Revistas
Revista:
NPJ PARKINSON'S DISEASE
ISSN:
2373-8057
Año:
2023
Vol.:
9
N°:
1
Págs.:
62
Neuromelanin (NM) loss in substantia nigra pars compacta (SNc) and locus coeruleus (LC) reflects neuronal death in Parkinson's disease (PD). Since genetically-determined PD shows varied clinical expressivity, we wanted to accurately quantify and locate brainstem NM and iron, to discover whether specific MRI patterns are linked to Leucine-rich repeat kinase 2 G2019S PD (LRRK2-PD) or idiopathic Parkinson's disease (iPD). A 3D automated MRI atlas-based segmentation pipeline (3D-ABSP) for NM/iron-sensitive MRI images topographically characterized the SNc, LC, and red nucleus (RN) neuronal loss and calculated NM/iron contrast ratio (CR) and normalized volume (nVol). Left-side NM nVol was larger in all groups. PD had lower NM CR and nVol in ventral-caudal SNc, whereas iron increased in lateral, medial-rostral, and caudal SNc. The SNc NM CR reduction was associated with psychiatric symptoms. LC CR and nVol discriminated better among subgroups: LRRK2-PD had similar LC NM CR and nVol as that of controls, and larger LC NM nVol and RN iron CR than iPD. PD showed higher iron SNc nVol than controls, especially among LRRK2-PD. ROC analyses showed an AUC > 0.92 for most pairwise subgroup comparisons, with SNc NM being the best discriminator between HC and PD. NM measures maintained their discriminator power considering the subgroup of PD patients with less than 5 years of disease duration. The SNc iron CR and nVol increase was associated with longer disease duration in PD patients. The 3D-ABSP sensitively identified NM and iron MRI patterns strongly correlated with phenotypic PD features.
Revista:
FRONTIERS IN AGING NEUROSCIENCE
ISSN:
1663-4365
Año:
2022
Vol.:
13
Págs.:
778201
The human brain undergoes structural and functional changes across the lifespan. The study of motor sequence learning in elderly subjects is of particularly interest since previous findings in young adults might not replicate during later stages of adulthood. The present functional magnetic resonance imaging (fMRI) study assessed the performance, brain activity and functional connectivity patterns associated with motor sequence learning in late middle adulthood. For this purpose, a total of 25 subjects were evaluated during early stages of learning [i.e., fast learning (FL)]. A subset of these subjects (n = 11) was evaluated after extensive practice of a motor sequence [i.e., slow learning (SL) phase]. As expected, late middle adults improved motor performance from FL to SL. Learning-related brain activity patterns replicated most of the findings reported previously in young subjects except for the lack of hippocampal activity during FL and the involvement of cerebellum during SL. Regarding functional connectivity, precuneus and sensorimotor lobule VI of the cerebellum showed a central role during improvement of novel motor performance. In the sample of subjects evaluated, connectivity between the posterior putamen and parietal and frontal regions was significantly decreased with aging during SL. This age-related connectivity pattern may reflect losses in network efficiency when approaching late adulthood. Altogether, these results may have important applications, for instance, in motor rehabilitation programs.
Revista:
FRONTIERS IN AGING NEUROSCIENCE
ISSN:
1663-4365
Año:
2022
Vol.:
14
Págs.:
936661
The ability to appropriately perceive distances in activities of daily living, such as driving, is necessary when performing complex maneuvers. With aging, certain driving behaviors and cognitive functions change; however, it remains unknown if egocentric distance perception (EDP) performance is altered and whether its neural activity also changes as we grow older. To that end, 19 young and 17 older healthy adults drove in a driving simulator and performed an functional magnetic resonance imaging (fMRI) experiment where we presented adults with an EDP task. We discovered that (a) EDP task performance was similar between groups, with higher response times in older adults; (b) older adults showed higher prefrontal and parietal activation; and (c) higher functional connectivity within frontal and parietal-occipital-cerebellar networks; and (d) an association between EDP performance and hard braking behaviors in the driving simulator was found. In conclusion, EDP functioning remains largely intact with aging, possibly due to an extended and effective rearrangement in functional brain resources, and may play a role in braking behaviors while driving.
Revista:
BRAIN IMAGING AND BEHAVIOR
ISSN:
1931-7557
Año:
2022
Vol.:
16
N°:
3
Págs.:
1349-1361
Recent imaging studies with the stop-signal task in healthy individuals indicate that the subthalamic nucleus, the pre-supplementary motor area and the inferior frontal gyrus are key components of the right hemisphere ¿inhibitory network¿. Limited information is available regarding neural substrates of inhibitory processing in patients with asymmetric Parkinson¿s disease. The aim of the current fMRI study was to identify the neural changes underlying deficient inhibitory processing on the stop-signal task in patients with predominantly left-sided Parkinson's disease. Fourteen patients and 23 healthy controls performed a stop-signal task with the left and right hands. Behaviorally, PD patients showed delayed response inhibition with either hand compared to controls. We found small imaging differences for the right hand, however for the more affected left hand when behavior was successfully inhibited we found reduced activation of the inferior frontal gyrus bilaterally and the insula. Using the stop-signal delay as regressor, contralateral underactivation in the right dorsolateral prefrontal cortex, inferior frontal and anterior putamen were found in patients. This finding indicates dysfunction of the right inhibitory network in left-sided PD. Functional connectivity analysis of the left subthalamic nucleus showed a significant increase of connectivity with bilateral insula. In contrast, the right subthalamic nucleus showed increased connectivity with visuomotor and sensorimotor regions of the cerebellum. We conclude that altered inhibitory control in left-sided Parkinson's disease is associated with reduced activation in regions dedicated to inhibition in healthy controls, which then requires engagement of additional regions not observed in controls to successfully stop ongoing actions.
Revista:
CURRENT PSYCHOLOGY
ISSN:
1046-1310
Año:
2021
Vol.:
40
N°:
5
Págs.:
2453 - 2461
This study presents a short and valid questionnaire for evaluating Facebook usage by the Spanish-speaking population. In order to achieve this aim, the Facebook scales developed by Ellison and collaborators (i.e., Facebook Intensity, Actual Friends, Connection Strategies, and Relationship Maintenance Behavior) were translated into Spanish and then grouped into a 31-item questionnaire: the Spanish Facebook Battery (SFB). Subsequently, the reliability and construct validity of the SFB was tested once administered to a sample of Spanish speakers (N=433) by means of an exploratory factor analysis (EFA) with iterated principal axis factoring and Promax rotation methods. The SFB showed high internal (¿=.89) and acceptable retest (¿=.65) reliability whereas the EFA indicated the retention of five dimensions that explained 89% of the total variance in this sample data. A main dimension related to Facebook Intensity was found to account for almost half of the total variance, whereas the other four dimensions were found to be associated with Online Connection Strategies, Relationship Maintenance Behaviors, Maintaining Connection Strategies, and Offline Connection Strategies. Therefore, the factor analysis returned a dimensional structure of the SFB that differed slightly from the original scales composition, stressing the difference between online and offline connection strategies in this population sample. In summary, this article proposes a short and valid tool which could be useful for assessing Facebook usage among Spanish-speakers. https://rdcu.be/bnCtQ
Autores:
Diez-Fairen, M.; Houle, G.; Ortega-Cubero, S.; et al.
Revista:
PARKINSONISM AND RELATED DISORDERS
ISSN:
1353-8020
Año:
2021
Vol.:
82
Págs.:
109 - 116
Introduction: Essential tremor (ET) is one of the most common movement disorders. Despite its high prevalence and heritability, its genetic etiology remains elusive with only a few susceptibility genes identified and poorly replicated. Our aim was to find novel candidate genes involved in ET predisposition through whole exome sequencing. Methods: We studied eight multigenerational families (N = 40 individuals) with an autosomal-dominant inheritance using a comprehensive strategy combining whole exome sequencing followed by case-control association testing of prioritized variants in a separate cohort comprising 521 ET cases and 596 controls. We further performed gene-based burden analyses in an additional dataset comprising 789 ET patients and 770 healthy individuals to investigate whether there was an enrichment of rare deleterious variants within our candidate genes. Results: Fifteen variants co-segregated with disease status in at least one of the families, among which rs749875462 in CCDC183, rs535864157 in MMP10 and rs114285050 in GPR151 showed a nominal association with ET. However, we found no significant enrichment of rare variants within these genes in cases compared with controls. Interestingly, MMP10 protein is involved in the inflammatory response to neuronal damage and has been previously associated with other neurological disorders. Conclusions: We prioritized a set of promising genes, especially MMP10, for further genetic and functional studies in ET. Our study suggests that rare deleterious coding variants that markedly increase susceptibility to ET are likely to be found in many genes. Future studies are needed to replicate and further infer biological mechanisms and potential disease causality for our identified genes.
