Revistas
Revista:
CANCER RESEARCH
ISSN:
0008-5472
Año:
2023
Vol.:
83
N°:
15
Págs.:
2513 - 2526
Immunotherapy resistance in non-small cell lung cancer (NSCLC) may be mediated by an immunosuppressive microenvironment, which can be shaped by the mutational landscape of the tumor. Here, we observed genetic alterations in the PTEN/PI3K/AKT/mTOR pathway and/or loss of PTEN expression in >25% of patients with NSCLC, with higher frequency in lung squamous carcinomas (LUSC). Patients with PTEN-low tumors had higher levels of PD-L1 and PD-L2 and showed worse progression-free survival when treated with immunotherapy. Development of a Pten-null LUSC mouse model revealed that tumors with PTEN loss were refractory to antiprogrammed cell death protein 1 (anti-PD-1), highly metastatic and fibrotic, and secreted TGFß/CXCL10 to promote conversion of CD4+ lymphocytes into regulatory T cells (Treg). Human and mouse PTEN-low tumors were enriched in Tregs and expressed higher levels of immunosuppressive genes. Importantly, treatment of mice bearing Pten-null tumors with TLR agonists and anti-TGFß antibody aimed to alter this immunosuppressive microenvironment and led to tumor rejection and immunologic memory in 100% of mice. These results demonstrate that lack of PTEN causes immunotherapy resistance in LUSCs by establishing an immunosuppressive tumor microenvironment that can be reversed therapeutically.
Significance: PTEN loss leads to the development of an immunosuppressive microenvironment in lung cancer that confers resistance to anti-PD-1 therapy, which can be overcome by targeting PTEN loss-mediated immunosuppression.
Revista:
DISEASE MODELS & MECHANISMS
ISSN:
1754-8411
Año:
2022
Vol.:
15
N°:
1
Págs.:
dmm049137
There is a paucity of adequate mouse models and cell lines available to study lung squamous cell carcinoma (LUSC). We have generated and characterized two models of phenotypically different transplantable LUSC cell lines, i.e. UN-SCC679 and UN-SCC680, derived from A/J mice that had been chemically induced with N-nitroso-tris-chloroethylurea (NTCU). Furthermore, we genetically characterized and compared both LUSC cell lines by performing whole-exome and RNA sequencing. These experiments revealed similar genetic and transcriptomic patterns that may correspond to the classic LUSC human subtype. In addition, we compared the immune landscape generated by both tumor cells lines in vivo and assessed their response to immune checkpoint inhibition. The differences between the two cell lines are a good model for the remarkable heterogeneity of human squamous cell carcinoma. Study of the metastatic potential of these models revealed that both cell lines represent the organotropism of LUSC in humans, i.e. affinity to the brain, bones, liver and adrenal glands. In summary, we have generated valuable cell line tools for LUSC research, which recapitulates the complexity of the human disease.
Revista:
JOURNAL OF THORACIC ONCOLOGY
ISSN:
1556-0864
Año:
2022
Vol.:
17
N°:
12
Págs.:
1387 - 1403
Introduction: SCLC is an extremely aggressive subtype of lung cancer without approved targeted therapies. Here we identified YES1 as a novel targetable oncogene driving SCLC maintenance and metastasis.Methods: Association between YES1 levels and prognosis was evaluated in SCLC clinical samples. In vitro functional experiments for proliferation, apoptosis, cell cycle, and cytotoxicity were performed. Genetic and pharmacologic inhibition of YES1 was evaluated in vivo in cell-and patient -derived xenografts and metastasis. YES1 levels were eval-uated in mouse and patient plasma-derived exosomes.Results: Overexpression or gain/amplification of YES1 was identified in 31% and 26% of cases, respectively, across molecular subgroups, and was found as an independent predictor of poor prognosis. Genetic depletion of YES1 dramatically reduced cell proliferation, three-dimensional organoid formation, tumor growth, and distant metastasis, leading to extensive apoptosis and tumor regressions. Mechanistically, YES1-inhibited cells revealed alterations in the replisome and DNA repair processes, that conferred sensitivity to irradiation. Pharmacologic blockade with the novel YES1 inhibitor CH6953755 or dasatinib induced marked antitumor activity in organoid models and cell-and patient-derived xenografts. YES1 protein was detected in plasma exosomes from patients and mouse models, with levels matching those of tumors, suggesting that circulating YES1 could represent a biomarker for patient selection/ monitoring.Conclusions: Our results provide evidence that YES1 is a new druggable oncogenic target and biomarker to advance the clinical management of a subpopulation of patients with SCLC.
Revista:
CANCERS
ISSN:
2072-6694
Año:
2021
Vol.:
13
N°:
11
Págs.:
2849
We have studied blood levels of cytokines/chemokines in patients with metastatic renal cell carcinoma treated with sunitinib or pazopanib, with the goal of identifying biomarkers that can predict efficacy and survival. We have found that high levels of CXCL10, CXCL11, HGF and IL-6 before treatment associate with poor prognosis in these patients. Moreover, these factors are correlated in patients with renal carcinoma, suggesting a coordinated expression and secretion. We have developed a prognostic signature including these factors that predicts very accurately prognosis. Our results may help defining better the group of renal cell carcinoma patients who may benefit from sunitinib/pazopanib.
Autores:
Anfray, C.; Mainini, F.; Digifico, E.; et al.
Revista:
JOURNAL FOR IMMUNOTHERAPY OF CANCER
ISSN:
2051-1426
Año:
2021
Vol.:
9
N°:
9
Págs.:
e002408
Background Tumor-associated macrophages (TAMs) play a key immunosuppressive role that limits the ability of the immune system to fight cancer and hinder the antitumoral efficacy of most treatments currently applied in the clinic. Previous studies have evaluated the antitumoral immune response triggered by (TLR) agonists, such as poly(I:C), imiquimod (R837) or resiquimod (R848) as monotherapies; however, their combination for the treatment of cancer has not been explored. This study investigates the antitumoral efficacy and the macrophage reprogramming triggered by poly(I:C) combined with R848 or with R837, versus single treatments. Methods TLR agonist treatments were evaluated in vitro for toxicity and immunostimulatory activity by Alamar Blue, ELISA and flow cytometry using primary human and murine M-CSF-differentiated macrophages. Cytotoxic activity of TLR-treated macrophages toward cancer cells was evaluated with an in vitro functional assay by flow cytometry. For in vivo experiments, the CMT167 lung cancer model and the MN/MCA1 fibrosarcoma model metastasizing to lungs were used; tumor-infiltrating leukocytes were evaluated by flow cytometry, RT-qPCR, multispectral immunophenotyping, quantitative proteomic experiments, and protein-protein interaction analysis. Results Results demonstrated the higher efficacy of poly(I:C) combined with R848 versus single treatments or combined with R837 to polarize macrophages toward M1-like antitumor effectors in vitro.
