Revistas
Revista:
Journal of hepatology
ISSN:
1600-0641
Año:
2022
Vol.:
77
N°:
4
Págs.:
912 - 914
Revista:
BRITISH JOURNAL OF PHARMACOLOGY
ISSN:
0007-1188
Año:
2022
Vol.:
179
N°:
14
Págs.:
3815 - 3830
Background and Purpose Acute intermittent porphyria (AIP) is a rare disease caused by a genetic mutation in the hepatic activity of the porphobilinogen-deaminase. We aimed to develop a mechanistic model of the enzymatic restoration effects of a novel therapy based on the administration of different formulations of recombinant human-PBGD (rhPBGD) linked to the ApoAI lipoprotein. This fusion protein circulates in blood, incorporating into HDL and penetrating hepatocytes. Experimental Approach Single i.v. dose of different formulations of rhPBGD linked to ApoAI were administered to AIP mice in which a porphyric attack was triggered by i.p. phenobarbital. Data consist on 24 h urine excreted amounts of heme precursors, 5-aminolevulinic acid (ALA), PBG and total porphyrins that were analysed using non-linear mixed-effects analysis. Key Results The mechanistic model successfully characterized over time the amounts excreted in urine of the three heme precursors for different formulations of rhPBGD and unravelled several mechanisms in the heme pathway, such as the regulation in ALA synthesis by heme. Treatment with rhPBGD formulations restored PBGD activity, increasing up to 51 times the value of the rate of tPOR formation estimated from baseline. Model-based simulations showed that several formulation prototypes provided efficient protective effects when administered up to 1 week prior to the occurrence of the AIP attack. Conclusion and Implications The model developed had excellent performance over a range of doses and formulation type. This mechanistic model warrants use beyond ApoAI-conjugates and represents a useful tool towards more efficient drug treatments of other enzymopenias as well as for acute intermittent porphyria.
Revista:
SCIENCE TRANSLATIONAL MEDICINE
ISSN:
1946-6234
Año:
2022
Vol.:
14
N°:
627
Págs.:
eabc0700
Correction of enzymatic deficits in hepatocytes by systemic administration of a recombinant protein is a desired therapeutic goal for hepatic enzymopenic disorders such as acute intermittent porphyria ( AIP), an inherited porphobilinogen deaminase (PBGD) deficiency. Apolipoprotein A-I (ApoAI) is internalized into hepatocytes during the centripetal transport of cholesterol. Here, we generated a recombinant protein formed by linking ApoAI to the amino terminus of human PBGD (rhApoAI-PBGD) in an attempt to transfer PBGD into liver cells. In vivo experiments showed that, after intravenous injection, rhApoAI-PBGD circulates in blood incorporated into high-density lipoprotein (HDL), penetrates into hepatocytes, and crosses the blood-brain barrier, increasing PBGD activity in both the liver and brain. Consistently, the intravenous administration of rhApoAI-PBGD or the hyperfunctional rApoAI-PBGD-I129M/N340S (rApoAI-PBGDms) variant efficiently prevented and abrogated phenobarbital-induced acute attacks in a mouse model of AIP. One month after a single intravenous dose of rApoAI-PBGDms, the protein was still detectable in the liver, and hepatic PBGD activity remained increased above control values. A long-lasting therapeutic effect of rApoAI-PBGDms was observed after either intravenous or subcutaneous administration. These data describe a method to deliver PBGD to hepatocytes with resulting enhanced hepatic enzymatic activity and protection against AIP attacks in rodent models, suggesting that the approach might be an effective therapy for AIP.