Revista:
BRAIN AND DEVELOPMENT
ISSN:
0387-7604
Año:
2021
Vol.:
43
N°:
4
Págs.:
556 - 562
Background: Increasing clinical and scientific attention is given to the transition of neurological stages from child to adult. Data on brain plasticity during adolescence is interesting for providing adequate evidence-based medical attention to neurological conditions in this population. Acquired aphasia is well described in adults and children, but not in adolescence.
Objective: We describe a 5-year follow-up of language in three adolescent subjects with post-brain injury aphasia.
Methods: We analysed and scored formal aspects of language three times, language hemispheric dominance twice with dichotic listening test and functional magnetic resonance imaging (fMRI) brain activation patterns that supported expressive and comprehensive language during the recovery period.
Results: We found similarities to both paediatric and adult aphasia in these three adolescents. While the level of recovery resembled that of children with aphasia, a more efficient language rehabilitation occurred in those who remained with left hemispheric dominance in the chronic stage, as it is reported in adults.
Conclusions: Our analysis and long-term follow-up provide data for a better understanding on how the injured brain matures during adolescence. More studies with larger samples will help to understand the function of the remaining networks and the recovery from injury in this particular age group.
Revista:
HUMAN MOLECULAR GENETICS
ISSN:
0964-6906
Año:
2020
Vol.:
29
N°:
19
Págs.:
3211 - 3223
Revista:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN:
0027-8424
Año:
2020
Vol.:
117
N°:
12
Págs.:
6836 - 6843
Visuomotor impairments characterize numerous neurological disorders and neurogenetic syndromes, such as autism spectrum disorder (ASD) and Dravet, Fragile X, Prader-Willi, Turner, and Williams syndromes. Despite recent advances in systems neuroscience, the biological basis underlying visuomotor functional impairments associated with these clinical conditions is poorly understood. In this study, we used neuroimaging connectomic approaches to map the visuomotor integration (VMI) system in the human brain and investigated the topology approximation of the VMI network to the Allen Human Brain Atlas, a whole-brain transcriptome-wide atlas of cortical genetic expression. We found the genetic expression of four genes-TBR1, SCN1A, MAGEL2, and CACNB4-to be prominently associated with visuomotor integrators in the human cortex. TBR1 gene transcripts, an ASD gene whose expression is related to neural development of the cortex and the hippocampus, showed a central spatial allocation within the VMI system. Our findings delineate gene expression traits underlying the VMI system in the human cortex, where specific genes, such as TBR1, are likely to play a central role in its neuronal organization, as well as on specific phenotypes of neurogenetic syndromes.
Revista:
BEHAVIORAL AND BRAIN SCIENCES
ISSN:
1469-1825
Año:
2019
Vol.:
42
Págs.:
e37
Poverty-related food insecurity can be viewed as a form of economic and nutritional uncertainty that can lead, in some situations, to a desire for more filling and satisfying food. Given the current obesogenic food environment and the nature of the food supply, those food choices could engage a combination of sensory, neurophysiological, and genetic factors as potential determinants of obesity.
Revista:
NEUROIMAGE
ISSN:
1053-8119
When humans make decisions, objective rewards are mainly discounted by delay, risk and effort. Whereas recentresearch has demonstrated that several brain areas process costs and code subjective value in effort-based decisionmaking, it remains obscure how neural activity patterns change when effort costs are reduced due to theacquisition of healthy habits, such as moving from sedentary to active lifestyles. Here, a sample of sedentaryvolunteers was behaviorally assessed and fMRI-scanned before and after completing a 3-monthfitness plan. Theimpact of effort cost on decisions, measured as the constant defining a hyperbolic decaying function, was reducedafter the plan. A logistic mixed model demonstrated that the explanatory power of effort decreased with time. At aneural level, there was a marginally significant disruption of effort-cost related functional activity in the anteriorcingulate after the plan. Functional connectivity between the amygdala and anterior cingulate cortex wasstrengthened after habit acquisition. In turn, this interaction was stronger in those participants with lower effortdiscounting. Thus, we show for thefirst time changes in value-based decision making after moving from asedentary to an active lifestyle, which points to the relevance of the amygdala-cingulate interplay when theimpact of effort on decisions fades away.
Autores:
Ariz, Mikel; Abad, R. C. ; Castellanos, G. ; et al.
Revista:
IEEE TRANSACTIONS ON MEDICAL IMAGING
ISSN:
0278-0062
Año:
2019
Vol.:
38
N°:
3
Págs.:
813 - 823
We present a dynamic atlas composed of neuromelanin-enhancedmagnetic resonance brain images of 40 healthy subjects. The performance of this atlas is evaluated on the fully automated segmentation of two paired neuromelanin-rich brainstem healthy structures: the substantia nigra pars compacta and the locus coeruleus. We show that our dynamic atlas requires in average 60% less images and, therefore, 60% less computation time than a static multi-image atlas while achieving a similar segmentation performance. Then, we show that by applying our dynamic atlas, composed of healthy subjects, to the segmentation and neuromelanin quantification of a set of brain images of 39 Parkinson disease patients, we are able to find significant quantitative differences in the level of neuromelanin between healthy subjects and Parkinson disease patients, thus opening the door to the use of these structures as image biomarkers in future computer aided diagnosis systems for the diagnosis of Parkinson disease.
Revista:
CORTEX
ISSN:
0010-9452
Año:
2019
Vol.:
113
Págs.:
96-110
According to the theory of value-based decision making, subjects tend to choose the most valuable among a set of options. However, agents may not be consistent when facing the same decision several times. In this paper, Shannon¿s entropy (H) is employed as a measure of behavioral inconsistency: it is a central measure of information theory that, applied to decision making, allows the estimation of behavioral preferences among a set of options. We scanned (functional magnetic resonance imaging, fMRI) 24 young (18-25 year) subjects (14 female) while performing a decision-making task, where monetary rewards were devalued by physical effort (minutes running in the treadmill) and risk. Twenty different pairs of options were presented nine times each, and H was calculated for each pair and subject. Behavioral analyses showed that subjective value (SV) significantly explained agents¿ preferences only in pairs with a low inconsistent response. Averaged response time positively correlated with H, confirming entropy as an indicator of choice difficulty. Group analyses on fMRI data revealed a cluster in the paracingulate cortex as the neural correlate of H. Besides, BOLD signal in the posterior cingulate correlated with the SV of the pair only in consistent decisions, confirming that SV loses its explanatory power on highly inconsistent decisions. Finally, the anterior and central cingulate were especially recruited when predicting a secured effortless reward, compared with a secured re
Autores:
Verheijen, J.; van der Zee, J.; Gijselinck, I. ; et al.
Revista:
NEUROBIOLOGY OF AGING
ISSN:
0197-4580
Año:
2018
Vol.:
62
Págs.:
245.e1 - 245.e7
TANK-binding kinase 1 (TBK1) loss-of-function (LoF) mutations are known to cause frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), often combined with memory deficits early in the disease course. We performed targeted resequencing of TBK1 in 1253 early onset Alzheimer's disease (EOAD) patients from 8 European countries to investigate whether pathogenic TBK1 mutations are enriched among patients with clinical diagnosis of EOAD. Variant frequencies were compared against 2117 origin-matched controls. We identified only 1 LoF mutation (p.Thr79del) in a patient clinically diagnosed with Alzheimer's disease and a positive family history of ALS. We did not observe enrichment of rare variants in EOAD patients compared to controls, nor of rare variants affecting NFkB induction. Of 3 common coding variants, rs7486100 showed evidence of association (OR 1.46 [95% CI 1.13-1.9]; p-value 0.01). Homozygous carriers of the risk allele showed reduced expression of TBK1 (p-value 0.03). Our findings are not indicative of a significant role for TBK1 mutations in EOAD. The association between common variants in TBK1, disease risk and reduced TBK1 expression warrants follow-up in FTD/ALS cohorts. (C) 2017 The Author(s). Published by Elsevier Inc.
Revista:
HUMAN BRAIN MAPPING
ISSN:
1065-9471
Año:
2018
Vol.:
39
N°:
11
Págs.:
4196 - 4212
Numerous daily tasks, including car driving, require fine visuospatial tuning. One such visuospatial ability, speed discrimination, declines with aging but its neural underpinnings remain unknown. In this study, we use fMRI to explore the effect of aging during a high speed discrimination task and its neural underpinnings, along with a complete neuropsychological assessment and a simulated driving evaluation in order to examine how they interact with each other through a multivariate regression approach. Beyond confirming that high speed discrimination performance is diminished in the elderly, we found that this deficit might be partly due to a lack of modulation in the activity and connectivity of the default mode network (DMN) in this age group, as well as an over-recruitment of frontoparietal and cerebellar regions, possibly as a compensatory mechanism. In addition, younger adults tended to drive at faster speeds, a behavior that was associated to adequate DMN dynamics and executive functioning, an effect that seems to be lost in the elderly. In summary, these results reveal how age-related declines in fine visuospatial abilities, such as high speed discrimination, were distinctly mediated by DMN functioning, a mechanism also associated to speeding behavior in a driving simulator.