Revista:
JOURNAL FOR IMMUNOTHERAPY OF CANCER
ISSN:
2051-1426
Año:
2021
Vol.:
9
N°:
3
Págs.:
e001496
Introduction The use of immune-checkpoint inhibitors has drastically improved the management of patients with non-small cell lung cancer (NSCLC), but innate and acquired resistances are hurdles needed to be solved. Immunomodulatory drugs that can reinvigorate the immune cytotoxic activity, in combination with antiprogrammed cell death 1 (PD-1) antibody, are a great promise to overcome resistance. We evaluated the impact of the SRC family kinases (SFKs) on NSCLC prognosis, and the immunomodulatory effect of the SFK inhibitor dasatinib, in combination with anti-PD-1, in clinically relevant mouse models of NSCLC. Methods A cohort of patients from University Clinic of Navarra (n=116) was used to study immune infiltrates by multiplex immunofluorescence (mIF) and YES1 protein expression in tumor samples. Publicly available resources (TCGA, Km Plotter, and CIBERSORT) were used to study patient's survival based on expression of SFKs and tumor infiltrates. Syngeneic NSCLC mouse models 393P and UNSCC680AJ were used for in vivo drug testing. Results Among the SFK members, YES1 expression showed the highest association with poor prognosis. Patients with high YES1 tumor levels also showed high infiltration of CD4+/FOXP3+ cells (regulatory T cells (Tregs)), suggesting an immunosuppressive phenotype. After testing for YES1 expression in a panel of murine cell lines, 393P and UNSCC680AJ were selected for in vivo studies. In the 393P model, dasatinib+anti-PD-1 treatment resulted in synergistic activity, with 87% tumor regressions and development of immunological memory that impeded tumor growth when mice were rechallenged. In vivo depletion experiments further showed that CD8+ and CD4+ cells are necessary for the therapeutic effect of the combination. The antitumor activity was accompanied by a very significant decrease in the number of Tregs, which was validated by mIF in tumor sections. In the UNSCC680AJ model, the antitumor effects of dasatinib+anti-PD-1 were milder but similar to the 393P model. In in vitro assays, we demonstrated that dasatinib blocks proliferation and transforming growth factor beta-driven conversion of effector CD4+ cells into Tregs through targeting of phospholymphocyte-specific protein tyrosine kinase and downstream effectors pSTAT5 and pSMAD3. Conclusions YES1 protein expression is associated with increased numbers of Tregs in patients with NSCLC. Dasatinib synergizes with anti-PD-1 to impair tumor growth in NSCLC experimental models. This study provides the preclinical rationale for the combined use of dasatinib and PD-1/programmed death-ligand 1 blockade to improve outcomes of patients with NSCLC.
Revista:
SCIENTIFIC REPORTS
ISSN:
2045-2322
Año:
2019
Vol.:
9
Págs.:
15400
Finding novel targets in non-small cell lung cancer (NSCLC) is highly needed and identification of synthetic lethality between two genes is a new approach to target NSCLC. We previously found that TMPRSS4 promotes NSCLC growth and constitutes a prognostic biomarker. Here, through large-scale analyses across 5 public databases we identified consistent co-expression between TMPRSS4 and DDR1. Similar to TMPRSS4, DDR1 promoter was hypomethylated in NSCLC in 3 independent cohorts and hypomethylation was an independent prognostic factor of disease-free survival. Treatment with 5-azacitidine increased DDR1 levels in cell lines, suggesting an epigenetic regulation. Cells lacking TMPRSS4 were highly sensitive to the cytotoxic effect of the DDR1 inhibitor dasatinib. TMPRSS4/DDR1 double knock-down (KD) cells, but not single KD cells suffered a G0/G1 cell cycle arrest with loss of E2F1 and cyclins A and B, increased p21 levels and a larger number of cells in apoptosis. Moreover, double KD cells were highly sensitized to cisplatin, which caused massive apoptosis (similar to 40%). In vivo studies demonstrated tumor regression in double KD-injected mice. In conclusion, we have identified a novel vulnerability in NSCLC resulting from a synthetic lethal interaction between DDR1 and TMPRSS4.
Revista:
CANCER LETTERS
ISSN:
0304-3835
Año:
2019
Vol.:
453
Págs.:
21 - 33
High mortality rates caused by NSCLC show the need for the identification of novel therapeutic targets. In this study we have investigated the biological effects and molecular mechanisms elicited by TMPRSS4 in NSCLC. Overexpression of TMPRSS4 in LKR13¿cells increased malignancy, subcutaneous tumor growth and multiorganic metastasis. In conditional knock-down (KD) experiments, abrogation of TMPRSS4 in H358 and H2170¿cells altered proliferation, clonogenicity, tumor engraftment and tumor growth. Reduction in S and G2/M phases of the cell cycle, decreased BrdU incorporation and increased apoptosis was also found. Transcriptomic analysis in KD cells revealed downregulation of genes involved in DNA replication, such as MCM6, TYMS and CDKN1A (p21). In patients, expression of a signature of MCM6/TYMS/TMPRSS4 genes was highly associated with poor prognosis. Downregulation of TMPRSS4 significantly increased sensitivity to chemotherapy agents. In experiments using cisplatin, apoptosis and expression of the DNA-damage marker ¿-H2A was higher in cells lacking TMPRSS4. Moreover, in vivo assays demonstrated that tumors with no TMPRSS4 were significantly more sensitive to cisplatin than controls. These results show that TMPRSS4 can be considered as a novel target in NSCLC, whose inhibition increases chemosensitivity.