Revista:
JOURNAL OF INHERITED METABOLIC DISEASE
ISSN:
0141-8955
Año:
2021
Vol.:
44
N°:
4
Págs.:
790 - 791
Revista:
BIOMEDICINE AND PHARMACOTHERAPY
ISSN:
0753-3322
Año:
2021
Vol.:
137
Págs.:
111384
Antiviral agents with different mechanisms of action could induce synergistic effects against SARS-CoV-2 infection. Some reports suggest the therapeutic potential of the heme oxygenase-1 (HO-1) enzyme against virus infection. Given that hemin is a natural inducer of the HO-1 gene, the aim of this study was to develop an in vitro assay to analyze the antiviral potency of hemin against SARS-CoV-2 infection. A SARS-CoV-2 infectivity assay was conducted in Vero-E6 and Calu-3 epithelial cell lines. The antiviral effect of hemin, and chloroquine as a control, against SARS-CoV-2 virus infection was quantified by RT-qPCR using specific oligonucleotides for the N gene. Chloroquine induced a marked reduction of viral genome copies in kidney epithelial Vero-E6 cells but not in lung cancer Calu-3 cells. Hemin administration to the culture medium induced a high induction in the expression of the HO-1 gene that was stronger in Vero-E6 macaque-derived cells than in the human Calu-3 cell line. However, hemin treatment did not modify SARS-CoV-2 replication, as measured by viral genome quantification 48 h post-infection for Vero-E6 and 72 h post-infection for the Calu-3 lineages. In conclusion, although exposure to hemin induced strong HO-1 up-regulation, this effect was unable to inhibit or delay the progression of SARS-CoV-2 infection in two epithelial cell lines susceptible to infection. Antiviral agents with different mechanisms of action could induce synergistic effects against SARS-CoV-2 infection. Some reports suggest the therapeutic potential of the heme oxygenase-1 (HO-1) enzyme against virus infection. Given that hemin is a natural inducer of the HO-1 gene, the aim of this study was to develop an in vitro assay to analyze the antiviral potency of hemin against SARS-CoV-2 infection. A SARS-CoV-2 infectivity assay was conducted in Vero-E6 and Calu-3 epithelial cell lines. The antiviral effect of hemin, and chloroquine as a control, against SARS-CoV-2 virus infection was quantified by RT-qPCR using specific oligonucleotides for the N gene. Chloroquine induced a marked reduction of viral genome copies in kidney epithelial Vero-E6 cells but not in lung cancer Calu-3 cells. Hemin administration to the culture medium induced a high induction in the expression of the HO-1 gene that was stronger in Vero-E6 macaque-derived cells than in the human Calu-3 cell line. However, hemin treatment did not modify SARS-CoV-2 replication, as measured by viral genome quantification 48 h post-infection for Vero-E6 and 72 h post-infection for the Calu-3 lineages. In conclusion, although exposure to hemin induced strong HO-1 up-regulation, this effect was unable to inhibit or delay the progression of SARS-CoV-2 infection in two epithelial cell lines susceptible to infection.
Autores:
Solares, I. ; Izquierdo Sánchez, L. ; Morales Conejo, M.; et al.
Revista:
BIOMEDICINES
ISSN:
2227-9059
Año:
2021
Vol.:
9
N°:
3
Págs.:
255
Acute porphyria attacks are associated with the strong up-regulation of hepatic heme synthesis and over-production of neurotoxic heme precursors. First-line therapy is based on carbohydrate loading. However, altered glucose homeostasis could affect its efficacy. Our first aim was to investigate the prevalence of insulin resistance (IR) in an observational case-control study including 44 Spanish patients with acute intermittent porphyria (AIP) and 55 age-, gender- and BMI-matched control volunteers. Eight patients (18.2%) and one control (2.3%, p = 0.01) showed a high HOMA-IR index (cut-off ¿ 3.4). Patients with IR and hyperinsulinemia showed clinically stable disease. Thus, the second aim was to evaluate the effect of the co-administration of glucose and a fast-acting or new liver-targeted insulin (the fusion protein of insulin and apolipoprotein A-I, Ins-ApoAI) in AIP mice. The combination of glucose and the Ins-ApoAI promoted partial but sustained protection against hepatic heme synthesis up-regulation compared with glucose alone or co-injected with fast-acting insulin. In a prevention study, Ins-ApoAI improved symptoms associated with a phenobarbital-induced attack but maintained high porphyrin precursor excretion, probably due to the induction of hepatic mitochondrial biogenesis mediated by apolipoprotein A-I. In conclusion, a high prevalence of IR and hyperinsulinemia was observed in patients with AIP. The experimental data provide proof-of-concept for liver-targeted insulin as a way of enhancing glucose therapy for AIP.
Revista:
MOLECULAR THERAPY - NUCLEIC ACIDS
ISSN:
2162-2531
Año:
2021
Vol.:
25
Págs.:
207 - 219
Variegate porphyria (VP) results from haploinsufficiency of pro-toporphyrinogen oxidase (PPDX), the seventh enzyme in the heme synthesis pathway. There is no VP model that recapitulates the clinical manifestations of acute attacks. Combined administrations of 2-allyl-2-isopropylacetamide and rifampicin in rabbits halved hepatic PP OX activity, resulting in increased accumulation of a potentially neurotoxic heme precursor, lipid peroxidation, inflammation, and hepatocyte cytoplasmic stress. Rabbits also showed hypertension, motor impairment, reduced activity of critical mitochondrial hemoprotein functions, and altered glucose homeostasis. Hemin treatment only resulted in a slight drop in heme precursor accumulation but further increased hepatic heme catabolism, inflammation, and cytoplasmic stress. Hemin replenishment did protect against hypertension, but it failed to restore action potentials in the sciatic nerve or glucose homeostasis. Systemic porphobilinogen deaminase (PBGD) mRNA administration increased hepatic PBGD activity, the third enzyme of the pathway, and rapidly normalized serum and urine porphyrin precursor levels. All features studied were improved, including those related to critical hemoprotein functions. In conclusion, the VP model recapitulates the biochemical characteristics and some clinical manifestations associated with severe acute attacks in humans.