Revista:
SENSORS
ISSN:
1424-8220
Año:
2018
Vol.:
18
N°:
12
Págs.:
4224
The aim of this study is to compare the properties of free-walking at a natural pace between mild Parkinson's disease (PD) patients during the ON-clinical status and two control groups. In-shoe pressure-sensitive insoles were used to quantify the temporal and force characteristics of a 5-min free-walking in 11 PD patients, in 16 young healthy controls, and in 12 age-matched healthy controls. Inferential statistics analyses were performed on the kinematic and kinetic parameters to compare groups' performances, whereas feature selection analyses and automatic classification were used to identify the signature of parkinsonian gait and to assess the performance of group classification, respectively. Compared to healthy subjects, the PD patients' gait pattern presented significant differences in kinematic parameters associated with bilateral coordination but not in kinetics. Specifically, patients showed an increased variability in double support time, greater gait asymmetry and phase deviation, and also poorer phase coordination. Feature selection analyses based on the ReliefF algorithm on the differential parameters in PD patients revealed an effect of the clinical status, especially true in double support time variability and gait asymmetry. Automatic classification of PD patients, young and senior subjects confirmed that kinematic predictors produced a slightly better classification performance than kinetic predictors. Overall, classification accuracy of groups with a linear discriminant model which included the whole set of features (i.e., demographics and parameters extracted from the sensors) was 64.1%.
Autores:
Diez-Fairen, M.; Benitez, B.; Ortega-Cubero, S.; et al.
Revista:
NEUROBIOLOGY OF AGING
ISSN:
0197-4580
Año:
2018
Vol.:
70
Págs.:
325.e1 - 325.e5
Eighteen loci and several susceptibility genes have been related to Parkinson's disease (PD). However, most studies focus on single genes in small PD series. Our aim was to establish the genetic background of a large Spanish PD sample. Pooled-DNA target sequencing of 7 major PD genes (SNCA, PARK2, PINK1, DJ-1, LRRK2, GBA, and MAPT) was performed in 562 PD cases. Forty-four variants were found among 114 individuals (20.28%, p<0.05). Among these variants, 30 were found in Mendelian genes (68.18%) and 14 in PD susceptibility genes (31.82%). Seven novel variants were identified. Interestingly, most variants were found in PARK2 and PINK1 genes, whereas SNCA and DJ-1 variants were rare. Validated variants were also genotyped in Spanish healthy controls (n = 597). Carriers of heterozygous PARK2 variants presented earlier disease onset and showed dementia more frequently. PD subjects carrying 2 variants at different genes (1.42%) had an earlier age of onset and a predominantly akinetic-rigid PD phenotype (55.6%, p < 0.05), suggesting that the accumulation of genetic risk variants could modify PD phenotype.
Revista:
NEUROBIOLOGY OF AGING
ISSN:
0197-4580
Año:
2018
Vol.:
66
Págs.:
177.e7 - 177.e10
The main genetic risk factors for progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are located at chromosome 17q21.31. The identification of risk H1 subhaplotypes suggests that disease-specific variants can be identified by resequencing the 17q21.31 region (1.4 Mb) in carriers of risk H1 subhaplotypes. We hypothesized that PSP/CBD H1 subhaplotype carriers could have undergone a mutational event absent among unaffected carriers leading to the disease risk. We performed this strategy in definite PSP subjects, definite CBD subjects, and healthy controls and tried to replicate the findings in a larger PSP/CBD case-control series. In the resequencing process, 40 candidate variants were identified, but an association between PSP and rs76970862 was replicated only using an unadjusted model. Gene expression association analysis of this variant suggested no potential functional effect. Although our results failed to identify disease-associated variants, it is still possible that the risk of PSP/CBD at chromosome 17 is driven by rare variants, even in PSP/CBD H1 cases or variants located outside the capture regions. (C) 2018 Elsevier Inc. All rights reserved.
Autores:
De Roeck, A. ; Van den Bossche, T. ; van der Zee, J. ; et al.
Revista:
ACTA NEUROPATHOLOGICA
ISSN:
0001-6322
Año:
2017
Vol.:
134
N°:
3
Págs.:
475 - 487
Premature termination codon (PTC) mutations in the ATP-Binding Cassette, Sub-Family A, Member 7 gene (ABCA7) have recently been identified as intermediate-to-high penetrant risk factor for late-onset Alzheimer's disease (LOAD). High variability, however, is observed in downstream ABCA7 mRNA and protein expression, disease penetrance, and onset age, indicative of unknown modifying factors. Here, we investigated the prevalence and disease penetrance of ABCA7 PTC mutations in a large early onset AD (EOAD)-control cohort, and examined the effect on transcript level with comprehensive third-generation long-read sequencing. We characterized the ABCA7 coding sequence with next-generation sequencing in 928 EOAD patients and 980 matched control individuals. With MetaSKAT rare variant association analysis, we observed a fivefold enrichment (p = 0.0004) of PTC mutations in EOAD patients (3%) versus controls (0.6%). Ten novel PTC mutations were only observed in patients, and PTC mutation carriers in general had an increased familial AD load. In addition, we observed nominal risk reducing trends for three common coding variants. Seven PTC mutations were further analyzed using targeted long-read cDNA sequencing on an Oxford Nanopore MinION platform. PTC-containing transcripts for each investigated PTC mutation were observed at varying proportion (5-41% of the total read count), implying incomplete nonsense-mediated mRNA decay (NMD). Furthermore, we distinguished and phased several previously unknown alternative splicing events (up to 30% of transcripts). In conjunction with PTC mutations, several of these novel ABCA7 isoforms have the potential to rescue deleterious PTC effects. In conclusion, ABCA7 PTC mutations play a substantial role in EOAD, warranting genetic screening of ABCA7 in genetically unexplained patients. Long-read cDNA sequencing revealed both varying degrees of NMD and transcript-modifying events, which may influence ABCA7 dosage, disease severity, and may create opportunities for therapeutic interventions in AD.
Revista:
BRAIN IMAGING AND BEHAVIOR
ISSN:
1931-7557
Año:
2017
Vol.:
11
N°:
4
Págs.:
986 - 997
Previous research on motor sequence learning (MSL) in the elderly has focused mainly on unilateral tasks, even though bilateral coordination might be impaired in this age group. In this fMRI study, 28 right-handed elderly subjects were recruited. The paradigm consisted of a Novel and a simple Control sequence executed with the right (R), left (L) and both hands (B). Behavioral performance (Accuracy[AC], Inter-tap Interval[ITI]) and associated brain activity were assessed during early learning. Behavioral performance in the Novel task was similar between unilateral conditions whereas in the bimanual condition more errors and slower motor execution were observed. Brain activity increases during learning showed differences between Conditions: R showed increased activity in pre-SMA, basal ganglia and left hippocampus while B showed activity increments mainly in posterior parietal cortex and cerebellum. L did not show any activity modulation during learning. Performance correlates for AC (related to spatial success) and ITI (related to accurate timing) shared a cortico-basal-cerebellar network. However, it was found that the ITI regressor presented additional significant correlations with activity in SMA and basal ganglia in R. The AC regressor showed additional significant correlations with activity in more extended thalamic and cerebellar areas in B. The present findings suggest that, behaviorally, the spatial and temporal components of MSL are impaired in elderly subjects when using both hands. Additionally, differential brain activity patterns were found across hand modalities. The results obtained reveal the existence of a highly specialized network in the dominant hand and identify areas specifically involved in bimanual coordination.
Autores:
Verheijen, J.; Van den Bossche, T.; Van der Zee, J.; et al.