Autores:
Jiménez-Fonseca, P. (Autor de correspondencia); Martín, M. N. ; Carmona-Bayonas, A. ; et al.
Revista:
ONCOTARGET
ISSN:
1949-2553
Año:
2018
Vol.:
9
N°:
97
Págs.:
36894 - 36905
Several circulating biomarkers and single nucleotide polymorphisms (SNPs) have been correlated with efficacy and tolerability to antiangiogenic agents. These associations remain unexplored in well-differentiated, metastatic pancreatic neuroendocrine tumors treated with the multitargeted tyrosine kinase inhibitor sunitinib. We have assessed the effect on tumor response at 6 months, overall survival, progression-free survival and safety of 14 SNPs, and 6 soluble proteins. Forty-three patients were recruited. Two SNPs in the vascular endothelial growth factor receptor 3 (VEGFR-3) gene predicted lower overall survival: rs307826 with hazard ratio (HR) 3.67 (confidence interval [CI] 95%, 1.35-10.00) and rs307821 with HR 3.84 (CI 95%, 1.47-10.0). Interleukin-6 was associated with increased mortality: HR 1.06 (CI 95%, 1.01-1.12), and osteopontin was associated with shorter PFS: HR 1.087 (1.01-1.16), independently of Ki-67. Furthermore, levels of osteopontin remained higher at the end of the study in patients considered non-responders: 38.5 ng/mL vs. responders: 18.7 ng/mL, p-value=0.039. Dynamic upward variations were also observed with respect to IL-8 levels in sunitinib-refractory individuals: 28.5 pg/mL at baseline vs. 38.3 pg/mL at 3 months, p-value=0.024. In conclusion, two VEGFR-3 SNPs as well as various serum biomarkers were associated with diverse clinical outcomes in patients with well-differentiated pancreatic neuroendocrine tumors treated with sunitinib.
Revista:
CANCER LETTERS
ISSN:
1872-7980
Año:
2018
Vol.:
414
Págs.:
257 - 267
A major complication of colorectal cancer (CRC), one of the most frequent and deadly types of cancer, is disease progression via liver metastases. At this stage, very few treatment options are available for patients, and the disease remains incurable. Herein, we used a well-established mouse model of CRC liver metastasis (CLM) to identify new regulators of this process. Using serial transplantation of murine MC38 adenocarcinoma cells, we obtained liver metastatic variants that displayed extremely strong colonization abilities. Using these newly established cell lines, we performed gene expression arrays and microRNA (miR) profiling. Comparative and predictive analyses between the two arrays showed higher expression of c-met and concomitant reduction of miR-146a in the mestastatic variants. In CRC patients, expression levels of both c-met and miR-146a were similar between primary tumors and liver metastases. Interestingly, we identified c-met as a new target for miR-146a, as miR-146a was able to impede c-met translation. Of relevance, overexpression of miR-146a in metastatic clones showed reduced in vitro malignancy and abolished the development of primary tumor and liver metastases. Our results document a new mechanism for c-met regulation in CLM and highlight the crucial role of miR-146a in suppressing tumorigenesis.
Revista:
CANCER LETTERS
ISSN:
0304-3835
Año:
2017
Vol.:
402
Págs.:
43 - 51
Id1 promotes carcinogenesis and metastasis, and predicts prognosis of non-small cell lung cancer (NSCLC)-adenocarcionoma patients. We hypothesized that Id1 may play a critical role in lung cancer colonization of the liver by affecting both tumor cells and the microenvironment. Depleted levels of Id1 in LLC (Lewis lung carcinoma cells, LLC shId1) significantly reduced cell proliferation and migration in vitro. Genetic loss of Id1 in the host tissue (Id1(-/-) mice) impaired liver colonization and increased survival of Id1 animals. Histologically, the presence of Idl in tumor cells of liver metastasis was responsible for liver colonization. Microarray analysis comparing liver tumor nodules from Id1(+/+) mice and Idl(-/-) mice injected with LLC control cells revealed that Id1 loss reduces the levels of EMT-related proteins, such as vimentin. In tissue microarrays containing 532 NSCLC patients' samples, we found that Idl significantly correlated with vimentin and other EMT-related proteins. Idl loss decreased the levels of vimentin, integrin beta 1, TGF beta 1 and snail, both in vitro and in vivo. Therefore, Id1 enables both LLC and the host microenvironment for an effective liver colonization, and may represent a novel therapeutic target to avoid NSCLC liver metastasis. (C) 2017 Elsevier B.V. All rights reserved.
Autores:
Villalba, M.; López, L.; Redrado M; et al.
Revista:
HISTOLOGY AND HISTOPATHOLOGY
ISSN:
0213-3911
Año:
2016
Vol.:
32
N°:
9
Págs.:
929 - 940
Metastatic spread is responsible for the majority of cancer deaths and identification of metastasis-related therapeutic targets is compulsory. TMPRSS4 is a pro-metastatic druggable transmembrane type II serine protease whose expression has been associated with the development of several cancer types and poor prognosis. To study the role and expression of this protease in cancer, we have developed molecular tools (active recombinant proteins and a polyclonal antibody) that can be used for diagnostic purposes and for testing anti-TMPRSS4 drugs. In addition, we have evaluated TMPRSS4 protein expression in several cancer tissue microarrays (TMAs). Full length and truncated TMPRSS4 recombinant proteins maintained the catalytic activity in two different expression systems (baculovirus and E. coli). Sensitivity of the rabbit polyclonal antisera against TMPRSS4 (ING-pAb) outperformed the antibody most commonly used in clinical settings. Analysis by immunohistochemistry in the different TMAs identified a subset of adenocarcinomas, squamous carcinomas, large cell carcinomas and carcinoids of the lung, which may define aggressive tumors. In conclusion, our biological tools will help the characterization of TMPRSS4 activity and protein expression, as well as the evaluation of anti-TMRSS4 drugs. Future studies should determine the clinical value of assessing TMPRSS4 levels in different types of lung cancer.
