Revistas
Revista:
EUROPEAN JOURNAL OF IMMUNOLOGY
ISSN 0014-2980
Vol. 44
N° 5
Año 2014
Págs.1341 - 1351
Mitogenic stimulation of lymphocytes involves alkalinization of intracellular pH (pHi ). Subsequent pHi regulation may involve HCO3 (-) extrusion through Cl(-) /HCO3 (-) exchangers and/or Na(+) -HCO3 (-) co-transporters with acid-loading capability. Abnormalities in these mechanisms could result in immune dysfunctions, as suggested by the CD8(+) T-cell expansion encountered in mice lacking Ae2 (a widely expressed acid loader with electroneutral and Na(+) -independent Cl(-) /HCO3 (-) anion-exchange activity). Here we report that CD8(+) T cells but not CD4(+) T cells or other lymphocyte populations, are crucially dependent on Ae2 for pHi regulation. While total lymphocytes (including isolated CD4(+) T cells) exhibit Ae1 expression and Na(+) -HCO3 (-) co-transport with acidifying potential, CD8(+) T cells lack these acid-loading mechanisms. In Ae2-KO mice, CD4(+) but not CD8(+) T cells upregulate these potential Ae2 surrogates. As a consequence, Ae2-KO CD8(+) T cells exhibit alkalinized pHi , and dramatically increase their pHi upon CD3 stimulation. Moreover, stimulated Ae2-deficient CD8(+) T cells show enhanced intracellular production of IL-2 and membrane expression of its receptor IL-2R¿, together with increased cell proliferation and activation. These findings demonstrate that CD8(+) T cells are critically dependent on Ae2 for pHi homeostasis and tuning of cell proliferation and activation. Ae2 thus constitutes a novel target to modulate CD8(+) T-cell responses.
Revista:
FRONTIERS IN PHYSIOLOGY
ISSN 1664-042X
Vol. 17
N° 4
Año 2014
Págs.413
The Cl(-)/HCO(-) 3anion exchanger 2 (AE2) is known to be involved in intracellular pH (pHi) regulation and transepithelial acid-base transport. Early studies showed that AE2 gene expression is reduced in liver biopsies and blood mononuclear cells from patients with primary biliary cirrhosis (PBC), a disease characterized by chronic non-suppurative cholangitis associated with antimitochondrial antibodies (AMA) and other autoimmune phenomena. Microfluorimetric analysis of the Cl(-)/HCO(-) 3 anion exchange (AE) in isolated cholangiocytes showed that the cAMP-stimulated AE activity is diminished in PBC compared to both healthy and diseased controls. More recently, it was found that miR-506 is upregulated in cholangiocytes of PBC patients and that AE2 may be a target of miR-506. Additional evidence for a pathogenic role of AE2 dysregulation in PBC was obtained with Ae2 (-/-) a,b mice, which develop biochemical, histological, and immunologic alterations that resemble PBC (including development of serum AMA). Analysis of HCO(-) 3 transport systems and pHi regulation in cholangiocytes from normal and Ae2 (-/-) a,b mice confirmed that AE2 is the transporter responsible for the Cl(-)/HCO(-) 3exchange in these cells. On the other hand, both Ae2 (+/+) a,b and Ae2 (-/-) a,b mouse cholangiocytes exhibited a Cl(-)-independent bicarbonate transport system, essentially a Na(+)-bicarbonate cotransport (NBC) system, which could contribute to pHi regulation in the absence of AE2.
Revista:
GUT
ISSN 0017-5749
Vol. 62
N° 6
Año 2013
Págs.899 - 910
Objective Cholestasis is associated with increased liver injury and morbidity after partial hepatectomy (PH), yet bile acids (BAs) are emerging as important mediators of liver regeneration. Fibroblast growth factor 15 (Fgf15, human FGF19) is a BA-induced ileum-derived enterokine that governs BA metabolism. We evaluated the relevance of Fgf15 in the preservation of BA homeostasis after PH and its potential role in the regenerative process.
Design Liver regeneration after PH was studied in Fgf15(-/-) and Fgf15(+/+) mice. The effects of the BA sequestrant cholestyramine and adenovirally delivered Fgf15 were examined in this model. The role of Fgf15 in BA-induced liver growth was tested in Fgf15-/- mice upon cholic acid (CA) feeding. The direct mitogenic effect of Fgf15 was evaluated in cultured mouse hepatocytes and cholangiocytes.
Results Fgf15(-/-) mice showed marked liver injury and mortality after PH accompanied by persistently elevated intrahepatic BA levels. Cholestyramine feeding and adenovirally delivered Fgf15 reduced BA levels and significantly prevented this lethal outcome. Fgf15 also reduced mortality after extensive hepatectomy in Fgf15(+/+) animals. Liver growth elicited by CA feeding was significantly diminished in Fgf15(-/-) mice. Proliferation of hepatocytes and cholangiocytes was also noticeably reduced in CA-fed Fgf15(-/-) mice. Fgf15 induced intracellular signalling and proliferation of cultured hepatocytes and cholangiocytes.
Conclusions Fgf15 is necessary to maintain BA homeostasis and prevent liver injury during liver regeneration. Moreover, Fgf15 is an essential mediator of the liver growth-promoting effects of BA. Preoperative administration of this enterokine to patients undergoing liver resection might be useful to reduce damage and foster regeneration.
Revista:
CLINICS AND RESEARCH IN HEPATOLOGY AND GASTROENTEROLOGY
ISSN 2210-7401
Vol. 36
N° 1
Año 2012
Págs.21 - 28
Primary biliary cirrhosis (PBC) is a chronic and progressive cholestatic liver disease of unknown etiopathogenesis that mainly affects middle-aged women. Patients show non-suppurative cholangitis with damage and destruction of the small- and medium-sized intrahepatic bile ducts. Characteristically, the disease is strongly associated with autoimmune phenomena such as the appearance of serum antimitochondrial autoantibodies (AMA) and portal infiltrating T cells against the inner lipoyl domain in the E2 component of the pyruvate dehydrogenase complex (PDC-E2). Here we review the major characteristics of a series of inducible and genetically modified animal models of PBC and analyze the similarities and differences to PBC features in humans.