Revista:
ACTA NEUROPATHOLOGICA
ISSN:
0001-6322
Año:
2016
Vol.:
132
N°:
2
Págs.:
213 - 224
The sortilin-related receptor 1 (SORL1) gene has been associated with increased risk for Alzheimer¿s disease (AD). Rare genetic variants in the SORL1 gene have also been implicated in autosomal dominant early-onset AD (EOAD). Here we report a large-scale investigation of the contribution of genetic variability in SORL1 to EOAD in a European EOAD cohort. We performed massive parallel amplicon-based re-sequencing of the full coding region of SORL1 in 1255 EOAD patients and 1938 age- and origin-matched control individuals in the context of the European Early-Onset Dementia (EOD) consortium, originating from Belgium, Spain, Portugal, Italy, Sweden, Germany, and Czech Republic. We identified six frameshift variants and two nonsense variants that were exclusively present in patients. These mutations are predicted to result in haploinsufficiency through nonsense-mediated mRNA decay, which could be confirmed experimentally for SORL1 p.Gly447Argfs*22 observed in a Belgian EOAD patient. We observed a 1.5-fold enrichment of rare non-synonymous variants in patients (carrier frequency 8.8 %; SkatOMeta p value 0.0001). Of the 84 non-synonymous rare variants detected in the full patient/control cohort, 36 were only detected in patients. Our findings underscore a role of rare SORL1 variants in EOAD, but also show a non-negligible frequency of these variants in healthy individuals, necessitating the need for pathogenicity assays. Premature stop codons due to frameshift and nonsense variants, have so far exclusively been found in patients, and their predicted mode of action corresponds with evidence from in vitro functional studies of SORL1 in AD.
Autores:
Dols-Icardo, O.; Iborra, O.; Valdivia, J.; et al.
Revista:
NEUROBIOLOGY OF AGING
ISSN:
0197-4580
Año:
2016
Vol.:
38
N°:
1
Págs.:
215.e13 - 215.e14
The tubulin alpha 4a (TUBA4A) gene has been recently associated with amyotrophic lateral sclerosis. Interestingly, some of the mutation carriers were also diagnosed with frontotemporal degeneration (FTD) or mild cognitive impairment. With the aim to investigate the role of TUBA4A in FTD, we screened TUBA4A in a series of 814 FTD patients from Spain. Our data did not disclose any nonsense or missense variant in the cohort, thus suggesting that TUBA4A mutations are not associated with FTD.
Revista:
JOURNAL OF PLASTIC RECONSTRUCTIVE AND AESTHETIC SURGERY
ISSN:
1748-6815
Año:
2016
Vol.:
69
N°:
3
Págs.:
417-426
Several techniques have been described for smile restoration after facial nerve paralysis. When a nerve other than the contralateral facial nerve is used to restore the smile, some controversy appears because of the nonphysiological mechanism of smile recovering. Different authors have reported natural results with the masseter nerve. The physiological pathways which determine whether this is achieved continue to remain unclear. Using functional magnetic resonance imaging, brain activation pattern measuring blood-oxygen-level-dependent (BOLD) signal during smiling and jaw clenching was recorded in a group of 24 healthy subjects (11 females). Effective connectivity of premotor regions was also compared in both tasks. The brain activation pattern was similar for smile and jaw-clenching tasks. Smile activations showed topographic overlap though more extended for smile than clenching. Gender comparisons during facial movements, according to kinematics and BOLD signal, did not reveal significant differences. Effective connectivity results of psychophysiological interaction (PPI) from the same seeds located in bilateral facial premotor regions showed significant task and gender differences (p < 0.001). The hypothesis of brain plasticity between the facial nerve and masseter nerve areas is supported by the broad cortical overlap in the representation of facial and masseter muscles.
Revista:
JOURNAL OF ALZHEIMERS DISEASE
ISSN:
1387-2877
Año:
2016
Vol.:
53
N°:
1
Págs.:
303 - 313
Background: Frontotemporal lobar degeneration (FTLD) is a progressive dementia characterized by focal atrophy of frontal and/or temporal lobes caused by mutations in the gene coding for sequestosome 1 (SQSTM1), among other genes. Rare SQSTM1 gene mutations have been associated with Paget¿s disease of bone, amyotrophic lateral sclerosis, and, more recently, frontotemporal lobar degeneration (FTLD).
Objective: The aim of the study was to determine whether a characteristic pattern of grey and white matter loss is associated with SQSTM1 dysfunction.
Methods: We performed a voxel-based morphometry (VBM) study in FTD subjects carrying SQSTM1 pathogenic variants (FTD/SQSTM1 mutation carriers; n¿=¿10), compared with FTD subjects not carrying SQSTM1 mutations (Sporadic FTD; n¿=¿20) and healthy controls with no SQSTM1 mutations (HC/SQSTM1 noncarriers; n¿=¿20). The groups were matched according to current age, disease duration, and gender.
Results: After comparing FTD/SQSTM1 carriers with Sporadic FTD, a predominantly right cortical atrophy pattern was localized in the inferior frontal, medial orbitofrontal, precentral gyri, and the anterior insula. White matter atrophy was found in both medial and inferior frontal gyri, pallidum, and putamen. FTD/SQSTM1 carriers compared with HC/SQSTM1 noncarriers showed atrophy at frontal, temporal, and parietal lobes of both hemispheres whereas the MRI pattern found in Sporadic FTD compared with controls was frontal and left temporal lobe atrophy, extending toward parietal and occipital lobes of both hemispheres.
Conclusions: These results suggest that fronto-orbito-insular regions including corticospinal projections as described in ALS are probably more susceptible to the damaging effect of SQSTM1 mutations delineatinga specific gene-linked atrophy pattern.
Revista:
HUMAN BRAIN MAPPING
ISSN:
1065-9471
Año:
2016
Vol.:
37
N°:
5
Págs.:
1722 - 1737
The central nervous system has the ability to adapt our locomotor pattern to produce a wide range of gait modalities and velocities. In reacting to external pacing stimuli, deviations from an individual preferred cadence provoke a concurrent decrease in accuracy that suggests the existence of a trade-off between frequency and precision; a compromise that could result from the specialization within the control centers of locomotion to ensure a stable transition and optimal adaptation to changing environment. Here, we explore the neural correlates of such adaptive mechanisms by visually guiding a group of healthy subjects to follow three comfortable stepping frequencies while simultaneously recording their BOLD responses and lower limb kinematics with the use of a custom-built treadmill device. In following the visual stimuli, subjects adopt a common pattern of symmetric and anti-phase movements across pace conditions. However, when increasing the stimulus frequency, an improvement in motor performance (precision and stability) was found, which suggests a change in the control mode from reactive to predictive schemes. Brain activity patterns showed similar BOLD responses across pace conditions though significant differences were observed in parietal and cerebellar regions. Neural correlates of stepping precision were found in the insula, cerebellum, dorsolateral pons and inferior olivary nucleus, whereas neural correlates of stepping stability were found in a distributed network, suggesting a transition in the control strategy across the stimulated range of frequencies: from unstable/reactive at lower paces (i.e., stepping stability managed by subcortical regions) to stable/predictive at higher paces (i.e., stability managed by cortical regions).
Revista:
MOVEMENT DISORDERS
ISSN:
0885-3185
Año:
2015
Vol.:
30
N°:
7
Págs.:
945-952
BACKGROUND:
We aimed to analyze the diagnostic accuracy of an automated segmentation and quantification method of the SNc and locus coeruleus (LC) volumes based on neuromelanin (NM)-sensitive MRI (NM-MRI) in patients with idiopathic (iPD) and monogenic (iPD) Parkinson's disease (PD).
METHODS:
Thirty-six patients (23 idiopathic and 13 monogenic PARKIN or LRRK2 mutations) and 37 age-matched healthy controls underwent 3T-NM-MRI. SNc and LC volumetry were performed using fully automated multi-image atlas segmentation. The diagnostic performance to differentiate PD from controls was measured using the area under the curve (AUC) and likelihood ratios based on receiver operating characteristic (ROC) analyses.
RESULTS:
We found a significant reduction of SNc and LC volumes in patients, when compared to controls. ROC analysis showed better diagnostic accuracy when using SNc volume than LC volume. Significant differences between ipsilateral and contralateral SNc volumes, in relation to the more clinically affected side, were found in patients with iPD (P¿=¿0.007). Contralateral atrophy in the SNc showed the highest power to discriminate PD subjects from controls (AUC, 0.93-0.94; sensitivity, 91%-92%; specificity, 89%; positive likelihood ratio: 8.4-8.5; negative likelihood ratio: 0.09-0.1 at a single cut-off point). Interval likelihood ratios for contralateral SNc volume improved the diagnostic accuracy of volumetric measurements.
CONCLUSION:
SNc and LC volumetry based on NM-MRI resulting from the automated segmentation and quantification technique can yield high diagnostic accuracy for differentiating PD from health and might be an unbiased disease biomarker. © 2015 International Parkinson and Movement Disorder Society.