Revista:
ONCOTARGET
ISSN:
1949-2553
Año:
2016
Vol.:
7
N°:
16
Págs.:
22752 - 22769
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, which highlights the need of innovative therapeutic options. Although targeted therapies can be successfully used in a subset of patients with lung adenocarcinomas (ADC), they are not appropriate for patients with squamous cell carcinomas (SCC). In addition, there is an unmet need for the identification of prognostic biomarkers that can select patients at risk of relapse in early stages. Here, we have used several cohorts of NSCLC patients to analyze the prognostic value of both protein expression and DNA promoter methylation status of the prometastatic serine protease TMPRSS4. Moreover, expression and promoter methylation was evaluated in a panel of 46 lung cancer cell lines. We have demonstrated that a high TMPRSS4 expression is an independent prognostic factor in SCC. Similarly, aberrant hypomethylation in tumors, which correlates with high TMPRSS4 expression, is an independent prognostic predictor in SCC. The inverse correlation between expression and methylation status was also observed in cell lines. In vitro studies showed that treatment of cells lacking TMPRSS4 expression with a demethylating agent significantly increased TMPRSS4 levels. In conclusion, TMPRSS4 is a novel independent prognostic biomarker regulated by epigenetic changes in SCC and a potential therapeutic target in this tumor type, where targeted therapy is still underdeveloped.
Revista:
CANCER LETTERS
ISSN:
0304-3835
Año:
2016
Vol.:
370
N°:
2
Págs.:
165 - 176
Metastasis involves a series of changes in cancer cells that promote their escape from the primary tumor and colonization to a new organ. This process is related to the transition from an epithelial to a mesenchymal phenotype (EMT). Recently, some authors have shown that migratory cells with an EMT phenotype share properties of cancer stem cells (CSCs), which allow them to form a new tumor mass. The type II transmembrane serine protease TMPRSS4 is highly expressed in some solid tumors, promotes metastasis and confers EMT features to cancer cells. We hypothesized that TMPRSS4 could also provide CSC properties. Overexpression of TMPRSS4 reduces E-cadherin and induces N-cadherin and vimentin in A549 lung cancer cells, supporting an EMT phenotype. These changes are accompanied by enhanced migration, invasion and tumorigenicity in vivo. TMPRSS4 expression was highly increased in a panel of lung cancer cells cultured as tumorspheres (a typical assay to enrich for CSCs). H358 and H441 cells with knocked-down TMPRSS4 levels were significantly less able to form primary and secondary tumorspheres than control cells. Moreover, they showed a lower proportion of ALDH+ cells (examined by FACS analysis) and lower expression of some CSC markers than controls. A549 cells overexpressing TMPRSS4 conferred the opposite phenotype and were also more sensitive to the CSC-targeted drug salinomycin than control cells, but were more resistant to regular chemotherapeutic drugs (cisplatin, gemcitabine and 5-fluorouracil). Analysis of 70 NSCLC samples from patients revealed a very significant correlation between TMPRSS4 expression and CSC markers ALDH (p¿=¿0.0018) and OCT4 (p¿=¿0.0004), suggesting that TMPRSS4 is associated with a CSC phenotype in patients' tumors. These results show that TMPRSS4, in addition to inducing EMT, can also promote CSC features in lung cancer; therefore, CSC-targeting drugs could be an appropriate treatment for TMPRSS4+ tumors.
Revista:
CELL AND TISSUE RESEARCH
ISSN:
0302-766X
Año:
2015
Vol.:
359
N°:
3
Págs.:
829 - 839
1 in CRC cell¿CAFs attachment and its impact on liver metastasis. CAFs were obtained after xenotransplantation of Mc38 cells into EGFP-C57BL/6 mice. Attachment experiments with CRC cells and CAFs (with or without TGFß1 and the inhibitory peptide P17) were carried out, as well as in vivo liver metastasis assays. TGFß1 induced adhesion of CRC cells to CAFs, whereas exposure to P17 abrogated this effect. Co-injection of Mc38 cells with CAFs intrasplenically increased liver metastasis, as compared to injection of tumor cells alone. Pretreatment of Mc38 cells with TGFß1 enhanced the metastatic burden, in comparison to untreated Mc38 + CAFs. TGFß1-pretreated Mc38 cells co-metastatized with CAFs to the liver in a highly efficient way. Importantly, the metastatic burden was significantly reduced (p < 0.001) when P17 was administered in mice. The number of PCNA+ and CD-31+ cells was also reduced by P17 in these animals, indicating a decrease in proliferation and angiogenesis upon TGFß1 signaling blockade. Through microarray analysis, we identified potential TGFß1-regulated genes that may mediate cancer cell¿stroma interactions to increase metastasis. In conclusion, TGFß1 promotes co-travelling of CRC cells and CAFs to the liver to enhance metastasis. Our results strongly support the use of TGFß1 targeted drugs as a novel strategy to reduce liver metastasis in CRC patients.
Revista:
ONCOTARGET
ISSN:
1949-2553
Año:
2015
Vol.:
6
N°:
29
Págs.:
27288 - 27303
The spread of lung cancer cells to distant sites represents a common event associated with poor prognosis. A fraction of tumor cells named cancer stem cells (CSCs) have the ability to overcome therapeutic stress and remain quiescent. However, whether these CSCs have also the capacity to initiate and sustain metastasis remains unclear. Here, we used tumor sphere cultures (TSC) isolated from mouse and human lung cancer models to enrich for CSCs, and assessed their metastatic potential as compared to non-CSCs. As expected, TSC overexpressed a variety of stem cell markers and displayed chemoresistance. The CSC phenotype of TSC was confirmed by their higher growth ability in soft agar and tumorigenic potential in vivo, despite their reduced in vitro cell growth kinetics. Surprisingly, the appearance of spontaneous lung metastases was strongly delayed in mice injected with TSC as compared to non-TSC cells. Similarly, this finding was confirmed in several other models of metastasis, an effect associated with a retarded colonization activity. Interestingly, such delay correlated with a quiescent phenotype whose underlined mechanisms included an increase in p27 protein and lower phospho-ERK1/2 levels. Thus, these data suggest that cells enriched for CSC properties display an impaired metastatic activity, a finding with potential clinical implications.
Revista:
PROSTATE
ISSN:
0270-4137
Año:
2015
Vol.:
75
N°:
11
Págs.:
1137 - 1149
INTRODUCTIONThe need for new treatments for advanced prostate cancer has fostered the experimental use of targeted therapies. Sunitinib is a multi-tyrosine kinase inhibitor that mainly targets membrane-bound receptors of cells within the tumor microenvironment, such as endothelial cells and pericytes. However, recent studies suggest a direct effect on tumor cells. In the present study, we have evaluated both direct and indirect effects of Sunitinib in prostate cancer and how this drug regulates hypoxia, using in vitro and in vivo models.