Revista:
HUMAN MOLECULAR GENETICS
ISSN:
0964-6906
Año:
2020
Vol.:
29
N°:
19
Págs.:
3211 - 3223
Revista:
BRITISH JOURNAL OF PHARMACOLOGY
ISSN:
0007-1188
Año:
2020
Vol.:
177
N°:
14
Págs.:
3168 - 3182
Background and Purpose Acute intermittent porphyria (AIP) results from haplo-insufficiency of the porphobilinogen deaminase (PBGD) gene encoding the third enzyme in the haem biosynthesis pathway. As liver is the main organ of pathology for AIP, emerging therapies that restore enzyme hepatic levels are appealing. The objective of this work was to develop a mechanistic-based computational framework to describe the effects of novel PBGD mRNA therapy on the accumulation of neurotoxic haem precursors in small and large animal models. Experimental Approach Liver PBGD activity data and/or 24-hr urinary haem precursors were obtained from genetic AIP mice and wild-type mice, rats, rabbits, and macaques. To mimic acute attacks, porphyrogenic drugs were administered over one or multiple challenges, and animals were used as controls or treated with different PBGD mRNA products. Available experimental data were sequentially used to build and validate a semi-mechanistic mathematical model using non-linear mixed-effects approach. Key Results The developed framework accounts for the different biological processes involved (i.e., mRNA sequence, release from lipid nanoparticle and degradation, mRNA translation, increased PBGD activity in liver, and haem precursor metabolism) in a simplified mechanistic fashion. The model, validated using external data, shows robustness in the extrapolation of PBGD activity data in rat, rabbit, and non-human primate species. Conclusion and Implications This quantitative framework provides a valuable tool to compare PBGD mRNA drug products during early preclinical stages, optimize the amount of experimental data required, and project results to humans, thus supporting drug development and clinical dose and dosing regimen selection.
Revista:
MOLECULAR GENETICS AND METABOLISM
ISSN:
1096-7192
Año:
2019
Vol.:
128
N°:
3
Págs.:
367 - 375
Introduction. Acute intermittent porphyria (AIP) is characterized by hepatic over-production of the heme precursors when aminolevulinic acid (ALA)-synthase 1 is induced by endogenous or environmental factors. The aim of this study was to develop a semi-mechanistic computational model to characterize urine accumulation of heme precursors during acute attacks based on experimental pharmacodynamics data and support the development of new therapeutic strategies. Methods: Male AIP mice received recurrent phenobarbital challenge starting on days 1, 9, 16 and 30. 24-h urine excretion of ALA, porphobilinogen (PBG) and porphyrins from challenges Dl, D9 and D30 constituted the training data set to build the mechanistic model using the population approach. In a second study, porphyrin and porphyrin precursor excretion from challenge D16 were used as a validation data set. Results: The computational model presented the following features: (i) urinary excretion of ALA, PBG and porphyrins was governed by unmeasured circulating heme precursor amounts, (ii) the circulating amounts of ALA and PBG were the precursors of circulating amounts of PBG and porphyrins, respectively, and (iii) the phenobarbital effect linearly increased the synthesis of circulating ALA and PBG levels. The model displayed good parameter precision (coefficient of variation below 32% in all parameters), and adequately described the experimental data. Finally, a theoretical hemin effect was implemented to illustrate the applicability of the model to dosage optimization in drug therapies. Conclusions: A semi-mechanistic disease model was successfully developed to describe the temporal evolution of urinary heme precursor excretion during recurrent biochemical-induced acute attacks in AIP mice. This model represents the first computational approach to explore and optimize current and new therapies.
Revista:
GUT
ISSN:
0017-5749
Año:
2019
Vol.:
68
N°:
7
Págs.:
1323 - 1330
Decades of intense research in molecular biology and biochemistry are fructifying in the emergence of therapeutic messenger RNAs (mRNA) as a new class of drugs. Synthetic mRNAs can be sequence optimised to improve translatability into proteins, as well as chemically modified to reduce immunogenicity and increase chemical stability using naturally occurring uridine modifications. These structural improvements, together with the development of safe and efficient vehicles that preserve mRNA integrity in circulation and allow targeted intracellular delivery, have paved the way for mRNA-based therapeutics. Indeed, mRNAs formulated into biodegradable lipid nanoparticles are currently being tested in preclinical and clinical studies for multiple diseases including cancer immunotherapy and vaccination for infectious diseases. An emerging application of mRNAs is the supplementation of proteins that are not expressed or are not functional in a regulated and tissue-specific manner. This so-called ' protein replacement therapy' could represent a solution for genetic metabolic diseases currently lacking effective treatments. Here we summarise this new class of drugs and discuss the preclinical evidence supporting the potential of liver-mediated mRNA therapy for three rare genetic conditions: methylmalonic acidaemia, acute intermittent porphyria and ornithine transcarbamylase deficiency.