Revista:
EUROPEAN NEUROPSYCHOPHARMACOLOGY
ISSN:
0924-977X
Año:
2015
Vol.:
25
N°:
6
Págs.:
817 - 827
Studies on animals and humans have demonstrated the importance of dopamine in modulating decision-making processes. In this work, we have tested dopaminergic modulation of economic decision-making and its neural correlates by administering either placebo or metoclopramide, a dopamine D2-receptor antagonist, to healthy subjects, during a functional MRI study. The decision-making task combined probability and time delay with a fixed monetary reward. For individual behavioral characterization, we used the Probability Time Trade-off (PTT) economic model, which integrates the traditional trade-offs of reward magnitude-time and reward magnitude-probability into a single measurement, thereby quantifying the subjective value of a delayed and probabilistic outcome. A regression analysis between BOLD signal and the PTT model index permitted to identify the neural substrate encoding the subjective reward-value. Behaviorally, medication reduced the rate of temporal discounting over probability, reflected in medicated subjects being more prone to postpone the reward in order to increase the outcome probability. In addition, medicated subjects showed less activity during the task in the postcentral gyrus as well as frontomedian areas, whereas there were no differences in the ventromedial orbitofrontal cortex (VMOFC) between groups when coding the subjective value. The present study demonstrates by means of behavior and imaging that dopamine modulation alters the probability-time trade-off in human economic decision-making.
Autores:
Cuyvers, E.; Van der Zee, J.; Bettens, K.; et al.
Revista:
NEUROBIOLOGY OF AGING
ISSN:
0197-4580
Año:
2015
Vol.:
36
N°:
5
Págs.:
2005.e15 - 2005.e22
Meta-analysis of existing genome-wide association studies on Alzheimer's disease (AD) showed subgenome-wide association of an intronic variant in the sequestosome 1 (SQSTM1) gene with AD. We performed targeted resequencing of SQSTM1 in Flanders-Belgian AD patients selected to be enriched for a genetic background (n = 435) and geographically matched nonaffected individuals (n = 872) to investigate the role of both common and rare SQSTM1 variants. Results were extended to the European early-onset dementia cohorts (926 early-onset Alzheimer's disease [EOAD] patients and 1476 nonaffected individuals). Of the 61 detected exonic variants in SQSTM1, the majority were rare (n = 57). Rare variant (minor allele frequency <0.01) burden analysis did not reveal an increased frequency of rare variants in EOAD patients in any of the separate study populations nor when meta-analyzing all cohorts. Common variants p.D292= and p.R312= showed nominal association with AD (odds ratiop.D292= = 1.11 [95% confidence interval = 1-1.22], p = 0.04), only when including the Flanders-Belgian cohort in the meta-analysis. We cannot exclude a role of SQSTM1 genetic variability in late-onset AD, but our data indicate that SQSTM1 does not play a major role in the etiology of EOAD.
Revista:
JOURNAL OF ALZHEIMERS DISEASE
ISSN:
1387-2877
Año:
2015
Vol.:
49
N°:
2
Págs.:
343 - 352
The MAPT H1 haplotype has been linked to several disorders, but its relationship with Alzheimer¿s disease (AD) remains controversial. A rare variant in MAPT (p.A152T) has been linked with frontotemporal dementia (FTD) and AD. We genotyped H1/H2 and p.A152T MAPT in 11,572 subjects from Spain (4,327 AD, 563 FTD, 648 Parkinson¿s disease (PD), 84 progressive supranuclear palsy (PSP), and 5,950 healthy controls). Additionally, we included 101 individuals from 21 families with genetic FTD. MAPT p.A152T was borderline significantly associated with FTD [odds ratio (OR)¿=¿2.03; p¿=¿0.063], but not with AD. MAPT H1 haplotype was associated with AD risk (OR¿=¿1.12; p¿=¿0.0005). Stratification analysis showed that this association was mainly driven by APOE ¿4 noncarriers (OR¿=¿1.14; p¿=¿0.0025). MAPT H1 was also associated with risk for PD (OR¿=¿1.30; p¿=¿0.0003) and PSP (OR¿=¿3.18; p¿=¿8.59 × 10-8) but not FTD. Our results suggest that the MAPT H1 haplotype increases the risk of PD, PSP, and non-APOE ¿4 AD.
Autores:
Cacace, R.; Van den Bossche, T.; Engelborghs, S.; et al.
Revista:
HUMAN MUTATION
ISSN:
1059-7794
Año:
2015
Vol.:
36
N°:
12
Págs.:
1226 - 1235
Rare variants in the phospholipase D3 gene (PLD3) were associated with increased risk for late-onset Alzheimer disease (LOAD). We identified a missense mutation in PLD3 in whole-genome sequence data of a patient with autopsy confirmed Alzheimer disease (AD) and onset age of 50 years. Subsequently, we sequenced PLD3 in a Belgian early-onset Alzheimer disease (EOAD) patient (N = 261) and control (N = 319) cohort, as well as in European EOAD patients (N = 946) and control individuals (N = 1,209) ascertained in different European countries. Overall, we identified 22 rare variants with a minor allele frequency <1%, 20 missense and two splicing mutations. Burden analysis did not provide significant evidence for an enrichment of rare PLD3 variants in EOAD patients in any of the patient/control cohorts. Also, meta-analysis of the PLD3 data, including a published dataset of a German EOAD cohort, was not significant (P = 0.43; OR = 1.53, 95% CI 0.60¿3.31). Consequently, our data do not support a role for PLD3 rare variants in the genetic etiology of EOAD in European EOAD patients. Our data corroborate the negative replication data obtained in LOAD studies and therefore a genetic role of PLD3 in AD remains to be demonstrated.
Revista:
HUMAN BRAIN MAPPING
ISSN:
1065-9471
Año:
2015
Vol.:
36
N°:
5
Págs.:
1937 - 1950
Neurophysiological changes within the cortico-basal ganglia-thalamocortical circuits appear to be a characteristic of Parkinson's disease (PD) pathophysiology. The subthalamic nucleus (STN) is one of the basal ganglia components showing pathological neural activity patterns in PD. In this study, perfusion imaging data, acquired noninvasively using arterial spin-labeled (ASL) perfusion MRI, were used to assess the resting state functional connectivity (FC) of the STN in 24 early-to-moderate PD patients and 34 age-matched healthy controls, to determine whether altered FC in the very low frequency range of the perfusion time signal occurs as a result of the disease. Our results showed that the healthy STN was functionally connected with other nuclei of the basal ganglia and the thalamus, as well as with discrete cortical areas including the insular cortex and the hippocampus. In PD patients, connectivity of the STN was increased with two cortical areas involved in motor and cognitive processes. These findings suggest that hyperconnectivity of the STN could underlie some of the motor and cognitive deficits often present even at early stages of the disease. The FC measures provided good discrimination between controls and patients, suggesting that ASL-derived FC metrics could be a putative PD biomarker.
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2015
Vol.:
10
N°:
7
Págs.:
e0131536
BACKGROUND:
Imaging studies help to understand the evolution of key cognitive processes related to aging, such as working memory (WM). This study aimed to test three hypotheses in older adults. First, that the brain activation pattern associated to WM processes in elderly during successful low load tasks is located in posterior sensory and associative areas; second, that the prefrontal and parietal cortex and basal ganglia should be more active during high-demand tasks; third, that cerebellar activations are related to high-demand cognitive tasks and have a specific lateralization depending on the condition.
METHODS:
We used a neuropsychological assessment with functional magnetic resonance imaging and a core N-back paradigm design that was maintained across the combination of four conditions of stimuli and two memory loads in a sample of twenty elderly subjects.
RESULTS:
During low-loads, activations were located in the visual ventral network. In high loads, there was an involvement of the basal ganglia and cerebellum in addition to the frontal and parietal cortices. Moreover, we detected an executive control role of the cerebellum in a relatively symmetric fronto-parietal network. Nevertheless, this network showed a predominantly left lateralization in parietal regions associated presumably with an overuse of verbal storage strategies. The differential activations between conditions were stimuli-dependent and were located in sensory areas.
CONCLUSION:
Successful WM processes in the elderly population are accompanied by an activation pattern that involves cerebellar regions working together with a fronto-parietal network.
Revista:
PARKINSONISM AND RELATED DISORDERS
ISSN:
1353-8020
Año:
2015
Vol.:
21
N°:
3
Págs.:
306 - 309
INTRODUCTION:
Essential tremor (ET) is the most frequent movement disorder in adults. Its pathophysiology is not clearly understood, however there is growing evidence showing common etiologic factors with other neurodegenerative disorders such as Alzheimer's and Parkinson's diseases (AD, PD). Recently, a rare p.R47H substitution (rs75932628) in the TREM2 protein (triggering receptor expressed on myeloid cells 2; OMIM: *605086) has been proposed as a risk factor for AD, PD and amyotrophic lateral sclerosis (ALS). The objective of the study was to determine whether TREM2 p.R47H allele is also a risk factor for developing ET.
METHODS:
This was a cross-sectional multicenter international study. An initial case-control cohort from Spain (n = 456 ET, n = 2715 controls) was genotyped. In a replication phase, a case-control series (n = 897 ET, n = 1449 controls) from different populations (Italy, Germany, North-America and Taiwan) was studied. Owed to the rarity of the variant, published results on p.R47H allele frequency from 14777 healthy controls from European, North American or Chinese descent were additionally considered. The main outcome measure was p.R47H (rs75932628) allelic frequency.