METHODSWe have used both in vitro (PC-3, DU145, and LNCaP cells) and in vivo (PC-3 xenografts) models to study the effect of Sunitinib in prostate cancer. Analysis of hypoxia based on HIF-1 expression and FMISO uptake was conducted. ALDH activity was used to analyze cancer stem cells (CSC).
RESULTSSunitinib strongly reduced proliferation of PC-3 and DU-145 cells in a dose dependent manner, and decreased levels of p-Akt, p-Erk1/2, and Id-1, compared to untreated cells. A 3-fold reduction in tumor growth was also observed (P<0.001 with respect to controls). Depletion of Hif-1 levels in vitro and a decrease in FMISO uptake in vivo showed that Sunitinib inhibits tumor hypoxia. When combined with radiotherapy, this drug enhanced cell death in vitro and in vivo, and significantly decreased CD-31, PDGFR, Hif-1, Id1, and PCNA protein levels (whereas apoptosis was increased) in tumors as compared to controls or single-therapy treated mice. Moreover, Sunitinib reduced the number of ALDH+ cancer stem-like cells and sensitized these cells to radiation-mediated loss of clonogenicity.
DISCUSIONOur results support the use of Sunitinib in prostate cancer and shows that both hypoxia and cancer stem cells are involved in the effect elicited by this drug. Combination of Sunitinib with radiotherapy warrants further consideration to reduce prostate cancer burden.
Revista:
CLINICAL GENITOURINARY CANCER
ISSN:
1558-7673
Año:
2014
Vol.:
12
N°:
2
Págs.:
87 - 93
Inhibitor of differentiation-1 (Id1) might constitute a novel prognostic factor able to differentiate indolent from aggressive prostate tumors. In this study, 2 cohorts of 52 and 79 prostate cancer patients were selected for Id1 expression analysis. Higher levels of Id1 protein in advanced poor-prognosis patients and a correlation of higher Id1 mRNA expression levels with a lower survival in stage I to III patients were observed.
Background: In the prostate-specific antigen era, potentially indolent prostate tumors are radically treated, causing overtreatment. Molecular prognostic factors might differentiate indolent from aggressive tumors, allowing avoidance of unnecessary treatment. Patients and Methods: Fifty-two prostate cancer patients (20 organ-confined and 32 metastatic) were selected. All formalin-fixed and paraffin-embedded primary biopsies and matched metastases of 15 of them were evaluated for tumor and endothelial cell Id1 protein expression. Seventy-nine additional patients with organ-confined prostate cancer were selected for Id1 mRNA in silico analysis. Results: Among metastatic cancer subjects, 48% of primary tumors and 38% of metastases showed Id1 tumor cell expression, and 79% of primary tumors and 81% of metastases showed endothelial immunoreactivity. In the organ-confined group none of them showed Id1 protein tumor cell expression and 50% displayed endothelial expression. In the metastatic patients group, lower levels of Id1 protein predicted a nonsignificant longer overall survival (13 months vs. 7 months; P = .79). In the in silico analysis, however, lower levels of Id1 mRNA predicted a longer disease-free survival (61 months vs. not-reached; P = .018) and the hazard ratio for progression was 0.451 (P = .022) in favor of patients showing lower levels. Conclusion: In our cohort, it seems to be a differential epithelial expression of Id1 protein according to the prognostic features (metastatic/poor prognosis vs. organ-confined/good prognosis). In localized tumors treated with radical prostatectomy, higher Id1 mRNA expression levels might predict a higher hazard ratio for progression and a shorter disease-free survival. Further validation of these results in larger prospective series is warranted.
Revista:
CURRENT MOLECULAR MEDICINE
ISSN:
1566-5240
Año:
2014
Vol.:
14
N°:
1
Págs.:
151 - 162
Id-1 is a member of the helix-loop-helix family of proteins that regulates the activity of transcription factors to suppress cellular differentiation and to promote cell growth. Overexpression of Id-1 in tumor cells correlates with increased malignancy and resistance to chemotherapy and radiotherapy. Id-1B is an isoform generated by alternative splicing that differs from the classical Id-1 in the 13-C-terminal amino acids, whose function is at present unknown. We have studied the role of Id-1B in cancer and its expression in healthy/malignant lung tissues. Overexpression of Id-1B in A549 lung and PC3 prostate cancer cells reduced anchorage-dependent and independent proliferation and clonogenic potential. Moreover, it increased the proportion of cells in the G0/G1 phase of the cell cycle and p27 levels, while reduced phospho-Erk and cyclin A levels. Through microarray analysis, we identified genes involved in cell growth and proliferation that are specifically deregulated as a consequence of Id-1B overexpression, including IGF2, BMP4, Id2, GATA3, EREG and AREG. Id-1B overexpressing cells that were treated with 4Gy irradiation dose were significantly less resistant to cell death. In vivo assays demonstrated that tumors with high Id-1B levels exhibited less growth (p< 0.01), metabolic activity (glucose uptake) and angiogenesis (p< 0.05) compared to tumors with low Id-1B expression; mice survival was significantly extended (p< 0.05). Quantification by qRT-PCR revealed that expression of Id-1B was significantly lower (p< 0.01) in human lung tumors compared to their matched nonmalignant counterparts. In conclusion, our results demonstrate that Id-1B decreases the malignancy of lung and prostate cancer cells, sensitizes them to radiotherapy-induced cell death, and counteracts the pro-tumorigenic role of the classical form of Id-1.