Revista:
HUMAN GENE THERAPY
ISSN:
1043-0342
Porphobilinogen deaminase (PBGD) gene therapy represents a promising therapeutic option for acute intermittent porphyria (AIP) patients suffering recurrent acute attacks. A first-in-human Phase I clinical trial confirmed the safety and tolerability of adeno-associated virus (AAV)-AAT-PBGD gene therapy, but higher doses and/or more efficient vectors are needed to achieve therapeutic expression of the transgene. This study assayed the insertion into the promoter of a short enhancer element able to induce transgene expression during exposure to endogenous and exogenous stimuli related to the pathology of the disease. The inclusion in tandem of two elements of the minimal functional sequence of human -aminolevulinic acid synthase drug-responsive enhancing sequence (ADRES) positioned upstream of the promoter strongly induced transgene expression in the presence of estrogens, starvation, and certain drugs known to trigger attacks in porphyria patients. The inclusion of two ADRES motives in an AAV vector improved therapeutic efficacy, reducing 10-fold the effective dose in AIP mice. In conclusion, the inclusion of specific enhancer elements in the promoter of gene therapy vectors for AIP was able to overexpress the therapeutic transgene when it is most needed, at the time when porphyrinogenic factors increase the demand for hepatic heme and precipitate acute porphyria attacks.
Revista:
HUMAN MOLECULAR GENETICS
ISSN:
0964-6906
Año:
2018
Vol.:
27
N°:
21
Págs.:
3688 - 3696
A first-in-human gene therapy trial using a recombinant adeno-associated viral (rAAV) vector for acute intermittent porphyria (AIP) reveals that higher doses would be required to reach therapeutic levels of the porphobilinogen deaminase (PBGD) transgene. We developed a hyperfunctional PBGD protein to improve the therapeutic index without increasing vector dose. A consensus protein sequence from 12 mammal species was compared to the human PBGD sequence, and eight amino acids were selected. I291M and N340S variants showed the highest increase in enzymatic activity when expressed in prokaryotic and eukaryotic systems. In silico analysis indicates that isoleucine 291 to methionine and asparagine 340 to serine variants did not affect the active site of the enzyme. In vitro analysis indicated a synergistic interaction between these two substitutions that improve kinetic stability. Finally, full protection against a phenobarbital-induced attack was achieved in AIP mice after the administration of 1 x 10(11) gc/kg of rAAV2/8-PBGD-I291M/N340S vector. // three times lower than the dose required to achieve full protection with the control rAAV2/8-hPBGD vector. In conclusion, we have developed and 3 characterized a hyperfunctional PBGD protein. The inclusion of this variant sequence in a rAAV2/8 vector allows the effective dose to be lowered in AIP mice.
Revista:
NATURE MEDICINE
ISSN:
1078-8956
Año:
2018
Vol.:
24
N°:
12
Págs.:
1899 - 1909
Acute intermittent porphyria (AIP) results from haploinsufficiency of porphobilinogen deaminase (PBGD), the third enzyme in the heme biosynthesis pathway. Patients with AIP have neurovisceral attacks associated with increased hepatic heme demand. Phenobarbital-challenged mice with AIP recapitulate the biochemical and clinical characteristics of patients with AIP, including hepatic overproduction of the potentially neurotoxic porphyrin precursors. Here we show that intravenous administration of human PBGD (hPBGD) mRNA (encoded by the gene HMBS) encapsulated in lipid nanoparticles induces dose-dependent protein expression in mouse hepatocytes, rapidly normalizing urine porphyrin precursor excretion in ongoing attacks. Furthermore, hPBGD mRNA protected against mitochondrial dysfunction, hypertension, pain and motor impairment. Repeat dosing in AIP mice showed sustained efficacy and therapeutic improvement without evidence of hepatotoxicity. Finally, multiple administrations to nonhuman primates confirmed safety and translatability. These data provide proof-of-concept for systemic hPBGD mRNA as a potential therapy for AIP.