RESULTS:
There was a significant association between TREM2 p.R47H variant and ET in the Spanish cohort (odds ratio [OR], 5.97; 95% CI, 1.203-29.626; p = 0.042), but it was not replicated in other populations.
CONCLUSIONS:
These results argue in favor of population-specific differences in the
Revista:
NMR IN BIOMEDICINE
ISSN:
0952-3480
Año:
2014
Vol.:
27
N°:
11
Págs.:
1387 - 1396
Recent technical developments have significantly increased the signal-to-noise ratio (SNR) of arterial spin labeled (ASL) perfusion MRI. Despite this, typical ASL acquisitions still employ large voxel sizes. The purpose of this work was to implement and evaluate two ASL sequences optimized for whole-brain high-resolution perfusion imaging, combining pseudo-continuous ASL (pCASL), background suppression (BS) and 3D segmented readouts, with different in-plane k-space trajectories. Identical labeling and BS pulses were implemented for both sequences. Two segmented 3D readout schemes with different in-plane trajectories were compared: Cartesian (3D GRASE) and spiral (3D RARE Stack-Of-Spirals). High-resolution perfusion images (2¿×¿2¿×¿4¿mm(3) ) were acquired in 15 young healthy volunteers with the two ASL sequences at 3¿T. The quality of the perfusion maps was evaluated in terms of SNR and gray-to-white matter contrast. Point-spread-function simulations were carried out to assess the impact of readout differences on the effective resolution. The combination of pCASL, in-plane segmented 3D readouts and BS provided high-SNR high-resolution ASL perfusion images of the whole brain. Although both sequences produced excellent image quality, the 3D RARE Stack-Of-Spirals readout yielded higher temporal and spatial SNR than 3D GRASE (spatial SNR¿=¿8.5¿±¿2.8 and 3.7¿±¿1.4; temporal SNR¿=¿27.4¿±¿12.5 and 15.6¿±¿7.6, respectively) and decreased through-plane blurring due to its inherent oversampling of the central k-space region, its reduced effective TE and shorter total readout time, at the expense of a slight increase in the effective in-plane voxel size.
Autores:
Cancela, J.; Pastorino, M.; Arredondo, M. T.; et al.
Revista:
SENSORS
ISSN:
1424-8220
Año:
2014
Vol.:
14
N°:
3
Págs.:
4618 - 4633
Parkinson's disease (PD) alters the motor performance of affected individuals. The dopaminergic denervation of the striatum, due to substantia nigra neuronal loss, compromises the speed, the automatism and smoothness of movements of PD patients. The development of a reliable tool for long-term monitoring of PD symptoms would allow the accurate assessment of the clinical status during the different PD stages and the evaluation of motor complications. Furthermore, it would be very useful both for routine clinical care as well as for testing novel therapies. Within this context we have validated the feasibility of using a Body Network Area (BAN) of wireless accelerometers to perform continuous at home gait monitoring of PD patients. The analysis addresses the assessment of the system performance working in real environments.
Revista:
NEUROBIOLOGY OF AGING
ISSN:
0197-4580
Año:
2014
Vol.:
35
N°:
12
Págs.:
2681-90
A rare heterozygous TREM2 variant p.R47H (rs75932628) has been associated with an increased risk for Alzheimer's disease (AD). We aimed to investigate the clinical presentation, neuropsychological profile, and regional pattern of gray matter and white matter loss associated with the TREM2 variant p.R47H, and to establish which regions best differentiate p.R47H carriers from noncarriers in 2 sample sets (Spanish and Alzheimer's Disease Neuroimaging Initiative, ADNI1). This was a cross-sectional study including a total number of 16 TREM2 p.R47H carriers diagnosed with AD or mild cognitive impairment, 75 AD p.R47H noncarriers and 75 cognitively intact TREM2 p.R47H noncarriers. Spanish AD TREM2 p.R47H carriers showed apraxia (9 of 9) and psychiatric symptoms such as personality changes, anxiety, paranoia, or fears more frequently than in AD noncarriers (corrected p = 0.039). For gray matter and white matter volumetric brain magnetic resonance imaging voxelwise analyses, we used statistical parametric mapping (SPM8) based on the General Linear Model. We used 3 different design matrices with a full factorial design. Voxel-based morphometry analyses were performed separately in the 2 sample sets. The absence of interset statistical differences allowed us to perform joint and conjunction analyses. Independent voxel-based morphometry analysis of the Spanish set as well as conjunction and joint analyses revealed substantial gray matter loss in orbitofrontal cortex and anterior cingulate cortex with relative preservation of parietal lobes in AD and/or mild cognitive impairment TREM2 p.R47H carriers, suggesting that TREM2 p.R47H variant is associated with certain clinical and neuroimaging AD features in addition to the increased TREM2 p.R47H atrophy in temporal lobes as described previously. The high frequency of pathologic behavioral symptoms, combined with a preferential frontobasal gray matter cortical loss, suggests that frontobasal and temporal regions could be more susceptible to the deleterious biological effects of the TREM2 variant p.R47H.
Revista:
NEUROBIOLOGY OF AGING
ISSN:
0197-4580
Año:
2014
Vol.:
35
N°:
11
Págs.:
2657.e13-e19
Frontotemporal dementia (FTD) is a clinically and genetically heterogeneous disorder. Rare TREM2 variants have been recently identified in families affected by FTD-like phenotype. However, genetic studies of the role of rare TREM2 variants in FTD have generated conflicting results possibly because of difficulties on diagnostic accuracy. The aim of the present study was to investigate associations between rare TREM2 variants and specific FTD subtypes (FTD-S). The entire coding sequence of TREM2 was sequenced in FTD-S patients of Spanish (n = 539) and German (n = 63) origin. Genetic association was calculated using Fisher exact test. The minor allele frequency for controls was derived from in-house genotyping data and publicly available databases. Seven previously reported rare coding variants (p.A28V, p.W44X, p.R47H, p.R62H, p.T66M, p.T96K, and p.L211P) and 1 novel missense variant (p.A105T) were identified. The p.R47H variant was found in 4 patients with FTD-S. Two of these patients showed cerebrospinal fluid pattern of amyloid beta, tau, and phosphorylated-tau suggesting underlying Alzheimer's disease (AD) pathology. No association was found between p.R47H and FTD-S. A genetic association was found between p.T96K and FTD-S (p = 0.013, odds ratio = 4.23, 95% Confidence Interval [1.17¿14.77]). All 6 p.T96K patients also carried the TREM2 variant p.L211P, suggesting linkage disequilibrium. The remaining TREM2 variants were found in 1 patient, respectively, and were absent in controls. The present findings provide evidence that p.T96K is associated with FTD-S and that p.L211P may contribute to its pathogenic effect. The data also suggest that p.R47H is associated with an FTD phenotype that is characterized by the presence of underlying AD pathology.
Revista:
IEEE TRANSACTIONS ON MEDICAL IMAGING
ISSN:
0278-0062
Año:
2014
Vol.:
33
N°:
5
Págs.:
1044 - 1053
Repetitive and alternating lower limb movements are a specific component of human gait. Due to technical challenges, the neural mechanisms underlying such movements have not been previously studied with functional magnetic resonance imaging. In this study, we present a novel treadmill device employed to investigate the kinematics and the brain activation patterns involved in alternating and repetitive movements of the lower limbs. Once inside the scanner, 19 healthy subjects were guided by two visual cues and instructed to perform a motor task which involved repetitive and alternating movements of both lower limbs while selecting their individual comfortable amplitude on the treadmill. The device facilitated the performance of coordinated stepping while registering the concurrent lower-limb displacements, which allowed us to quantify some movement primary kinematic features such as amplitude and frequency. During stepping, significant blood oxygen level dependent signal increases were observed bilaterally in primary and secondary sensorimotor cortex, the supplementary motor area, premotor cortex, prefrontal cortex, superior and inferior parietal lobules, putamen and cerebellum, regions that are known to be involved in lower limb motor control. Brain activations related to individual adjustments during motor performance were identified in a right lateralized network including striatal, extrastriatal, and fronto-parietal areas.
Autores:
Bernácer, J; Balderas, G.; Martínez-Valbuena, I.; et al.
Revista:
BEHAVIORAL AND BRAIN SCIENCES
ISSN:
0140-525X
Año:
2014
Vol.:
37
N°:
1
Págs.:
21 - 22
Newell & Shanks (N&S) carry out an extremely sharp and static distinction between conscious and unconscious decisions, ignoring a process that dynamically transfers decisions and actions between the conscious and unconscious domains of the mind: habitual decision making. We propose a new categorisation and discuss the main characteristics of this process from a philosophical and neuroscientific perspective.