Revista:
INTERNATIONAL JOURNAL OF CANCER
ISSN:
0020-7136
Año:
2014
Vol.:
135
N°:
11
Págs.:
2516 - 2527
New mouse models with specific drivers of genetic alterations are needed for preclinical studies. Herein, we created and characterized at the genetic level a new syngeneic model for lung cancer and metastasis in Balb-c mice. Tumor cell lines were obtained from a silica-mediated airway chronic inflammation that promotes tumorigenesis when combined with low doses of N-nitrosodimethylamine, a tobacco smoke carcinogen. Orthotopic transplantation of these cells induced lung adenocarcinomas, and their intracardiac injection led to prominent colonization of various organs (bone, lung, liver and brain). Driver gene alterations included a mutation in the codon 12 of KRAS (G-A transition), accompanied by a homozygous deletion of the WW domain-containing oxidoreductase (WWOX) gene. The mutant form of WWOX lacked exons 5-8 and displayed reduced protein expression level and activity. WWOX gene restoration decreased the in vitro and in vivo tumorigenicity, confirming the tumor suppressor function of this gene in this particular model. Interestingly, we found that cells displayed remarkable sphere formation ability with expression of specific lung cancer stem cell markers. Study of non-small-cell lung cancer patient cohorts demonstrated a deletion of WWOX in 30% of cases, with significant reduction in protein levels as compared to normal tissues. Overall, our new syngeneic mouse model provides a most valuable tool to study lung cancer metastasis in balb-c mice background and highlights the importance of WWOX deletion in lung carcinogenesis.
Revista:
BRITISH JOURNAL OF CANCER
ISSN:
0007-0920
Año:
2014
Vol.:
110
N°:
3
Págs.:
764 - 774
BACKGROUND:
TMPRSS4 is a membrane-anchored protease involved in cell migration and invasion in different cancer types including lung cancer. TMPRSS4 expression is increased in NSCLC and its inhibition through shRNA reduces lung metastasis. However, molecular mechanisms leading to the protumorigenic regulation of TMPRSS4 in lung cancer are unknown.
METHODS:
miR-205 was identified as an overexpressed gene upon TMPRSS4 downregulation through microarray analysis. Cell migration and invasion assays and in vivo lung primary tumour and metastasis models were used for functional analysis of miR-205 overexpression in H2170 and H441 cell lines. Luciferase assays were used to identify a new miR-205 direct target in NSCLC.
RESULTS:
miR-205 overexpression promoted an epithelial phenotype with increased E-cadherin and reduced fibronectin. Furthermore, miR-205 expression caused a G0/G1 cell cycle arrest and inhibition of cell growth, migration, attachment to fibronectin, primary tumour growth and metastasis formation in vivo. Integrin ¿5 (a proinvasive protein) was identified as a new miR-205 direct target in NSCLC. Integrin ¿5 downregulation in lung cancer cells resulted in complete abrogation of cell migration, a decreased capacity to adhere to fibronectin and reduced in vivo tumour growth, compared with control cells. TMPRSS4 silencing resulted in a concomitant reduction of integrin ¿5 levels.
CONCLUSION:
We have demonstrated for the first time a new molecular pathway that connects TMPRSS4 and integrin ¿5 through miR-205 to regulate cancer cell invasion and metastasis. Our results will help designing new therapeutic strategies to inhibit this novel pathway in NSCLC.
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2013
Vol.:
8
N°:
11
Págs.:
e79798
Cancer stem cells (CSCs) are thought to be responsible for tumor initiation and recurrence after chemotherapy. Targeting CSCs and non-CSCs with specific compounds may be an effective approach to reduce lung cancer growth and metastasis. The aim of this study was to investigate the effect of salinomycin, a selective inhibitor of CSCs, with or without combination with paclitaxel, in a metastatic model. To evaluate the effect of these drugs in metastasis and tumor microenvironment we took advantage of the immunocompetent and highly metastatic LLC mouse model. Aldefluor assays were used to analyze the ALDH+/- populations in murine LLC and human H460 and H1299 lung cancer cells. Salinomycin reduced the proportion of ALDH+ CSCs in LLC cells, whereas paclitaxel increased such population. The same effect was observed for the H460 and H1299 cell lines. Salinomycin reduced the tumorsphere formation capacity of LLC by more than 7-fold, but paclitaxel showed no effect. In in vivo experiments, paclitaxel reduced primary tumor volume but increased the number of metastatic nodules (p<0.05), whereas salinomycin had no effect on primary tumors but reduced lung metastasis (p<0.05). Combination of both drugs did not improve the effect of single therapies. ALDH1A1, SOX2, CXCR4 and SDF-1 mRNA levels were higher in metastatic lesions than in primary tumors, and were significantly elevated in both locations by paclitaxel treatment. On the contrary, such levels were reduced (or in some cases did not change) when mice were administered with salinomycin. The number of F4/80+ and CD11b+ cells was also reduced upon administration of both drugs, but particularly in metastasis. These results show that salinomycin targets ALDH+ lung CSCs, which has important therapeutic effects in vivo by reducing metastatic lesions. In contrast, paclitaxel (although reducing primary tumor growth) promotes the selection of ALDH+ cells that likely modify the lung microenvironment to foster metastasis.
Autores:
Zubeldia, Idoia G; Bleau, A. M; Redrado M; et al.
Revista:
EXPERIMENTAL CELL RESEARCH
ISSN:
0014-4827
Año:
2013
Vol.:
319
N°:
3
Págs.:
12-22
Colorectal cancer (CRC) frequently metastasizes to the liver, a phenomenon that involves the participation of transforming-growth-factor-beta(1) (TGF beta(1)). Blockade of the protumorigenic effects elicited by TGF beta(1) in advanced CRC could attenuate liver metastasis. We aimed in the present study to assess the antimetastatic effect of TGF beta(1)-blocking peptides P17 and P144, and to study mechanisms responsible for this activity in a mouse model. Colon adenocarcinoma cells expressing luciferase were pretreated with TGF beta(1) (Mc38-luc(TGF beta 1) cells), injected into the spleen of mice and monitored for tumor development. TGF beta(1) increased primary tumor growth and liver metastasis, whereas systemic treatment of mice with either P17 or P144 significantly reduced tumor burden (p < 0.01). In metastatic nodules, mitotic/apoptotic ratio, mesenchymal traits and angiogenesis (evaluated by CD-31, as well as circulating endothelial and progenitor cells) induced by TGF beta(1) were consistently reduced following injection of peptides. In vitro experiments revealed a direct effect of TGF beta(1) in Mc38 cells, which resulted in activation of Smad2, Smad3 and Smad1/5/8, and increased invasion and transendothelial migration, whereas blockade of TGF beta(1)-signaling reverted these features. Because TGF beta(1)-mediated epithelial -mesenchymal transition (EMT) has been suggested to induce a cancer stem cell (CSC) phenotype, we analyzed the ability of this cytokine to induce tumorsphere formation and the expression of CSC markers. In TGF beta(1)-treated cells, tumorspheres were enriched in CD44 and SOX2, which were diminished in the presence of P17. Our data provide a preclinical rationale to evaluate P17 and P144 as potential therapeutic options for the treatment of metastatic CRC. (c) 2012 Elsevier Inc. All rights reserved.