Revista:
HUMAN MOLECULAR GENETICS
ISSN:
0964-6906
Año:
2016
Vol.:
25
N°:
7
Págs.:
1318 - 1327
Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria, AIP) is characterized by neurovisceral attacks when hepatic heme synthesis is activated by endogenous or environmental factors including fasting. While the molecular mechanisms underlying the nutritional regulation of hepatic heme synthesis have been described, glucose homeostasis during fasting is poorly understood in porphyria. Our study aimed to analyse glucose homeostasis and hepatic carbohydrate metabolism during fasting in PBGD-deficient mice. To determine the contribution of hepatic PBGD deficiency to carbohydrate metabolism, AIP mice injected with a PBGD-liver gene delivery vector were included. After a 14 h fasting period, serum and liver metabolomics analyses showed that wild-type mice stimulated hepatic glycogen degradation to maintain glucose homeostasis while AIP livers activated gluconeogenesis and ketogenesis due to their inability to use stored glycogen. The serum of fasted AIP mice showed increased concentrations of insulin and reduced glucagon levels. Specific over-expression of the PBGD protein in the liver tended to normalize circulating insulin and glucagon levels, stimulated hepatic glycogen catabolism and blocked ketone body production. Reduced glucose uptake was observed in the primary somatosensorial brain cortex of fasted AIP mice, which could be reversed by PBGD-liver gene delivery. In conclusion, AIP mice showed a different response to fasting as measured by altered carbohydrate metabolism in the liver and modified glucose consumption in the brain cortex. Glucose homeostasis in fasted AIP mice was efficiently normalized after restoration of PBGD gene expression in the liver.
Revista:
JOURNAL OF HEPATOLOGY
ISSN:
0168-8278
Año:
2016
Vol.:
65
N°:
4
Págs.:
776 - 783
BACKGROUND & AIMS:
Acute intermittent porphyria (AIP) results from porphobilinogen deaminase (PBGD) haploinsufficiency, which leads to hepatic over-production of the neurotoxic heme precursors porphobilinogen (PBG) and delta-aminolevulinic acid (ALA) and the occurrence of neurovisceral attacks. Severe AIP is a devastating disease that can only be corrected by liver transplantation. Gene therapy represents a promising curative option. The objective of this study was to investigate the safety of a recombinant adeno-associated vector expressing PBGD (rAAV2/5-PBGD) administered for the first time in humans for the treatment of AIP.
METHODS:
In this phase I, open label, dose-escalation, multicenter clinical trial, four cohorts of 2 patients each received a single intravenous injection of the vector ranging from 5×10(11) to 1.8×10(13) genome copies/kg. Adverse events and changes in urinary PBG and ALA and in the clinical course of the disease were periodically evaluated prior and after treatment. Viral shedding, immune response against the vector and vector persistence in the liver were investigated.
RESULTS:
Treatment was safe in all cases. All patients developed anti-AAV5 neutralizing antibodies but no cellular responses against AAV5 or PBGD were observed. There was a trend towards a reduction of hospitalizations and heme treatments, although ALA and PBG levels remained unchanged. Vector genomes and transgene expression could be detected in the liver one year after therapy.
CONCLUSIONS:
rAAV2/5-PBGD administration is safe but AIP metabolic correction was not achieved at the doses tested in this trial. Notwithstanding, the treatment had a positive impact in clinical outcomes in most patients.
LAY SUMMARY:
Studies in an acute intermittent porphyria (AIP) animal model have shown that gene delivery of PBGD to hepatocytes using an adeno-associated virus vector (rAAV2/5-PBG) prevent mice from suffering porphyria acute attacks. In this phase I, open label, dose-escalation, multicenter clinical trial we show that the administration of rAAV2/5-PBGD to patients with severe AIP is safe but metabolic correction was not achieved at the doses tested; the treatment, however, had a positive but heterogeneous impact on clinical outcomes among treated patients and 2 out of 8 patients have stopped hematin treatment.
CLINICAL TRIAL NUMBER:
The observational phase was registered at Clinicaltrial.gov as NCT 02076763. The interventional phase study was registered at EudraCT as n° 2011-005590-23 and at Clinicaltrial.gov as NCT02082860.
Revista:
GENE THERAPY
ISSN:
0969-7128
Año:
2015
Vol.:
22
N°:
11
Págs.:
856 - 865
Helper-dependent adenoviral (HDA) vectors constitute excellent gene therapy tools for metabolic liver diseases. We have previously shown that an HDA vector encoding human porphobilinogen deaminase (PBGD) corrects acute intermittent porphyria mice. Now, six non-human primates were injected in the left hepatic lobe with the PBGD-encoding HDA vector to study levels and persistence of transgene expression. Intrahepatic administration of 5 × 10(12) viral particles¿kg(-1) (10(10) infective units¿kg(-1)) of HDA only resulted in transient (¿14 weeks) transgene expression in one out of three individuals. In contrast, a more prolonged 90-day immunosuppressive regimen (tacrolimus, mycophenolate, rituximab and steroids) extended meaningful transgene expression for over 76 weeks in two out of two cases. Transgene expression under immunosuppression (IS) reached maximum levels 6 weeks after HDA administration and gradually declined reaching a stable plateau within the therapeutic range for acute porphyria. The non-injected liver lobes also expressed the transgene because of vector circulation. IS controlled anticapsid T-cell responses and decreased the induction of neutralizing antibodies. Re-administration of HDA-hPBGD at week +78 achieved therapeutically meaningful transgene expression only in those animals receiving IS again at the time of this second vector exposure. Overall, immunity against adenoviral capsids poses serious hurdles for long-term HDA-mediated liver transduction, which can be partially circumvented by pharmacological IS.