Revista:
NEUROLOGY
ISSN:
0028-3878
Año:
2013
Vol.:
80
N°:
21
Págs.:
E224 - E227
Revista:
CLINICAL NEUROPHYSIOLOGY
ISSN:
1388-2457
Año:
2013
Vol.:
124
N°:
6
Págs.:
1163 - 1168
OBJECTIVE:
Cardiac physiology during sleep in Parkinson's disease (PD) remains poorly explored. We studied heart rate variability (HRV) across sleep stages in PD patients and correlated the results with clinical features.
METHODS:
Cross-sectional study comprising 33 patients with PD and 29 controls matched for age, gender, and number of apneas/hypopneas per hour. HRV measures, (mean R-R interval, SDNN, ULF, VLF, LF, HF and LF/HF) were calculated separately for all sleep stages as well as wakefulness just before and after sleep during one-night polysomnography. Correlation analysis was performed between HRV values and PD patients' characteristics.
RESULTS:
The mean R-R interval was lower in all sleep stages in PD patients when compared with controls. VLF and LF were lower during REM sleep in PD patients. HF during N1-N2 stage was higher in PD. We found inverse correlations between VLF and LF during REM sleep and UPDRS-ON and UPDRS-OFF.
CONCLUSION:
VLF and LF during REM sleep might constitute surrogate markers of disease severity.
SIGNIFICANCE:
These findings provide additional clinical evidence of the autonomic impairment commonly observed in PD, and prove that cardiac autonomic dysfunction during REM sleep is correlated with disease severity.
Revista:
JOURNAL OF MAGNETIC RESONANCE IMAGING
ISSN:
1053-1807
Año:
2013
Vol.:
37
N°:
3
Págs.:
619-631
Purpose: To elucidate differences in activity and connectivity during early learning due to the performing hand. Materials and Methods: Twenty right-handed subjects were recruited. The neural correlates of explicit visuospatial learning executed with the right, the left hand, and bimanually were investigated using functional magnetic resonance imaging. Connectivity analyses were carried out using the psychophysiological interactions model, considering right and left anterior putamen as index regions. Results: A common neural network was found for the three tasks during learning. Main activity increases were located in posterior cingulate cortex, supplementary motor area, parietal cortex, anterior putamen, and cerebellum (IVV), whereas activity decrements were observed in prefrontal regions. However, the left hand task showed a greater recruitment of left hippocampal areas when compared with the other tasks. In addition, enhanced connectivity between the right anterior putamen and motor cortical and cerebellar regions was found for the left hand when compared with the right hand task. Conclusion: An additional recruitment of brain regions and increased striato-cortical and striato-cerebellar functional connections is needed when early learning is performed with the nondominant hand. In addition, access to brain resources during learning may be directed by the dominant hand in the bimanual task. J. Magn. Reson. Imaging 2013;37:619631. (c) 2012 Wiley Periodicals, Inc
Revista:
NEUROBIOLOGY OF AGING
ISSN:
0197-4580
Año:
2013
Vol.:
34
N°:
10
Págs.:
2441.e9 - 2441.e11
FUS/TLS (denoting fused in sarcoma/translocated in liposarcoma [MIM 137070]) codifies an RNA binding protein. Mutations in this gene cause amyotrophic lateral sclerosis (ALS; MIM 608030). Essential tremor (ET [MIM 190300]) is the most frequent movement disorder. Despite its strong familiar aggregation, recently a whole exome sequencing study has identified FUS mutations as a cause of familial ET. To determine whether mutations in FUS are also common in other populations, we sequenced FUS gene in 178 unrelated Spanish subjects with ET. We detected only an intronic single-pair nucleotide deletion (c.1293-37delC), which was predicted to affect mRNA splicing. However, leukocyte mRNA analysis showed no changes in FUS expression. In conclusion, coding or splicing FUS mutations are not a frequent cause of ET in the Spanish population.
Revista:
NEUROIMAGE
ISSN:
1053-8119
Año:
2013
Vol.:
83
Págs.:
646 - 657
High-resolution isotropic three-dimensional reconstructions of human brain gray and white matter structures can be characterized to quantify aspects of their shape, volume and topological complexity. In particular, methods based on fractal analysis have been applied in neuroimaging studies to quantify the structural complexity of the brain in both healthy and impaired conditions. The usefulness of such measures for characterizing individual differences in brain structure critically depends on their within-subject reproducibility in order to allow the robust detection of between-subject differences. This study analyzes key analytic parameters of three fractal-based methods that rely on the box-counting algorithm with the aim to maximize within-subject reproducibility of the fractal characterizations of different brain objects, including the pial surface, the cortical ribbon volume, the white matter volume and the gray matter/white matter boundary. Two separate datasets originating from different imaging centers were analyzed, comprising 50 subjects with three and 24 subjects with four successive scanning sessions per subject, respectively. The reproducibility of fractal measures was statistically assessed by computing their intra-class correlations. Results reveal differences between different fractal estimators and allow the identification of several parameters that are critical for high reproducibility. Highest reproducibility with intra-class correlations in the range of 0.9-0.95 is achieved with the correlation dimension. Further analyses of the fractal dimensions of parcellated cortical and subcortical gray matter regions suggest robustly estimated and region-specific patterns of individual variability. These results are valuable for defining appropriate parameter configurations when studying changes in fractal descriptors of human brain structure, for instance in studies of neurological diseases that do not allow repeated measurements or for disease-course longitudinal studies.
Revista:
JOURNAL OF ALZHEIMERS DISEASE
ISSN:
1387-2877
Año:
2013
Vol.:
33
N°:
4
Págs.:
1009 - 1019
The aim of our study was to elucidate whether specific patterns of gray matter loss were associated with apolipoprotein E epsilon 4 (APOE epsilon 4) and microtubule-associated protein tau (MAPT)-H1) genetic variants in subjects with mild cognitive impairment (MCI) at a baseline visit. Gray matter voxel-based morphometry analysis of T1 magnetic resonance imaging scans were performed in 65 amnestic-MCI subjects. MCI APOE epsilon 4 carriers compared with non-carriers showed increased brain atrophy in right hippocampus and rostral amygdala, superior and middle temporal gyrus, and right parietal operculum, including inferior frontal gyrus, inferior parietal, and supramarginal gyrus. MAPT-H1/H1 MCI carriers showed an increased bilateral atrophy in superior frontal gyri (including frontal eye fields and left prefrontal cortex) and precentral gyrus but also unilateral left atrophy in the inferior temporal gyrus and calcarine gyrus. In addition, MCI subjects carrying both APOE epsilon 4 and MAPT-H1/H1 variants showed gray matter loss in the supplementary motor area and right pre- and postcentral gyri. The effect of APOE epsilon 4 on gray matter loss in right hippocampus suggests that, at least in some AD sub-types, the neuronal vulnerability could be increased in the right hemisphere. The pattern of frontal gray matter loss observed among MCI MAPT H1/H1 carriers has also been found in other tauopathies, suggesting that MCI may share etiological factors with other tauopathies. Frontal and parietal cortex vulnerability was found when adding MAPT H1/H1 and APOE epsilon 4 effects, suggesting a synergistic effect of these variants. These results could be due to changes in APOE epsilon 4 and MAPT expression.
Revista:
NEUROIMAGE
ISSN:
1053-8119
Año:
2012
Vol.:
66
Págs.:
662 - 671
Arterial spin labeling (ASL) can be implemented by combining different labeling schemes and readout sequences. In this study, the performance of 2D and 3D single-shot pulsed-continuous ASL (pCASL) sequences was assessed in a group of young healthy volunteers undergoing a baseline perfusion and a functional study with a sensory-motor activation paradigm. The evaluated sequences were 2D echo-planar imaging (2D EPI), 3D single-shot fast spin-echo with in-plane spiral readout (3D FSE spiral), and 3D single-shot gradientand-spin-echo (3D GRASE). The 3D sequences were implemented with and without the addition of an optimized background suppression (BS) scheme. Labeling efficiency, signal-to-noise ratio (SNR), and gray matter (GM) to white matter (WM) contrast ratio were assessed in baseline perfusion measurements. 3D acquisitions without BS yielded 2-fold increments in spatial SNR, but no change in temporal SNR. The addition of BS to the 3D sequences yielded a 3-fold temporal SNR increase compared to the unsuppressed sequences. 2D EPI provided better GM-to-WM contrast ratio than the 3D sequences. The analysis of functional data at the subject level showed a 3-fold increase in statistical power for the BS 3D sequences, although the improvement was attenuated at the group level. 3D without BS did not increase the maximum t-values, however, it yielded larger activation clusters than 2D. These results demonstrate that BS 3D single-shot imaging sequences improve the performance of pCASL in baseline and activation studies, particularly for individual subject analyses where the improvement in temporal SNR translates into markedly enhanced power for task activation detection.