Revista:
HISTOLOGY AND HISTOPATHOLOGY
ISSN:
0213-3911
Año:
2013
Vol.:
28
N°:
8
Págs.:
1029 - 1040
Inhibitor of differentiation-1 (Id1) plays a role in cell proliferation, acquisition of epithelial to mesenchymal transition (EMT) features and angiogenesis. Id1 was shown to be expressed in some tumor types, mainly in advanced dedifferentiated stages. However, recent studies using a validated and highly specific monoclonal antibody against Id1 have challenged many of the results obtained by immunohistochemistry. The goal of our work was to perform a thorough analysis of Id1 expression in mouse embryos and adult tissues, as well as healthy and malignant mouse and human samples using this validated antibody (Perk et al., 2006). Our results show that Id1 was highly expressed in the oropharyngeal cavity, lung, cartilage and skin of E14 and E15 mouse embryos, but expression was progressively reduced in more developed embryos. Immunostaining only remained in epithelial cells of the gut and uterus of adult mice. Mammary MMTV-Myc and MMTV-Myc/VEGF transgenic mouse tumors, and squamous cell carcinomas of the lung induced by N-nitroso-tris-chloroethylurea (NTCU) were highly positive for Id1, unlike their respective healthy counterparts. Id1 immunostaining in a human tissue microarray (TMA) revealed strong expression in cancers of the oral cavity, bladder and cervix. Some tumor specimens of esophagus, thyroid and breast were also strongly positive. Our results suggest that Id1 is an oncofetal protein highly expressed in particular tumor types that should be reanalyzed in future studies using large cohorts of patients to reassess its diagnostic/prognostic value. Moreover, MMTV-Myc- and NTCU-induced tumors could serve as appropriate mouse models to study Id1 functions in breast and lung cancer, respectively.
Revista:
LABORATORY INVESTIGATION
ISSN:
0023-6837
Año:
2012
Vol.:
92
N°:
7
Págs.:
952 - 966
Hepatocellular carcinoma (HCC) is the fifth most common solid tumor and the third leading cause of cancer-related deaths. Currently available chemotherapeutic options are not curative due in part to tumor resistance to conventional therapies. We generated orthotopic HCC mouse models in immunodeficient NOD/SCID/IL2r¿ null mice by injection of human alpha-feto protein (hAFP)- and/or luciferase-expressing HCC cell lines and primary cells from patients, where tumor growth and spread can be accurately monitored in a non-invasive way. In this model, low-dose metronomic administration of cyclophosphamide (LDM-CTX) caused complete regression of the tumor mass. A significant increase in survival (P<0.0001), reduced aberrant angiogenesis and hyperproliferation, and decrease in the number of circulating tumor cells were found in LDM-CTX-treated animals, in comparison with untreated mice. Co-administration of LDM-CTX with anti-VEGF therapy further improved the therapeutic efficacy. However, the presence of residual circulating hAFP levels suggested that some tumor cells were still present in livers of treated mice. Immunohistochemistry revealed that those cells had a hAFP+/CD13+/PCNA- phenotype, suggesting that they were dormant cancer stem cells (CSC). Indeed, discontinuation of therapy resulted in tumor regrowth. Moreover, in-vitro LDM-CTX treatment reduced hepatosphere formation in both number and size, and the resulting spheres were enriched in CD13+ cells indicating that these cells were particularly resistant to therapy. Co-treatment of the CD13-targeting drug, bestatin, with LDM-CTX leads to slower tumor growth and a decreased tumor volume. Therefore, combining a CD13 inhibitor, which targets the CSC-like population, with LDM-CTX chemotherapy may be used to eradicate minimal residual disease and improve the treatment of liver cancer.
Revista:
CURRENT MEDICINAL CHEMISTRY
ISSN:
0929-8673
Año:
2012
Vol.:
19
N°:
18
Págs.:
3031 - 3043
Methylimidoselenocarbamates have previously proven to display potent antitumor activities. In the present study we show that these compounds act as multikinase inhibitors. We found that the most effective compound, quinoline imidoselenocarbamate EI201, inhibits the PI3K/AKT/mTOR pathway, which is persistently activated and contributes to malignant progression in various cancers. EI201 blocked the phosphorylation of AKT, mTOR and several of its downstream regulators (p70(S6K) and 4E-BP1) and ERK1/2 in PC-3, HT-29 and MCF-7 cells in vitro, inducing both autophagy and apoptosis. EI201 also contributes to the loss of maintenance of the self-renewal and tumorigenic capacity of cancer stem cells (CSCs). 0.1 mu mol/L EI201 triggered a reduction in size and number of tumorspheres in PC-3, HT-29 and MCF-7 cells and 4 mu mol/L induced the elimination of almost all the tumorspheres in the three studied cell lines. In addition, EI201 suppressed almost 80% prostate tumor growth in vivo (p < 0.01) compared to controls at a relatively low dose (10 mg/kg) in a mouse xenograft model. There was a significant decrease in the subcutaneous primary tumor [18F]-FDG uptake (76.5% reduction, p < 0.05) and in the total tumor burden (76.8% reduction, p < 0.05) after EI201 treatment compared to vehicle control, without causing toxicity in mice. Taken together, our results support further development of EI201 as a novel multi-kinase inhibitor that may be useful against cancers with aberrant upregulation of PI3K/AKT and MAPK signaling pathways.