Revista:
GENE THERAPY
ISSN:
0969-7128
Año:
2015
Vol.:
22
N°:
11
Págs.:
856 - 865
Helper-dependent adenoviral (HDA) vectors constitute excellent gene therapy tools for metabolic liver diseases. We have previously shown that an HDA vector encoding human porphobilinogen deaminase (PBGD) corrects acute intermittent porphyria mice. Now, six non-human primates were injected in the left hepatic lobe with the PBGD-encoding HDA vector to study levels and persistence of transgene expression. Intrahepatic administration of 5 × 10(12) viral particles kg(-1) (10(10) infective units kg(-1)) of HDA only resulted in transient (¿14 weeks) transgene expression in one out of three individuals. In contrast, a more prolonged 90-day immunosuppressive regimen (tacrolimus, mycophenolate, rituximab and steroids) extended meaningful transgene expression for over 76 weeks in two out of two cases. Transgene expression under immunosuppression (IS) reached maximum levels 6 weeks after HDA administration and gradually declined reaching a stable plateau within the therapeutic range for acute porphyria. The non-injected liver lobes also expressed the transgene because of vector circulation. IS controlled anticapsid T-cell responses and decreased the induction of neutralizing antibodies. Re-administration of HDA-hPBGD at week +78 achieved therapeutically meaningful transgene expression only in those animals receiving IS again at the time of this second vector exposure. Overall, immunity against adenoviral capsids poses serious hurdles for long-term HDA-mediated liver transduction, which can be partially circumvented by pharmacological IS.
Revista:
JOURNAL OF PROTEOMICS
ISSN:
1874-3919
Año:
2015
Vol.:
127
Págs.:
377 - 385
Acute intermittent porphyria (AIP) is an autosomal dominant metabolic disorder caused by a deficiency of hepatic porphobilinogen deaminase (PBGD). The disease is characterized by life threatening acute neurovisceral attacks. The aim of this study was to identify metabolites secreted by the hepatocytes that reflect differential metabolic status in the liver and that may predict response to the acute attack treatment. Plasma vitamin D binding protein (VDBP) from a mouse model of AIP displayed an abnormal migration in 2D-electrophoresis that is efficiently recovered upon gene therapy leading to liver specific over-expression of the PBGD protein. The change in VDBP mobility results from a differential isoelectric point suggesting a post-translational modification that takes place preferably in the liver. Liquid chromatography-mass spectrometry (LC-MS) analysis of human samples before and after glycosidase treatment revealed glycosylated plasma VDBP specifically in patients with recurrent attacks of ALP. Glycosylated VDBP recovered normal values in three severely afflicted AIP patients submitted to therapeutic liver transplantation. Our findings suggest that post-translational modification of VDBP might be considered as a promising biomarker to study and monitor the liver metabolic status in patients with AIP.
Significance: We describe an increased glycosylation of VDBP in porphyric livers. Normal glycosylation was recovered upon liver gene therapy in a mouse model of porphyria or after liver transplantation in severely afflicted patients with AIP. Moreover, quantification of glycosylated VDBP by our ELISA immunoassay or LC-MS protocol in patients undergoing PBGD-gene therapy (www.aipgene.org) may be used as a marker indicating improvement or normalization of the patient's hepatic metabolism.
Revista:
PLOS ONE
ISSN:
1932-6203
Año:
2014
Vol.:
9
N°:
1
Págs.:
e85432
The immune system poses obstacles to viral vectors, even in the first administration to preimmunized hosts. We have observed that the livers of B cell-deficient mice were more effectively transduced by a helper-dependent adenovirus serotype-5 (HDA) vector than those of WT mice. This effect was T-cell independent as shown in athymic mice. Passive transfer of the serum from adenovirus-naive WT to Rag1KO mice resulted in a reduction in gene transfer that was traced to IgM purified from serum of adenovirus-naive mice. To ascribe the gene transfer inhibition activity to either adenoviral antigen-specific or antigen-unspecific functions of IgM, we used a monoclonal IgM antibody of unrelated specificity. Both the polyclonal and the irrelevant monoclonal IgM inhibited gene transfer by the HDA vector to either cultured hepatocellular carcinoma cells or to the liver of mice in vivo. Adsorption of polyclonal or monoclonal IgMs to viral capsids was revealed by ELISAs on adenovirus-coated plates. These observations indicate the existence of an inborn IgM mechanism deployed against a prevalent virus to reduce early post-infection viremia. In conclusion, innate IgM binding to adenovirus serotype-5 capsids restrains gene-transfer and offers a mechanism to be targeted for optimization of vector dosage in gene therapy with HDA vectors.