Revista:
NEUROIMAGE
ISSN:
1053-8119
Año:
2012
Vol.:
59
N°:
3
Págs.:
2743-2750
Alterations in cerebral perfusion and metabolism in Parkinson's disease have been assessed in several studies, using nuclear imaging techniques and more recently magnetic resonance imaging. However, to date there is no consensus in the literature regarding the extent and the magnitude of these alterations. In this work, arterial spin labeled perfusion MRI was employed to quantify absolute cerebral blood flow in a group of early-to-moderate Parkinson's disease patients and age-matched healthy controls. Perfusion comparisons between the two groups showed that Parkinson's disease is characterized by wide-spread cortical hypoperfusion. Subcortically, hypoperfusion was also found in the caudate nucleus. This pattern of hypoperfusion could be related to cognitive dysfunctions that have been previously observed even at the disease early stages. The present results were obtained by means of whole brain voxel-wise comparisons of absolute perfusion values, using statistical parametric mapping, thus avoiding the potentially biased global mean normalization procedure. In addition, this work demonstrates that between-group comparison of relative perfusion values after global mean normalization, introduced artifactual relative perfusion increases, where absolute perfusion was in fact preserved. This has implications for perfusion studies of other brain disorders. (C) 2011 Elsevier Inc. All rights reserved.
Revista:
MOVEMENT DISORDERS
ISSN:
0885-3185
Año:
2012
Vol.:
27
N°:
1
Págs.:
146 - 151
Background and objective. Mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene at chromosome 12q12 are the most common genetic cause of sporadic and familial late-onset Parkinson's disease. Our aim was to identify novel LRRK2 mutations in late-onset Parkinson's disease families.
Design. We analyzed chromosome 12p11.2-q13.1 haplotypes in 14 late-onset Parkinson's disease families without known LRRK2 mutations.
Results. Haplotype analysis identified 12 families in which the affected subjects shared chromosome 12p11.2-q13.1 haplotypes. LRRK2 sequencing revealed a novel co-segregating missense mutation in exon 36 (c.5281A > C; p.S1761R) located within a highly conserved region of the COR [C-terminal of ROC (Ras of complex proteins)] domain wherein it could deregulate LRRK2 kinase activity by modifying ROC-COR dimer stability. p.S1761R was present in a late-onset Parkinson's disease family and in 2 unrelated Parkinson's disease subjects, but not in 2491 healthy controls. LRRK2 p.S1761R carriers developed levodopa-responsive asymmetrical parkinsonism, with variable age at onset (range: 37-72 years) suggesting age-dependent penetrance. These findings indicate that mutations interfering with LRRK2 ROC-COR domain dimerization lead to typical Parkinson's disease.
Autores:
Pastorino, M.; Cancela, J.; Arredondo, M. T.; et al.
Revista:
CONFERENCE PROCEEDINGS (IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. CONF.)
ISSN:
1557-170X
Año:
2011
Vol.:
2011
Págs.:
1810 - 1813
The aim of this paper is to describe and present the results of the automatic detection and assessment of bradykinesia in motor disease patients using wireless, wearable accelerometers. The current work is related to a module of the PERFORM system, a FP7 project from the European Commission, that aims at providing an innovative and reliable tool, able to evaluate, monitor and manage patients suffering from Parkinson's disease. The assessment procedure was carried out through a developed C# library that detects the activities of the patient using an activity recognition algorithm and classifies the data using a Support Vector Machine trained with data coming from previous test phases. The accuracy between the output of the automatic detection and the evaluation of the clinician both expressed with the Unified Parkinson's disease Rating Scale, presents an average value of [68.3 ± 8.9]%. A meta-analysis algorithm is used in order to improve the accuracy to an average value of [74.4 ± 14.9]%. Future work will include a personalized training of the classifiers in order to achieve a higher level of accuracy.
Revista:
British Journal of Pharmacology
ISSN:
0007-1188
Año:
2011
Vol.:
163
N°:
8
Págs.:
1639 - 1652
Autores:
Cancela, J.; Pastorino, M.; Arredondo, M. T.; et al.
Revista:
CONFERENCE PROCEEDINGS (IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. CONF.)
ISSN:
1557-170X
Año:
2011
Vol.:
2011
Págs.:
2233 - 2236
Parkinson's disease (PD) predominantly alters the motor performance of the affected individuals. In particular, the loss of dopaminergic neurons compromises the speed, the automaticity and fluidity of movements. As the disease evolves, PD patient's motion becomes slower and tremoric and the response to medication fluctuates along the day. In addition, the presence of involuntary movements deteriorates voluntary movement in advanced state of the disease. These changes in the motion can be detected by studying the variation of the signals recorded by accelerometers attached in the limbs and belt of the patients. The analysis of the most significant changes in these signals make possible to build an individualized motor profile of the disease, allowing doctors to personalize the medication intakes and consequently improving the response of the patient to the treatment. Several works have been done in a laboratory and supervised environments providing solid results; this work focused on the design of unsupervised method for the assessment of gait in PD patients. The development of a reliable quantitative tool for long-term monitoring of PD symptoms would allow the accurate detection of the clinical status during the different PD stages and the evaluation of motor complications. Besides, it would be very useful both for routine clinical care as well as for novel therapies testing.
Revista:
NEUROIMAGE
ISSN:
1053-8119
Año:
2011
Vol.:
55
N°:
2
Págs.:
635 - 643
Egocentric tactile perception is crucial for skilled hand motor control. In order to better understand the brain functional underpinnings related to this basic sensorial perception, we performed a tactile perception functional magnetic resonance imaging (fMRI) experiment with two aims. The first aim consisted of characterizing the neural substrate of two types of egocentric tactile discrimination: the spatial localization (SLD) and simultaneity succession discrimination (SSD) in both hands to define hemispheric dominance for these tasks. The second goal consisted of characterizing the brain activation related to the spatial attentional load, the functional changes and their connectivity patterns induced by the psychometric performance (PP) during SLD. We used fMRI in 25 right-handed volunteers, applying pairs of sinusoidal vibratory stimuli on eight different positions in the palmar surface of both hands. Subjects were required either to identify the stimulus location with respect to an imaginary midline (SLD), to discriminate the simultaneity or succession of a stimuli pair (SSD) or to simply respond to stimulus detection. We found a fronto-parietal network for SLD and frontal network for SSD. During SLD we identified right hemispheric dominance with increased BOLD activation and functional interaction of the right supramarginal gyrus with contralateral intra-parietal sulcus for right and left hand independently. Brain activity correlated to spatial attentional load was found in bilateral structures of intra-parietal sulcus, precuneus extended to superior parietal lobule, pre-supplementary motor area, frontal eye fields and anterior insulae for both hands. We suggest that the right supramarginal gyrus and its interaction with intra-parietal lobule may play a pivotal role in the phenomenon of tactile neglect in right fronto-parietal lesions.
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2011
Vol.:
6
N°:
3
Págs.:
e17408
Decision making can be regarded as the outcome of cognitive processes leading to the selection of a course of action among several alternatives. Borrowing a central measurement from information theory, Shannon entropy, we quantified the uncertainties produced by decisions of participants within an economic decision task under different configurations of reward probability and time. These descriptors were used to obtain blood oxygen level-dependent (BOLD) signal correlates of uncertainty and two clusters codifying the Shannon entropy of task configurations were identified: a large cluster including parts of the right middle cingulate cortex (MCC) and left and right pre-supplementary motor areas (pre-SMA) and a small cluster at the left anterior thalamus. Subsequent functional connectivity analyses using the psycho-physiological interactions model identified areas involved in the functional integration of uncertainty. Results indicate that clusters mostly located at frontal and temporal cortices experienced an increased connectivity with the right MCC and left and right pre-SMA as the uncertainty was higher. Furthermore, pre-SMA was also functionally connected to a rich set of areas, most of them associative areas located at occipital and parietal lobes. This study provides a map of the human brain segregation and integration (i.e., neural substrate and functional connectivity respectively) of the uncertainty associated to an economic decision making paradigm.
Revista:
EUROPEAN JOURNAL OF NEUROLOGY
ISSN:
1351-5101
Año:
2010
Vol.:
17
N°:
2
Págs.:
321 - 325
Revista:
NEUROLOGIST
ISSN:
1074-7931
Año:
2010
Vol.:
17
N°:
5
Págs.:
273 -275
Revista:
BRAIN
ISSN:
0006-8950
Año:
2010
Vol.:
133
N°:
Pt 4
Págs.:
1128-1142