Revista:
CLINICAL CANCER RESEARCH
ISSN:
1078-0432
Año:
2011
Vol.:
17
N°:
12
Págs.:
4155 -4166
Revista:
The Journal of Immunology
ISSN:
0022-1767
Año:
2011
Vol.:
187
N°:
11
Págs.:
6130 - 6142
Twenty-four patients with metastatic cancer received two cycles of four daily immunizations with monocyte-derived dendritic cells (DC). DC were incubated with preheated autologous tumor lysate and subsequently with IFN-alpha, TNF-alpha, and polyinosinic:polycytidylic acid to attain type 1 maturation. One DC dose was delivered intranodally, under ultrasound control, and the rest intradermally in the opposite thigh. Cyclophosphamide (day -7), GM-CSF (days 1-4), and pegIFN alpha-2a (days 1 and 8) completed each treatment cycle. Pretreatment with cyclophosphamide decreased regulatory T cells to levels observed in healthy subjects both in terms of percentage and in absolute counts in peripheral blood. Treatment induced sustained elevations of IL-12 in serum that correlated with the output of IL-12p70 from cultured DC from each individual. NK activity in peripheral blood was increased and also correlated with the serum concentration of IL-12p70 in each patient. Circulating endothelial cells decreased in 17 of 18 patients, and circulating tumor cells markedly dropped in 6 of 19 cases. IFN-gamma-ELISPOT responses to DC plus tumor lysate were observed in 4 of 11 evaluated cases. Tracing DC migration with [(111)In] scintigraphy showed that intranodal injections reached deeper lymphatic chains in 61% of patients, whereas with intradermal injections a small fraction of injected DC was almost constantly shown to reach draining inguinal lymph nodes. Five patients experienced disease stabilization, but no objective responses were documented. This combinatorial immunotherapy strategy is safe and feasible, and its immunobiological effects suggest potential activity in patients with minimal residual disease. A randomized trial exploring this hypothesis is currently ongoing.
Autores:
Agliano , A.; Martin-Padura , I.; Marighetti , P.; et al.
Revista:
CLINICAL CANCER RESEARCH
ISSN:
1078-0432
Año:
2011
Vol.:
17
N°:
19
Págs.:
6163 - 6173
Purpose: Blastic natural killer (NK) cell lymphoma/blastic plasmacytoid dendritic cell neoplasm (BNKL) is a rare and aggressive neoplasia characterized by infiltration of blast CD4(+)/CD56(+) cells in the skin, the bone marrow, and peripheral blood. Currently, more efforts are required to better define molecular and biological mechanisms associated with this pathology. To the best of our knowledge, no mouse model recapitulated human BNKL so far.
Experimental Design: Primary bone marrow cells from a BNKL patient were injected in nonobese diabetes/severe combined immunodeficient interleukin (IL) 2r gamma(-/-) mice with the intent to generate the first BNKL orthotopic mouse model. Moreover, because of the lack of efficient treatments for BNKL, we treated mice with lenalidomide, an immunomodulatory and antiangiogenic drug.
Results: We generated in mice a fatal disease resembling human BNKL. After lenalidomide treatment, we observed a significant reduction in the number of peripheral blood, bone marrow, and spleen BNKL cells. Tumor reduction parallels with a significant decrease in the number of circulating endothelial and progenitor cells and CD31(+) murine endothelial cells. In mice treated with lenalidomide, BNKL levels of active caspase-3 were significantly augmented, thus showing proapoptotic and cytotoxic effects of this drug in vivo. An opposite result was found for proliferating cell nuclear antigen, a proliferation marker.
Conclusions: Our BNKL model might better define the cellular and molecular mechanisms involved in this disease, and lenalidomide might be considered for the future therapy of BNKL patients.
Revista:
BMCCANCER
ISSN:
1471-2407
Año:
2010
Vol.:
10
N°:
188
Págs.:
1 - 10
Revista:
PROSTATE
ISSN:
0270-4137
Año:
2010
Vol.:
71
N°:
8
Págs.:
824-834
Nacionales y Regionales
Título:
Reversión de la resistencia a inmunoterapia en cáncer de pulmón debida a ausencia del gen supresor tumoral PTEN
Código de expediente:
GN2022/50
Investigador principal:
Alfonso Calvo González
Financiador:
GOBIERNO DE NAVARRA. DEPARTAMENTO DE SALUD
Convocatoria:
2022 GN Proyectos de Investigación en salud
Fecha de inicio:
23/12/2022
Fecha fin:
22/12/2025
Importe concedido:
76.934,16€
Otros fondos:
-
Título:
Identificación de biomarcadores para la detección de radionecrosis en pacientes tratados con radioterapia estereopática y desarrollo experimental de nuevas terapias para su prevención.
Código de expediente:
PI20/01531
Investigador principal:
José Javier Aristu Mendioroz
Financiador:
INSTITUTO DE SALUD CARLOS III
Convocatoria:
2020 AES Proyectos de investigación
Fecha de inicio:
01/01/2021
Fecha fin:
31/12/2023
Importe concedido:
123.420,00€
Otros fondos:
Fondos FEDER
Título:
Evaluación de YES1 como nueva diana terapéutica y biomarcador de respuesta a dasanitib en cáncer de pulmón.
Código de expediente:
PI19/00230
Investigador principal:
Alfonso Calvo González
Financiador:
INSTITUTO DE SALUD CARLOS III
Convocatoria:
2019 AES Proyectos de investigación
Fecha de inicio:
01/01/2020
Fecha fin:
31/12/2022
Importe concedido:
127.050,00€
Otros fondos:
Fondos FEDER
Título:
Nueva estrategia terapéutica para evitar el escape inmune en cáncer de pulmón metastásico mediante el bloqueo combinado de PD-1 e Id1
Código de expediente:
74/2017
Investigador principal:
Ignacio Gil Bazo
Financiador:
GOBIERNO DE NAVARRA
Convocatoria:
2017 GN SALUD
Fecha de inicio:
01/01/2018
Fecha fin:
15/12/2020
Importe concedido:
90.000,00€
Otros fondos:
Fondos FEDER
Título:
TMPRSS4: un nuevo biomarcador y diana terapéutica en carcinoma escamoso de pulmón de mal pronóstico
Código de expediente:
PI16/01352
Investigador principal:
Alfonso Calvo González
Financiador:
INSTITUTO DE SALUD CARLOS III
Convocatoria:
2016 AES PROYECTOS DE INVESTIGACIÓN
Fecha de inicio:
01/01/2017
Fecha fin:
31/12/2019
Importe concedido:
98.615,00€
Otros fondos:
Fondos FEDER