Revista:
HUMAN MOLECULAR GENETICS
ISSN:
0964-6906
Año:
2013
Vol.:
22
N°:
14
Págs.:
2929-40
Acute intermittent porphyria (AIP) is a hepatic metabolic disease that results from haplo-insufficient activity of porphobilinogen deaminase (PBGD). The dominant clinical feature is acute intermittent attacks when hepatic heme synthesis is activated by endocrine or exogenous factors. Gene therapy vectors over-expressing PBGD protein in the liver offers potential as a cure for AIP. Here, we developed a helper-dependent adenovirus (HDA) encoding human PBGD (hPBGD) and assessed its therapeutic efficacy in a murine model of AIP. Intravenous or intrahepatic administration of HDA-hPBGD to AIP mice resulted in a sustained hepatic hPBGD expression in a dose-dependent manner. Intrahepatic administration conveyed full protection against induced porphyria attacks at a significantly lower viral dose than intravenous injection. Transgenic hPBGD accumulated only in the cytosol of hepatocytes as the endogenous protein. Characterization of PBGD-deficient mouse strains revealed that a strong PBGD deficiency causes the chronic disturbance of cytosolic and endoplasmic reticulum folding machineries. This disturbance was completely restored over time by the over-expression of hPBGD. HDA-hPBGD is a promising vector that protects against porphyria attacks and resolves the chronic folding stress associated with low levels of PBGD activity.
Revista:
HUMAN GENE THERAPY
ISSN:
1043-0342
Año:
2013
Vol.:
24
N°:
12
Págs.:
1007 - 1017
Acute intermittent porphyria (AIP) results from haplo-insufficient activity of porphobilinogen deaminase (PBGD) and is characterized clinically by life-threatening, acute neurovisceral attacks. To date, liver transplantation is the only curative option for AIP. The aim of the present preclinical nonhuman primate study was to determine the safety and transduction efficacy of an adeno-associated viral vector encoding PBGD (recombinant AAV serotype 5-codon-optimized human porphobilinogen deaminase, rAAV5-cohPBGD) administered intravenously as part of a safety program to start a clinical study in patients with AIP. Macaques injected with either 1 × 10(13) or 5 × 10(13) vector genomes/kg of clinical-grade rAAV5-cohPBGD were monitored by standardized clinical parameters, and vector shedding was analyzed. Liver transduction efficacy, biodistribution, vector integration, and histopathology at day 30 postvector administration were determined. There was no evidence of acute toxicity, and no adverse effects were observed. The vector achieved efficient and homogenous hepatocellular transduction, reaching transgenic PBGD expression levels equivalent to 50% of the naturally expressed PBGD mRNA. No cellular immune response was detected against the human PBGD or AAV capsid proteins. Integration site analysis in transduced liver cells revealed an almost random integration pattern supporting the good safety profile of rAAV5-cohPBGD. Together, data obtained in nonhuman primates indicate that rAAV5-cohPBGD represents a safe therapy to correct the metabolic defect present in AIP patients.
Revista:
PLoS One
ISSN:
1932-6203
Año:
2012
Vol.:
7
N°:
3
Págs.:
e32978
Chronic kidney disease is a long-term complication in acute intermittent porphyria (AIP). The pathophysiological significance of hepatic overproduction of the porphyrin precursors aminolevulinate acid (ALA) and porphobilinogen (PBG) in chronic kidney disease is unclear. We have investigated the effect of repetitive acute attacks on renal function and the effect of total or five-sixth nephrectomy causing renal insufficiency on hepatic heme synthesis in the porphobilinogen deaminase (PBGD)-deficient (AIP) mouse. Phenobarbital challenge in the AIP-mice increased urinary porphyrin precursor excretion. Successive attacks throughout 14 weeks led to minor renal lesions with no impact on renal function. In the liver of wild type and AIP mice, 5/6 nephrectomy enhanced transcription of the first and rate-limiting ALA synthase. As a consequence, urinary PBG excretion increased in AIP mice. The PBG/ALA ratio increased from 1 in sham operated AIP animals to over 5 (males) and over 13 (females) in the 5/6 nephrectomized mice. Total nephrectomy caused a rapid decrease in PBGD activity without changes in enzyme protein level in the AIP mice but not in the wild type animals. In conclusion, high concentration of porphyrin precursors had little impact on renal function. However, progressive renal insufficiency aggravates porphyria attacks and increases the PBG/ALA ratio, which should be considered a warning sign for potentially life-threatening impairment in AIP patients with signs of renal failure.
Revista:
Journal of Translational Medicine
ISSN:
1479-5876
Año:
2012
Vol.:
10
Págs.:
222
These results indicate that our transient and intensive pharmacological immunosuppression fails to improve AAV5-based liver gene transfer in non-human primates. The reasons include an incomplete restraint of humoral immune responses to viral capsids that interfere with repeated gene transfer in addition to an intriguing MMF-dependent drug-mediated interference with liver transgene expression.
