
Investigador principal:
María José Calasanz Abinzano
Financiador:
INSTITUTO DE SALUD CARLOS III
Convocatoria:
2021 AES Proyectos de investigación
Fecha de inicio:
01/01/2022
Fecha fin:
31/12/2024
Importe concedido:
148.830,00€
Otros fondos:
Fondos FEDER
Título:
Evaluación de 18F-FDG, 11C-MET y 11C-COL para la detección de infiltración tumoral en Mieloma Múltiple (MM): Estudio traslacional en modelos preclínico y clínico en pacientes (MIELOMAPET)
Código de expediente:
PI16/00225
Investigador principal:
María José García Velloso, Patricia Maiso Castellanos
Financiador:
INSTITUTO DE SALUD CARLOS III
Convocatoria:
2016 AES PROYECTOS DE INVESTIGACIÓN
Fecha de inicio:
01/01/2017
Fecha fin:
31/12/2019
Importe concedido:
74.415,00€
Otros fondos:
Fondos FEDER