Revista:
Molecular Therapy
ISSN:
1525-0016
Año:
2010
N°:
18
Págs.:
456 - 459
Revista:
Molecular Therapy
ISSN:
1525-0016
Año:
2010
Vol.:
18
N°:
4
Págs.:
754 - 765
Revista:
Journal of Hepatology
ISSN:
0168-8278
Año:
2010
Vol.:
52
N°:
3
Págs.:
417 - 424
Background & Aims: Acute intermittent porphyria (AIP) is characterized by hepatic porphobilinogen deaminase (PBGD) deficiency resulting in a marked overproduction of presumably toxic porphyrin precursors. Our study aimed to assess the protective effects of bone marrow transplantation or PBGD gene transfer into the liver against phenotypic manifestations of acute porphyria attack induced in an AIP murine model. Methods: Lethally irradiated AIP mice were intravenously injected with 5×106 nucleated bone marrow cells from wild type or AIP donor mice. To achieve liver gene transfer, AIP mice received via hydrodynamic injection plasmids expressing human PBGD or luciferase, driven by a liver-specific promoter. Results: Erythrocyte PBGD activity increased 2.4-fold in AIP mice receiving bone marrow cells from normal animals. Nevertheless, phenobarbital administration in these mice reproduced key features of acute attacks, such as massively increased urinary porphyrin precursor excretion and decreased motor coordination. Hepatic PBGD activity increased 2.2-fold after hydrodynamic injection of therapeutic plasmid. Mice injected with the luciferase control plasmid showed a high excretion of porphyrin precursors after phenobarbital administration whereas just a small increase was observed in AIP mice injected with the PBGD plasmid. Furthermore, motor disturbance was almost completely abolished in AIP mice treated with the therapeutic plasmid. Conclusions: PBGD deficiency in erythroid tissue is not associated with phenotypic manifestations of acute porphyria. In contrast, PBGD over-expression in hepatocytes, albeit in a low proportion, reduced precursor accumulation, which is the hallmark of acute porphyric attacks. Liver-directed gene therapy might offer an alternative to liver transplantation applicable in patients with severe and recurrent manifestations.
Revista:
Experimental Dermatology
ISSN:
0906-6705
Año:
2010
Vol.:
19
N°:
8
Págs.:
e326 - e328
Porphyria cutanea tarda (PCT) results from decreased activity of hepatic uroporphyrinogen decarboxylase (UROD). Both sporadic and familial forms are characterised by typical cutaneous lesions triggered by genetic/environmental factors. Studies in rodents showed that cytochrome P4501A2 (CYP1A2) plays a central role in the synthesis of a competitive inhibitor of hepatic UROD, but there is little evidence in humans. The impact of smoking and CYP1A2 g-163C > A allelic variant upon first appearance of clinical signs was investigated in 102 patients (80 sporadic-PCT) and 150 healthy donors from Spain. We found an increase in the frequency of CYP1A2 g-163A allele in patients with PCT when compared with controls, although the more inducible A/A genotype had no effect on the onset age. In sporadic-PCT, smoking leads to earlier onset of clinically overt disease in moderate-to-heavy smokers (>or=10 cigarettes/day). In conclusion, this study provides evidence that smoking hastens the onset of cutaneous symptoms in sporadic-PCT patients.
Revista:
Molecular Therapy
ISSN:
1525-0016
Año:
2010
Vol.:
19
N°:
2
Págs.:
243 - 250
Acute intermittent porphyria (AIP) is characterized by a hereditary deficiency of hepatic porphobilinogen deaminase (PBGD) activity. Clinical features are acute neurovisceral attacks accompanied by overproduction of porphyrin precursors in the liver. Recurrent life-threatening attacks can be cured only by liver transplantation. We developed recombinant adeno-associated virus (rAAV) vectors expressing human PBGD protein driven by a liver-specific promoter to provide sustained protection against induced attacks in a predictive model for AIP. Phenobarbital injections in AIP mice induced porphyrin precursor accumulation, functional block of nerve conduction, and progressive loss of large-caliber axons in the sciatic nerve. Hepatocyte transduction showed no gender variation after rAAV2/8 injection, while rAAV2/5 showed lower transduction efficiency in females than males. Full protection against induced phenobarbital-attacks was achieved in animals showing over 10% of hepatocytes expressing high amounts of PBGD. More importantly, sustained hepatic expression of hPBGD protected against loss of large-caliber axons in the sciatic nerve and disturbances in nerve conduction velocity as induced by recurrent phenobarbital administrations. These data show for the first time that porphyrin precursors generated in the liver interfere with motor function. rAAV2/5-hPBGD vector can be produced in sufficient quantity for an intended gene therapy trial in patients with recurrent life-threatening porphyria attacks.